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Leishmaniasis is one of the major neglected tropical diseases, for which no vaccines

exist. Chemotherapy is hampered by limited efficacy coupled with development of

resistance and other side effects. Leishmania parasites elude the host defensive

mechanisms by modulating their surface proteins as well as dampening the host’s

immune responses. The parasites use the conventional RNA polymerases peculiarly

under different environmental cues or pressures such as the host’s milieu or the drugs.

The mechanisms that restructure post-translational modifications are poorly understood

but altered epigenetic histone modifications are believed to be instrumental in influencing

the chromatin remodeling in the parasite. Interestingly, the parasite also modulates gene

expression of the hosts, thereby hijacking or dampening the host immune response.

Epigenetic factor such as DNA methylation of cytosine residues has been incriminated in

silencing of macrophage-specific genes responsible for defense against these parasites.

Although there is dearth of information regarding the epigenetic alterations-mediated

pathogenesis in these parasites and the host, the unique epigenetic marks may represent

targets for potential anti-leishmanial drug candidates. This review circumscribes the

epigenetic changes during Leishmania infection, and the epigenetic modifications they

enforce upon the host cells to ensure a safe haven. The non-coding micro RNAs as

post-transcriptional regulators and correlates of wound healing and toll-like receptor

signaling, as well as prognostic biomarkers of therapeutic failure and healing time

are also explored. Finally, we highlight the recent advances on how the epigenetic

perturbations may impact leishmaniasis vaccine development as biomarkers of safety

and immunogenicity.

Keywords: epigenetics, DNA methylation/demethylation, histone modification, non-coding RNA, leishmaniasis,

host-pathogen Interactions, therapeutics, biomarkers

INTRODUCTION

Epigenetics encompasses any process that changes gene expression and is inherited without
amending the fundamental DNA sequence (1). These variations are highly dynamic which get
altered on advent of any external stress or internal cues (2, 3). Epigenetics controls several cellular
processes by switching genes on or off, thereby modulating gene expression. Epigenetics is also
associated with various diseased states, wherein, it is shaped by host as well as pathogen selection
pressures (4, 5). Recently, there is burgeoning interest in epigenetics landscapes during an infection,
particularly alterations in DNA methylome, histone marks and non-coding (nc)RNA or micro
(mi)RNA profiles. The epigenetic states result in erratic gene expression profiles of host cells, which
are responsible for warding off microbial infections (6, 7).
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Leishmania belongs to trypanosomatid family, being among
the major neglected vector-borne tropical diseases, ranging
in severity from self-healing but disfiguring and stigmatizing
cutaneous lesions to disseminating muco-cutaneous and
fatal visceral manifestations, depending on the species and
host characteristics. Globally, 0.7–1.2 million new cases of
cutaneous leishmaniasis (CL) occur every year; while for visceral
leishmaniasis (VL), 200,000–400,000 new cases and 20,000–
40,000 deaths are reported annually, with 95% of fatal cases
occurring in only six countries, namely, India, Bangladesh,
Sudan, Nepal, Ethiopia, and Brazil (8). The goal of World
Health Organization is to eliminate this public health problem in
South-east Asia region by 2020 (9).

Leishmania parasites have a digenetic life cycle that may
be zoonotic or anthroponotic, depending upon the infecting
parasite species. When an infected female sandfly (Phlebotomus
or Lutzomyia species) takes a blood meal, the parasites cause
dermal lesions as in CL or visceralize as in VL (10). The infection
is amplified in the vector’s gut with successive blood meals (11).
Invasion of host macrophages by Leishmania triggers a multitude
of signaling circuits to eliminate the pathogen. However, the
parasite tries to subvert these defense mechanisms to create a safe
haven for its survival. Leishmania secretes effector molecules to
modulate host immune transcriptome resulting in alterations in
the host epigenome, to alter cytokine and chemokine levels, their
cross talks and downstream signaling hubs. This adversely affects
the recruitment and activation of immune cells, respiratory burst
and antigen presentation, leading to immune evasion (12).

Though still at infancy, there is a recent surge of information
on the epigenetic regulation during Leishmania infection. This
review gives an update on Leishmania epigenetic landscapes
and epigenome alterations imposed in the host for immune
evasion (summarized in Figure 1 and Table 1). Further, evolving
evidence on the probable downstream effects of epigenetic
regulation such as targeting epigenetic machinery to reset the
waning immune response, via vaccine, or drug development and
prognostic markers are also discussed.

EPIGENETIC CHANGES IN
LEISHMANIA PARASITES

The diverse clinical manifestations of leishmaniasis may be
attributed to varying genomic makeup (size, GC content,
coding genes, pseudogenes, retrotransposons) of the causative
Leishmania species (38). To promote their survival in the host
environment, a huge array of epigenetic factors is speculated to
interplay in these parasites (39).

DNA Modification
Glycosylated thymine, termed “Base J” or
β-D-glucosylhydroxymethyluracil, is present in the telomeric
repeat sequence (GGGTTA) of Leishmania (40). J replaces
∼1% of T in nuclear DNA and the modified T residue has
been implicated in transcriptional regulation and termination.
Absence of J is lethal to Leishmania, due to massive read through
of transcriptional termination sites (41). However, repression of

specific genes has now been identified as an essential role of Base
J (15). A thymine base modification, 5-hydroxymethyluracil has
recently been mapped to Leishmania genome, but its epigenetic
role is yet to be elucidated (42).

Histone Alterations
Acetylation of histone H3 in telomeric divergent strand switch
regions, has been reported in L. major promastigotes (43)
resulting in chromatin state, with restriction of protein coding
genes. Acetylation levels are higher in rapidly growing cells
compared to stationary phase cells. Epigenetic marks such as
H3K9me3, H3K14ac, H3K23ac, and H3K27ac have also been
reported in promoter region of rRNA genes of L. major, favoring
transcriptional activation of rRNA genes while H4K20me3 in
the coding region is related to transcriptional silencing (44).
H3K9me3 is also linked to heterochromatin formation. Histone
variants such as H2A.Z and H2B.V have been identified as
essential for L. major survival (16).

In L. donovani, histone acetyltransferase (HAT)4 acetylates
H4K14, favoring maintenance of euchromatin state (19).
H4K4 acetylation by HAT3 (18) and, HAT2-dependant H4K10
acetylation of promoters in L. donovani has been linked with
parasite survival (17).

Epigenetic tags are differentially regulated in the promastigote
and amastigote stage. Some of the histone deacetylases (HDAC)
are preferentially upregulated in L. infantum logarithmic
phase promastigotes over intracellular amastigotes, making
the amastigotes better able to adapt to intraphagolysosomal
environment (20). Sirtuins, NAD-dependent HDAC have been
implicated in parasite survival by inhibiting apoptosis (45),
and sirtinol, sirtuin inhibitor, selectively induced apoptosis in
L. infantum axenic amastigotes but not the promastigotes (46).

Non-coding RNAs
ncRNAs, non-coding sequences of about 22 nucleotides, act as
post-transcriptional regulators of RNA encoding proteins (47).
A special class of nc RNAs found exclusively in amastigotes
of L. infantum and L. donovani, is particularly important for
intra-macrophage parasite survival (48). In L. tarentole, ncRNA
similar to guide RNA encoded by maxicircles and minicircles
has been identified (49). Significant differences in nc RNA
repertoire among different Leishmania species and stages has
been reported (50).

LEISHMANIA-INDUCED HOST
EPIGENETIC ALTERATIONS

Epigenetic mechanisms regulate the interplay of host-pathogen
interactions. Although information on epigenetic manipulation
of hosts by Leishmania is scarce, the pathogen employs a
number of stratagems to manipulate the host epigenome,
thereby hijacking its cellular soldiers (23, 51, 52). Genetic
heterogeneity among different Leishmania species causes altered
gene expression in response to environmental conditions in the
host, resulting in varied epigenetic mechanisms.
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FIGURE 1 | Schematic model of epigenetic regulation during Leishmania infection. Interplay of various factors involved in controlling gene expression at the

transcriptional (DNA and histone modifications) and post-transcriptional level (non-coding RNAs) is depicted. CpG-rich regions of repressed genes are usually

methylated, which in turn recruit chromatin modifiers to keep the genes in any of the three states, i.e., repressed, expressed, or poised. Heavily expressed genes

show neither DNA methylation nor acetylated histones, while repressed genes tend to have both methylated DNA and histones, which inhibit the accessibility of

polymerases, and other factors required for transcription. Base J, a DNA modification is crucial for transcriptional control in Leishmania species. Various non-coding

RNAs arising mostly from UTRs act as regulatory elements in a feedback loop (13, 14). JBP, Base J binding protein; PGC, polycistronic gene cluster; cSSRs,

convergent strand switch regions; dSSRs, divergent strand switch regions; DOT, disrupter of telomere; ac, acetylation; me, methylation; me2, dimethylation; me3,

trimethylation; HAT, histone acetyl transferase; sno, small nucleolar; sn, small nuclear; pi-wi, piwi interacting; si, small interfering; mi, micro; lnc, long non-coding.

DNA Modifications in Host
L. donovani has been reported to elicit epigenetic modifications
in host macrophages, permanently down-modulating the innate
immune defenses (23). These altered epigenetic tags comprise of
cytosine methylation at CpG sites of macrophage DNA, upon
infection, causing alteration in genes implicated in JAK/STAT,
calcium, MAPK, notch, and mTOR signaling pathway as well
as in cell adhesion involving integrin β1 and changes in
host oxidative phosphorylation. Leishmania-driven epigenomic
changes in host macrophages deactivate its innate immune
defensive machinery, thereby promoting pathogen survival,
and replication.

Epigenetic modification promotes self-healing in CL.
Epigenetic repression of wound healing gene, Friend leukemia
virus integration 1 (FLI1) via increased methylation of CpG

islands in its promoter region, has been found to correlate
with up-modulation of pro-fibrotic genes such as collagen
type I alpha 1 (Col1α1) and alpha 2 (Col1α2) and, conversely,
with down-regulation of matrix metalloproteinase 1 (MMP1)
gene, resulting in resolution of lesions caused by L. braziliensis
(53, 54). MMP1 cleaves type I collagens to loosen keratinocytes-
dermal matrix contact, favoring re-epithelialization or tissue
repair. Homocystine-dependent stimulation of IL-6 has been
further implicated in epigenetic DNA methylation of CpG-rich
promoter of lysyloxidase (LOX) gene, a cross-linker of collagen
and elastin, also rendering it transcriptionally inactive (55, 56).
These epigenetic regulations of gene expression depend upon the
infecting Leishmania species. Contrary to these reports, a recent
study showed that increased FLI1 promoter methylation did not
translate into low FLI1 gene expression (22).
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TABLE 1 | Leishmania plasticity and Leishmania-induced host epigenetic alterations.

Epigenetic regulator Modification Condition Effect Reference

EPIGENETIC REGULATION IN LEISHMANIA

Base J ↑ L. major Parasite survival (15)

H2A.Z, H2B.V ↑ L. major Parasite survival (16)

HAT2 ↑ L. donovani Cyclins ↑, parasite survival (17)

HAT3 ↑ L. donovani Parasite survival (18)

HAT4 ↑ L. donovani Cyclins ↑, parasite survival (19)

HDAC ↑ L. infantum logarithmic phase

promastigotes versus intracellular

amastigotes

Adaptation of amastigotes to

phagolysosomal milieu

(20)

Sirtuin 2 ↑ Amp BR - L. donovani ROS ↓, apoptosis ↓ (21)

LEISHMANIA-INDUCED HOST EPIGENETIC ALTERATIONS

FL1 methylation ↓ L. braziliensis infected møs from skin

lesions

FLI gene expression (22)

IRAK2 DNA methylation at

CpG sites

↑ L. donovani infected møs IRAK2 mRNA ↓, NF-κB ↓, immune

silencing

(23)

LARS2 related CpG site

methylation

↑ L. donovani infected møs LARS mRNA ↓, mTORC1 ↓, 4E-BP1 ↑,

parasite proliferation

(23)

CDC42EP3 methylation at

CpG sites

↓ L. donovani infected møs CDC42EP3 mRNA ↑, Progression of

infection

(23)

HDAC4 ↑ L. donovani infected møs Phagolysosomal formation, amastigote

survival

(23)

HDAC11 ↑ Imipramine treated SbR-L. donovani

infected human møs

IL-12/IL-10 ratio ↑, parasite burden↓ (24)

HDAC1 ↑ L. amazonensis infected møs iNOS ↓, parasite survival (25)

miRNA-294,−721 ↑ L. amazonensis infected møs Targets NOS-2, L-Arginine metabolism,

NO ↓, parasite establishment

(26)

miRNA-210 ↑ L. major infected møs Activates hypoxia inducible factor-1α,

parasite survival

(27), (28)

miRNA-129- 5p,−101c ↓ L. major infected møs Autophagy ↑, infection↓ (28)

miRNA-25, - 26a,−140, -

155, let-7a

↑ L. major infected human møs Corresponding chemokine targets ↓

(CCL5, CXCL10, CXCL11, CXCL12,

CCL2)

(29)

miRNA-155 ↑ L. major infected human DCs PU.1 (SPI1) ↑, TGF-β signaling (30)

let7a/b ↓ L. major infected human DCs, møs Pro-inflammatory cytokines IL-12↓ (30)

miRNA-193b,−671 ↑ Lesions from L. braziliensis infected

patients

CD40, TNFR, inflammatory response,

faster wound healing

(31)

miRNA-361- 3p ↑ Skin lesions from L. braziliensis

infected patients

Therapeutic failure, healing time ↑,

prognostic biomarker

(31)

miRNA-30A- 3p ↑ L. donovani infected THP-1, HMDMs Autophagy ↓, promotes parasite survival (32)

miRNA122 ↓ L. donovani infected murine

hepatocytes

Serum cholesterol ↓, maintains infection (33)

miRNA-30c ↓ DBA-treated intramacrophagic

L. donovani amastigotes

Inhibits proliferation and virulence (32)

miRNA-151a ↓ DBA-treated intramacrophagic

L. donovani amastigotes

Mitochondrial dysfunction (32)

miRNA-6540 ↓ L. donovani infected møs Promotes intracellular parasite survival (34)

miRNA- 3473f ↓ L. donovani infected møs Autophagy ↓, role in pathogenesis (34)

miRNA- 6973a ↑ L. donovani infected møs IL-12 ↓, Th1 → Th2, parasite survival (34)

miRNA-3620 L. donovani infected møs Iron homeostasis genes, iron in cytoplasm,

parasite survival

(34)

miRNA-3620,−6385 ↑ L. donovani infected møs Hypoxia inducing genes ↓, macrophage

effector functions ↓, parasite survival

(34)

miRNA-763,−1264,−3473f ↓ L. donovani infected møs ABC transporters ↑, drug efflux ↑,

resistance

(34)

(Continued)
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TABLE 1 | Continued

Epigenetic regulator Modification Condition Effect Reference

miRNA-21 ↑ L. donovani infected human DCs SMAD7 ↓, TGF-β signaling (30)

miRNA- 146b-5p ↑ L. donovani infected human DCs TRAF6 ↑, TGF-β signaling (30)

let7a/b ↑ L. donovani infected human DCs,

møs

Target pro-inflammatory genes,

pro-inflammatory cytokines IL-12 ↓

(30)

miRNA-511 ↑ L. donovani infected human DCs TLR4 activation (30)

miRNA-488i ↑ SbR-L. donovani infected møs MyD88 ↓, IL-10/IL-12 ↑ ratio, parasite

number ↑

(35)

miRNA-34a ↓ L. donovani infected human møs c-myc ↑, M2 mø activation, attenuates

parasite survival

(36)

miRNA-155 ↑ L. infantum infected J774 møs Susceptibility to Sb ↓ (25)

miRNA-191,−374 ↑ L. infantum infected dog PBMCs Parasite load ↑ (37)

miRNA-150 ↓ L. infantum infected dog PBMCs Parasite load ↑ (37)

HDAC, Histone deacetylase; IRAK2, interleukin-1 receptor associated kinase 2; LARS, leucyl-tRNA synthetase; Amp, BR Amphotericin B resistant; møs, macrophages; HMDMs, Human

monocyte derived macrophages; DBA, dibenzalacetone; ABC, ATP-binding cassette; DCs, Dendritic cells; I, inhibitor; SbR, Antimony resistant; Sirtuins, Silent Information Regulator.

Histone Modifications in Host
L. amazonensis induces HDAC in infected macrophages,
contributing to down regulation of inducible nitric oxide
synthase (iNOS) and subsequent parasite survival (25).

ncRNA Induced Gene Silencing
Leishmania infection targets cellular miRNA repertoire and
the differential miRNA expression is dependent on infecting
species (37). A plethora of studies indicate miRNAs as
key regulators of disease phenotype in Leishmania-infected
cells (27, 30, 32–34). miRNA-30A-3p mediates survival of
intracellular L. donovani and intervention targeting the miRNA
resulted in significant reduction in parasite burden by restoring
host autophagic machinery (32). miRNA-3620 was found to
regulate iron homeostasis and hypoxia in L. donovani infected
macrophages while miRNA-3473f was linked with autophagy
inhibition (34). Drug resistance due to over expression of
efflux pumps such as ABC transporters has also been linked
with downregulation of miRNA-763,−1264, and−3473f (34).
L. donovani infection causes hypoxic environment within the
macrophages by activating hypoxia inducible factor-1α, that in
turn up regulates miRNA-210, while down regulating NF-κB
mediated pro-inflammatory immune responses, to establish a
safe niche for its survival (57).

Leishmania establishes and survives in the host by
manipulating its ncRNA network, which includes transcriptional
arrest of the major protein coding genes in macrophages (58),
downregulating 7SL RNA in SRP complex, knockdown of
selected ncRNAs in their host cells by inducing degradation of
a specific RNA Pol III transcription factor subunit TFIIIC110
in M2 macrophages (59). Leishmania surface glycoprotein,
gp63 and surface glycolipid, LPG have been reported to down
modulate ncRNAs in M2 macrophages, thereby promoting
infection (60).

Recently, down modulation of 19 miRNAs in L. donovani
infected macrophages has been reported (36). The miRNA gene
repression correlated with upregulation of host transcription
factor, c-myc upon infection, a marker of M2 macrophages,

which could possibly be another virulence factor. The expression
of c-myc in turn is regulated by several miRNAs, primarily
miRNA-34a, which is reciprocally down modulated in
Leishmania-infected cells.

miRNA-361-3p and−140-3p have been reported to be more
expressed in skin lesions caused by L. braziliensis in localized
cutaneous leishmaniasis (LCL) (61). While miR-193b and−671
have been correlated with faster wound healing in L. braziliensis
infected patients (31). Autophagy in intramacrophagic L.
major has been correlated with miRNA-101c,−129-5p and via
inhibiting miRNA-210 (28).

POTENTIAL DOWNSTREAM EFFECTS OF
EPIGENETIC REGULATION DURING
LEISHMANIA INFECTION

Epigenetic Reprogramming of Innate
Immune Cells
Recent reports shed light on epigenetic reprogramming in
monocytes and macrophages via histone trimethylation at H3K4
for innate immune memory or trained immunity (62, 63).
Natural killer (NK) cells have also been reported to differentiate
into memory NK cells with distinct epigenetic profile (64).
However, the epigenetic signatures of innate immune cells during
Leishmania infection are limited (65).

Epigenetic Tuning of Cell Signaling Hubs
Epigenetic reprograming at cytokine gene loci is reported to
influence its gene expression. A growing body of data suggests
that differential cytokine microenvironment modulates T helper
(Th) cell polarization, macrophage phenotype differentiation and
cytokine-inflammasome crosstalk for optimal immune response
(65). Signal transducers and activators of transcription (STAT)-
4 and−6 have also been reported to play antagonistic roles in
epigenetic tuning for Th cell differentiation (66). The epigenetic
marks orchestrating gene regulation in Th cell differentiation
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(67) and M1/M2 macrophage polarization have been extensively
reviewed (68).

Differential expression of miRNAs has been reported to
induce T cell differentiation during VL. While miRNA-
744 suppresses TGF-β expression and subsequently Treg cell
differentiation, miRNA-1272 and−155 downregulate IL-4/IL-
13 signaling to mitigate Th2 response during active infection
(69). Antimony-resistant L. donovani has been reported to
activate miRNA-466 inhibitor to degrade host MyD88 and
regulate IL-10/IL-12 axis and establish successful infection
(35). Chemokine and chemokine receptor gene expression also
contribute to immunopathogenesis of leishmaniasis (70). But the
effect of Leishmania–induced epigenetic alterations in regulation
of chemokine genes has not been much explored (29).

miRNAs are also known to be involved in activation of
monocytes through toll-like receptor (TLR) signaling (31).
Following infection with L. major and L. donovani, miRNA
expression was down modulated through MAP kinase, JAK-
STAT, and TGF-β signaling pathways (31). H3K27 has been
found to suppress toll-interacting protein that negatively
regulates TLR, thereby promoting TLR-mediated inflammatory
cytokine production, and activation of innate immune response
against the invading pathogens (65).

EXPLOITING EPIGENETICS

Leishmania have evolved stratagems to neutralize macrophage
defensive arsenals, the very heart of immune system’s defensive
machinery, resulting in replication of parasites within
phagolysosomal vacuoles of infected macrophages. Unfolding
the epigenetic signatures of host-pathogen interactions would
help in development of effective drug targets to modulate host
immune system and ameliorate the pathogenesis of infection.
Some epigenetic marks may serve as putative vaccine candidates.
The epigenetic biomarkers may also complement the current
diagnostic assays.

Vaccines
An essential hallmark of vaccination is to generate antigen-
specific memory T cells for induction of sufficient immune
response to protect against re-infection. Epigenetic modifications
have been reported to contribute towardmemory T cell induction
(71, 72). Recombinant histone H1 has been shown to elicit
protection in outbred vervet monkeys against CL (73) while
histones H2A-2B-3-4 cocktail induced protective immunity
against L. donovani challenge in hamsters (74). Sirtuins have been
used as vaccine candidate against L. donovani infected hamsters
with induction of Th1 immune response (75). Recently, miRNA-
21 has been shown to negatively correlate with IL-12 production
and priming of protective Th1 response, suggesting declining
levels of miRNA-21 as a potential biomarker of safety and
immunogenicity in anti-leishmanial vaccines (76). Therapeutic
vaccines may be developed to target miRNA-135 and−126 that
bias the Th2 response toward protective Th1 type (69).

Epigenomic-Therapeutics
Despite an array of chemotherapeutic arsenal, mostly targeting
the parasites directly, treatment failure, and drug resistance are
looming large (77). This has been partly attributed to epigenetics-
driven evolution of drug resistant phenotypes to override drug
pressure (78). Host-directed epigenetic reprogramming may be
refractory to resistance and hence offer hope in this regard (79).

Computer-aided drug repurposing for epigenetic targets
is revolutionizing drug discovery (80). DNA methylation,
particularly of virulence-associated genes, suggests DNA
methyl transferases as potential therapeutic targets. An inverse
correlation between FLI1 gene expression and MMP1 in
cutaneous lesions has also been observed, suggestingMMP1 as a
potential therapeutic target in severe forms of leishmaniasis (22).
FLI1 and LOX have also been implicated as potent drug targets
in L. braziliensis infection (54, 56).

The enzymes effecting histone post-translational
modifications, particularly those containing epigenetic reader
modules, bromodomains could also be putative therapeutic
targets. Sirtuins of L. donovani have been validated as drug
targets (81). Crystal structure of L. infantum Sir2 has been
elucidated with implications for drug design (82). Sir2 has
been suggested as a resistance marker for VL (21). Phenotypic
screening of compound libraries against Leishmania has helped
in identification of bisnaphthalimidopropyl derivatives as
sirtuin inhibitors (83). Imipramine has been found to mediate
antileishmanial effect in antimony-resistant Leishmania-infected
macrophages via targeting HDAC11, resulting in transcriptional
inactivation of IL-10 production (24). KH-TFMDI, a novel
sirtuin inhibitor, targets HDAC to promote apoptosis-like cell
death in L. amazonensis promastigotes as well as intracellular
amastigotes (84). However, none of the clinically approved
HDAC inhibitors are effective against L. amazonensis (85).

Studies have deciphered role of miRNA-294 and−721 in
Leishmania survival via subversion of macrophage nitric oxide
production and hence these may be putative therapeutic targets
(26, 32). Recent reports of L. donovani hijacking the host’s
transcription factor, c-myc and reduction of intramacrophagic
parasite burden upon c-myc silencing or inhibition, with
consequent miRNA upregulation, implicate c-myc as a potential
therapeutic target (36). Epigenetic targets such as miRNAs
screened in L. donovani-infected macrophages upon treatment
with antileishmanial trans-dibenzalacetone, revealed an
imbalance between apoptosis and autophagy (86).

Epigenetic Biomarkers
Leishmania-induced changes in hosts’ epigenome may help to
predict the clinical outcome of infection and hence complement
the existing diagnostics. The state of knowledge regarding
epigenetic biomarkers in leishmaniasis is limited. A recent
study showed potential of miRNA-361-3p as a prognostic
biomarker in CL caused by L. braziliensis (61). miRNA-361-
3p expression was upregulated in patients with therapeutic
failure to pentavalent antimony and hence required more healing
times. miRNA-193b and−671 have also been speculated to be
prospective biosignatures for prognosis of LCL but require
further validation (31).
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CONCLUDING REMARKS

The epigenetic mechanisms work in alliance with each other
to regulate life cycle of Leishmania parasites and ensure
their survival. Pathogens are also capable of eluding cellular
defensive machinery by changing the epigenetic states of host
gene expression, thereby dampening their immune response. A
snapshot of epigenetic imprinting of relevant genes in Th cell
polarization, and memory T cell differentiation with triggering
of innate immune cell populations may provide a basis for
development of improved leishmaniasis vaccines.

Targeting the epigenetic marks could result in drug design
with less likelihood of development of resistance, thus extending
the pipeline toward disease elimination. Whether Leishmania
parasites tailor the epigenetic mechanisms of their vector

sandfly to favor their colonization remain to be elucidated.
The impact of these pathogens on vector epigenetics could
pave a way for development of transmission blocking vaccines.
This review may assist to expand our knowledge of epigenetic
influences upon host-parasite interplay, and open the doors
to investigate epigenetic targets for rapid diagnostics or
therapeutic interventions.
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