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Abstract: Proteoglycans (PGs) are glycosylated proteins of biological importance at cell 
surfaces, in the extracellular matrix, and in the circulation. PGs are produced and modified 
by glycosaminoglycan (GAG) chains in the secretory pathway of animal cells. The most 
common GAG attachment site is a serine residue followed by a glycine (-ser-gly-), from 
which a linker tetrasaccharide extends and may continue as a heparan sulfate, a heparin,  
a chondroitin sulfate, or a dermatan sulfate GAG chain. Which type of GAG chain 
becomes attached to the linker tetrasaccharide is influenced by the structure of the protein 
core, modifications occurring to the linker tetrasaccharide itself, and the biochemical 
environment of the Golgi apparatus, where GAG polymerization and modification by 
sulfation and epimerization take place. The same cell type may produce different GAG 
chains that vary, depending on the extent of epimerization and sulfation. However, it is not 
known to what extent these differences are caused by compartmental segregation of protein 
cores en route through the secretory pathway or by differential recruitment of modifying 
enzymes during synthesis of different PGs. The topic of this review is how different 
aspects of protein structure, cellular biochemistry, and compartmentalization may influence 
GAG synthesis. 
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1. Proteoglycans 

Proteoglycans (PGs) consist of a protein core that, during transport through the secretory pathway, 
acquires one or more usually negatively charged glycosaminoglycan (GAG) chains. The negative charge 
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is conferred by acidic sugar residues and/or sulfate groups in various positions along the GAG chains [1]. 
The acidic sugars are hexuronic acids that alternate with amino sugars in repeated disaccharide units: 
glucuronic acid (GlcA), that may become iduronic acid (IdoA) upon C5 epimerization, which occurs in 
certain GAG domains during heparan sulfate (HS) and heparin synthesis, and in the conversion of 
chondroitin sulfate (CS) into dermatan sulfate (DS). The GAG chains possess sub-domains that allow 
biologically important interactions with a wide variety of regulatory proteins [2–5]. 

GAGs that extend from PG protein cores to which they are covalently attached have the ability to 
attract cations and to bind water molecules. Hydrated GAG gels have long been known to play an 
important role for the absorption of pressure changes in joints and tissues. In addition, certain patterns 
of epimerization and sulfation along GAG chains promote ionic interactions with growth factors and 
other signaling molecules, thus, regulating growth development and differentiation and also influencing 
immunological mechanisms. The discovery of such mechanisms has also increased the interest in PGs 
in what concerns cancer development, metastasis, and therapy regimes [6,7]. 

PG protein cores are not just scaffolds for GAG extension. More than 40 different protein cores 
have been identified, many of which have been grouped according to their protein domains [8]. Such 
domains may be engaged in a number of different interactions and many of the protein cores display 
variants resulting from alternative splicing. Several reports show that PG protein cores may influence 
the type and modification patterns of the subsequently attached GAG chains, but how the information 
is transmitted from the protein core to the enzymes engaged in polymerization and modification of 
GAGs is not clear. One suggested mechanism is through sulfation and phosphorylation of sugar units 
of a linker tetrasaccharide that attaches GAG chains to a modification site of a protein core. The 
picture is complicated by the fact that the same protein core can acquire different types of GAG chains 
in different cell types, showing that GAG modification for a particular protein core may be cell type 
and tissue specific. For instance, the PG Serglycin is modified by CS chains, often sparsely sulfated in 
most cell types where it is expressed, but obtains highly sulfated heparin chains in mast cells [9]. 

Apart from keratan sulfate GAGs that originate from typical glycoprotein modification sites [10], 
CS, DS, HS and heparin GAGs all extend from the serine residue of ser-gly sites in the protein  
core through the common linker tetrasaccharide (Figure 1), consisting of xylose [11], galactose, 
galactose, and glucuronic acid (GlcA). Addition of a fifth sugar, which is an acetylated amino sugar, 
will decide whether the GAG chain becomes HS/heparin or CS/DS. In the former cases (HS/heparin), 
the amino sugar is N-acetyl-glucosamine (GlcNAc), while in the latter cases (CS/DS) it is N-acetyl-
galactosamine (GalNAc). In all these cases the amino sugars alternate with GlcA in an enzyme-catalyzed 
polymerization process resulting in long, linear GAG chains, consisting of disaccharide units that may 
undergo extensive modification. Heparin is more highly sulfated than HS and contains in addition 
some GlcN/NS carrying 3-O-sulfate, which is usually absent in HS. DS is generated from CS, firstly 
by epimerization of GlcA into IdoA, followed by sulfation in distinct positions [12]. 

An underlying question is how and why some GAG modification sites acquire HS chains, while 
others give rise to CS chains; and why some of these GAGs undergo particular modification regimes, 
for instance by conversion into DS, while CS GAGs attached to other protein cores are not subjected  
to the same changes? 

In defined cellular systems, certain protein domains have been shown to promote HS synthesis, 
while deletions or site-directed mutagenesis has resulted in a decrease in the HS content, and instead 
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an increased amount of CS modification. To my knowledge, there are no examples of protein domains 
that promote CS synthesis, which can be deleted or mutagenized to give more HS modification of a 
given PG protein core. This is one of the premises for the suggestion that CS modification might occur 
by default at sites that are not utilized for HS synthesis, as shown for embryonic stem cells that were 
made unable to synthesize HSPG, where CS synthesis compensates for some of the functions [13]. 
However, it may be shown possible to produce protein-free heparan sulfate chains in vitro,  
extending from the xyloside template GlcA-Gal-O-C2H4NH-benzyloxycarbonyl or from the protein  
�-thrombomodulin (which normally acquires CS chains), in the presence of the HS polymerizing 
enzymes EXT1 and EXT2 and the substrates UDP-GlcNAc and UDP-GlcA [14], indicating that HS 
synthases do not have a strict protein core requirement. 

 

Figure 1. A heparan sulfate (HS)/heparin or chondroitin sulfate (CS)/dermatan sulfate 
(DS) attachment site in a proteoglycan (PG) protein core with a linker tetrasaccharide. 
Sulfation, phosphorylation and capping sites are indicated. 

2. The Role of the Protein Core 

PGs of the Glypican family are primarily modified by HS chains [15]. Glypican-1 expressed in 
CHO and COS cells requires the globular extracellular domain to become predominantly (90%) 
modified by HS chains. Removal of this domain, results in 90% CS modification, while the relative 
amount of HS chains may also be reduced by amino acid changes, up to 70 amino acids away from the 
GAG attachment sites, indicating that protein domains far away from the GAG sites play a role. 
Transfer of the globular domain of Glypican-1 significantly increased the relative amount of HS chains 
in both of the PGs Betaglycan and Decorin, supporting the view that this domain promotes HS 
modification [16]. Expression of chimeras of protein A with Betaglycan or Syndecan-1 showed  
that a nearby cluster of acidic amino acids and an adjacent tryptophan residue stimulate HS  
synthesis [17,18]. Repetitive ser-gly sequences also favor HS modification [19]. Similar observations 
were made for Perlecan [20], however, acidic amino acids are also found nearby typical CS sites in  
a number of PGs [21]. 

The domains of the protein core have been shown to have a greater influence on the detailed 
structure of CS chains than on that of HS chains in murine mammary gland epithelial cells. While the 
HS chains of Syndecan-1 and Syndecan-4 could not be distinguished, CS chains attached to these two 
PGs were structurally and functionally distinct [22], indicating that the CS chains are protein core 
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specific and the HS structure could be more cell type specific. Several cell types have been reported to 
synthesize both lectican PGs, which are mainly modified by CS chains, and small leucine-rich PGs 
that mostly carry DS chains. The extent of C5 epimerization was shown to depend on motifs in  
the protein cores of Decorin (high incidence) and CSF-1 (low incidence), when full length DNA 
constructs and chimera coding these PGs were expressed in 293 HEK cells [23]. A more recent study 
showed that fusion PGs with high and low incidence of epimerization did not co-localize and that 
CSF-1 contained a protein domain (TNWVP) that prevented C5 epimerization and, thus, DS synthesis. 
A trp (W) to leu (L) change in this domain increased the IdoA content to 12%–16% [24]. CS and DS 
GAG chains may exist as separate entities, but can also form hybrid structures along the same GAG 
chain [25,26]. Over the years, more detailed information about the distribution of CS and DS domains 
has been obtained, and also on their tissue and regional differences, for instance in the brain [12,27]. 
Still, how domains of different modification status are made along the GAG chains, quite distantly 
from the protein core, is among the unanswered challenges of PG biology. 

3. Modification of the Linker Region 

Addition of a tetrasaccharide linker (xylose-galactose-galactose-GlcA) onto a serine residue in the 
protein core is the obligatory start of all CS/DS and HS/heparin GAG chains [28–30]. While GAG 
polymerization takes place in the lumen of the Golgi apparatus, synthesis of the linker region has been 
proposed to start in a pre-Golgi compartment, either at endoplasmic reticulum (ER) exit sites [31–33] 
or in the ER-Golgi intermediate compartment [34], while yet other researchers have localized the 
xylosyltransferases (I and II) to the cis-Golgi region [35,36]. What decides whether a particular linker 
region gives rise to a CS/DS chain or an HS/heparin chain has been subject to both speculations and 
experiments. Sometimes structures in the underlying protein core have been shown to play a role, but 
how the information is transmitted to the synthesis machinery is unclear. Modification of the linker 
xylose by phosphorylation at C-2 has been observed both in CS [37–40] and HS [41] GAGs, but in 
PGs of extracellular matrix tissues, the linker xylose is generally not phosphorylated [42–44]. In recent 
studies, it has been shown that xylose phosphorylation [45] and dephosphorylation [46] are important 
steps for linker tetrasaccharide completion. The phosphorylation has a maximum at the trisaccharide 
stage, with two galactoses linked to xylose [47]. The 2-phosphoxylose phosphatase is shown to form 
hetero-oligomeric complexes with the enzyme adding the fourth linker sugar. This enzyme, the 
glucuronic acid transferase I (GlcAT-I), aids in Golgi localization and enhances the phosphatase 
activity [46]. Since xylose phosphorylation is observed for both CS/DS and HS/heparin GAGs, it does 
not seem to have influence on the type of GAG that will be made, but rather regulates whether a GAG 
will be polymerized at all, by stimulating enzymes involved in completion of linker tetrasaccharide 
synthesis [48]. In fact, without xylose phosphorylation, the linker does not seem to proceed with 
addition of the second galactose unit, but is rather capped by a sialic acid [45]. 

Sulfation of the linker region is limited to the CS/DS pathway, where 4-O-sulfation of the second 
galactose [49] and 6-O-sulfation of both the first and the second galactose units have been shown to 
occur [50–53]. Different linker sulfation patterns have been observed for CS/DS from different sources, 
while as mentioned, linker sulfation has never been observed for HS/heparin chains. A straightforward 
explanation would be that sulfation of the linker sugars makes a GAG site in a PG protein core bypass 
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the HS synthesis machinery. The enzymes involved in HS synthesis are generally reported to be 
localized in an earlier region of the Golgi apparatus than the CS polymerizing enzymes. Upon treatment 
of various cell lines with brefeldin A (BFA) the HS synthesizing enzymes were shown to move 
retrogradely to the endoplasmic reticulum (ER), while the CS synthesizing enzymes did not [54–58], 
indicating that the HS enzymes are localized to the BFA-sensitive Golgi cisternae, while the CS 
enzymes are localized to the trans-Golgi network (TGN). Mechanistically, the decision in what 
concerns addition of the fifth sugar unit, which is GalNAc for CS/DS and GlcNAc for HS/heparin, 
could be more complicated. As mentioned, lack of phosphorylation may lead to capping of the linker 
region [45], but if the xylose unit is not dephosphorylated before the linker has become a tetrasaccharide, 
addition of a non-productive GlcNAc unit as the fifth sugar by the enzyme EXTL2 can also prevent 
GAG elongation [59]. Phosphorylated substrates, with or without 6-O-sulfate on the first galactose 
unit, were better substrates for GlcAT-I [43], but phosphorylated xylosides (xylose linked to a 
hydrophobic structure) did not promote further linker synthesis [60]. Xylosides, however, might be 
substrates for other enzymes than those that build on xylose units attached to protein cores [47]. While 
sulfation of the galactose units of the linker region has been suggested to promote CS/DS synthesis, 
has 3-O sulfation of the fourth sugar unit of the linker (GlcA) been reported to have a rather opposite 
effect, by preventing CS GAG synthesis on �-thrombomodulin [61]. The enzyme involved may also 
add 3-O-sulfate to the terminal GlcA units of CS chains; therefore it could potentially be a GAG chain 
termination signal [62]. Variability to the extent of linker region sulfation has been observed since long 
for tissue preparations [50,63], but the role these modifications might play for the addition of the fifth 
sugar in the GAG chain has still not been clarified. 

4. Keratan Sulfate Proteoglycans and Hyaluronic Acid Glycosaminoglycans 

Keratan sulfate (KS) GAG chains consist of repeated disaccharides of galactose and GlcNAc, 
linked together by �(1–4) and �(1–3) linkages, a disaccharide that may also be called polylactosamine. 
Both units of the disaccharide may be sulfated on the C6 carbon, but GlcNAc sulfation is most 
abundant. As mentioned, the KSPGs are the only PGs where the GAG chains are not attached to the 
protein core via the linker tetrasaccharide found in PGs carrying CS, DS, and HS chains, including 
heparin. The different modes of attachment of KS chains to their protein cores in KSPGs form the 
basis for the distinction of KSI, KSII and KSIII [10]. For KSI, the GAG chains are linked to the 
protein core via an asparagine linked (N-linked) complex glycan structure, where one (C6), and 
sometimes both (also C3; [64]), of the antennae are further modified by KS. Although it has not been 
fully determined what protein motifs that instruct a complex N-glycan to become KS type I, some 
aspects have been studied for small leucine-rich corneal PGs. Not all N-glycosylation sites may turn 
into KS [65,66] and those that may seem to have more aromatic residues nearby and localize to an 
outward facing horseshoe-like structure in the protein core [66]. An N-glycosylation site in Aggrecan, 
however, is reported to carry either KS chains or complex N-glycans [67]. KS type II chains are  
O-linked to serine or threonine residues in the protein core via GalNAc units in structures resembling 
core-2 type mucins. KSII is found in cartilage attached to Aggrecan, predominantly on a serine residue 
in a repeated Glu-Glu/Lys-Pro-Phe-Pro-Ser sequence, but also elsewhere in the protein core [67,68]. 
KS type III chains are abundant in the brain and are linked to the protein core via attachment of 
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mannose to serine or threonine residues [69]. The polymerization of KS recruits UDP-galactose from 
the same pool in the Golgi lumen as does the addition of galactose during formation of complex  
N-linked glycans. This was shown in an MDCK cell line lacking the UDP-galactose transporter in the 
Golgi membrane [70], which does not synthesize KS or add galactose to N-glycans, but synthesizes CS 
and HS, which requires addition of two galactose units in the linker region, steps thought to occur 
early in the Golgi apparatus or in a pre-Golgi compartment [71]. 

Hyaluronic acid (HA), which is a non-sulfated GAG without covalent protein attachment, is 
abundant in extracellular matrices and at cell surfaces. HA is often bound to PGs called lecticans that 
possess a HA binding domain called the link protein [72,73]. The monosaccharide building blocks of 
HA are the same as for HS (GlcA and GlcNAc). In both cases, activation to UDP-sugars in the 
cytoplasm is required, but while HS chains are polymerized in the Golgi lumen, where they undergo 
modification by epimerization and sulfation, HA synthases (HAS1-HAS3) are localized to the plasma 
membrane, recruiting UDP-sugars from the cytoplasmic side, and the precursor pools of HS and HA 
are therefore segregated [74]. HAS1, HAS2, and HAS3 display different sensitivity to variation in the 
UDP-sugar levels induced by variable levels of glucose and glucosamine in the cell culture  
medium [75]. This is to some extent reflected in the estimated Km values for UDP-GlcNAc and  
UDP-GlcA for these enzymes, which also varies to some extent with the UDP-sugar concentrations [76]. 
The reported Km values for the UDP-sugars are in the same range as those reported for 
glycosyltransferases found in the Golgi apparatus (discussed previously; [77]), and 100–1000 times 
higher than higher than the Km for UDP-GlcNAc of a UDP-GlcNAc transferase acting on cytoplasmic 
and nuclear proteins [78]. HAS2 is, in fact, a substrate for such modification and O-GlcNAcylation 
stabilizes the enzyme [79], while higher GlcNAc levels also increase the HAS2 Vmax [76] and the 
synthesis of both HA and CS [79]. Modification of the enzymes could alter their Km values, which 
could also be lower for the enzymes in the intact plasma membrane than for individually purified 
enzymes [80]. Interestingly, HAS1-3 were recently shown to form both homomeric and heteromeric 
enzyme complexes already in the Golgi apparatus, underway to the cell surface [81]. 

5. Sorting of Proteoglycans in the Secretory Pathway 

In eukaryotic cells, the secretory pathway transports secretory and plasma membrane proteins, PGs, 
and lipids from the ER to the cell surface. In addition, most endosomal and lysosomal proteins follow 
the secretory pathway from the ER through the Golgi apparatus, from where there are several routes 
directly to the cell surface, and a number of routes to compartments along the endocytic pathway. In 
polarized cells, like epithelial cells and neurons, the plasma membrane is divided into different 
regions, a situation that requires additional pathways for targeting of proteins, PGs and lipids to their 
respective acceptor membrane domains. The HS chains of Glypican were shown to guide this PG to 
the basolateral surface of polarized, filter-grown Madin-Darby canine kidney (MDCK) cells, since 
glypican was transported to a greater extent to the apical cell surface domain upon removal of HS 
modification sites [82]. It is possible that the HS chains inhibit homoclustering of Glypican molecules 
in the Golgi apparatus, thereby preventing apical transport [83]. CS chains have been implicated as 
promoters of apical sorting in MDCK cells. Most of the CSPGs secreted from MDCK cells were 
recovered from the apical culture medium [84]. An indication that the sorting information could be 
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localized to the CS chains, and not in the protein core, was provided by the finding that protein-free, 
xyloside-based CS chains were also mainly exported apically [85]. When the PG Serglycin was 
expressed in MDCK cells, the protein core obtained mainly CS chains and was also secreted 
predominatly (85%) apically. An interesting finding was that the minor fraction (15%) that was 
secreted basolaterally carried CS chains that were several times more intensely sulfated than the apical 
counterpart [86]. In addition, CS chains secreted to the apical and basolateral media were of different 
lengths [87]. This suggests that Serglycin molecules destined for the apical and basolateral surface 
domains are segregated during synthesis and modification, making sorting at earlier stages of the 
secretory pathway than the TGN a possibility [88]. Early segregation would indicate that the required 
sorting information for apical and basolateral partitioning is present in the protein core or is added in 
the very first events of modification, for instance in the linker tetrasaccharide sugars and their 
modifications. When Serglycin was secreted without GAG chains from BFA-treated MDCK cells, 
presumably from a pre-Golgi compartment, the predominance of apical secretion was maintained, 
indicative of sorting information localized also elsewhere than, and in addition to, the information in 
the GAG chains [89]. 

In fact, a difference in the sulfation intensity in the apical and basolateral pathways of MDCK cells 
has not only been observed for Serglycin, but also for CSPGs in general [90]. In the case of Serglycin, 
the GAG attachment domain functioned as an apical sorting signal when it was transferred to the  
non-glycosylated protein rat growth hormone (rGH; [91]). Interestingly, however, the apically and 
basolaterally secreted rGH molecules carrying the GAG domains of Serglycin were sulfated with 
similar intensities. Thus, the higher intensity of basolateral sulfation of the GAGs of intact Serglycin is 
driven by a region of the protein core outside the GAG-attachment domain [86,91]. In sum, the 
observations made indicate that information concerning sorting into different secretory routes may be 
localized to GAG chains and/or their attachment sites, but also to other regions of PG protein cores. 
Furthermore, a single site for CS modification might not be sufficient to induce apical sorting, since a 
sole CS GAG chain could not divert the APLP2 splice variant carrying this GAG from the basolateral 
to the apical secretory route [92]. Single CS chains have, however, been shown to decrease the time of 
transportation from the TGN to the cell surface, presumably by incorporation into a different transport 
route [93]. 

6. The Environment of the Golgi Apparatus 

Correct organization of the Golgi cisternae and their enzymatic content, a shallow pH gradient and 
proper concentration of ions like Ca2+ are requirements for a normal glycosylation output from the 
secretory pathway. There is also a substrate requirement for the modification reactions that take place 
within the Golgi cisternae, like nucleotide sugars and 3'-phosphoadenosine-5'-phosphosulfate (PAPS), 
which are transported from their site of synthesis in the cytoplasm into the Golgi lumen through 
specialized transporters in the Golgi membrane [94,95].  

While the ER lumen is neutral, the subsequent intermediate compartment (IC) is slightly acidic  
(pH 6.7; [96]), followed by a gradually decreasing pH (to 6.3) through the Golgi stacks. The TGN is 
shown to be more acidic than the Golgi cisternae (pH 6.0; [97,98]). A major contributor to the reduced 
pH within the Golgi apparatus, present from yeast to man [99], is the vacuolar proton translocating 
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ATP-ase (V-ATPase), which is involved in the acidification of endosomes and lysosomes as well [100]. 
Other Golgi membrane proteins are also required to maintain correct lumenal pH [101,102]. The role 
of the Golgi lumen pH may be studied by V-ATPase inhibitors or other perturbants. Neutralization of 
the Golgi lumen changes the glycan output, largely because the proper organization of glycosyltransferases 
is pH dependent [103–106]. Increased Golgi pH, accompanied by glycosylation changes, has been 
reported for diseases like cutis laxa [107,108] and for several cancers and cancer cell lines [98,109,110]. 
Neutralization of the secretory pathway in epithelial MDCK cells resulted in both altered sorting and 
synthesis of PGs. The dominating basal membrane HSPG was no longer sorted predominantly to  
the basolateral pole of the cell layer [111], while the differences in apical and basolateral GAG 
modification observed in untreated MDCK cells were largely abolished upon treatment with the  
V-ATPase inhibitor Bafilomycin A1 [112].  

The ER and Golgi apparatus lumens have a high Ca2+ level [113], while the TGN consists of two 
domains with a higher and a lower Ca2+ content [114]. The ER Ca2+ level has a firmly established 
function in the quality control system for protein folding, and is also required for the subsequent 
movement from the ER to the IC and cis-Golgi region [115–117]. In the TGN, sorting of certain 
proteins requires a Ca2+ binding protein and a Ca2+ ATPase [118], and calcium censors regulate TGN 
to plasma membrane transport of some proteins [119]. Most glycans that modify proteins are 
negatively charged, particularly the GAG chains of PGs, and Ca2+ may serve to coordinate glycan 
structures during sorting and transport in the secretory pathway [120]. A higher fraction of the cellular 
HSPGs is present at the cell surface when the extracellular calcium ion level is low [121] and an 
increase in the extracellular Ca2+ also reduced PG secretion in general [122,123]. Depletion of calcium 
from the lumen of the secretory pathway induced by thapsigargin treatment has been suggested to 
inhibit the synthesis of both collagen and PGs, while only the secretion of collagen is inhibited [124]. 
Treatment with the calcium ionophore A23187 also reduced PG synthesis [125]. Calcium ions clearly 
play a role in cargo sorting in the TGN [126,127], but to what extent calcium ions contribute to PG 
sorting via association with the GAG chains is unclear at present. The fact that the TGN possesses 
different domains of high and low calcium ion content points modestly to the fact that the Golgi 
apparatus is not necessarily a uniform environment at each stage in the cis to trans direction. In most 
mammalian cell types, with some exceptions [128], the Golgi stacks are clustered in a ribbon structure 
in the perinuclear region, where the individual stacks have been difficult to resolve in the confocal 
microscope. In Drosophila imaginal disc cells, individual Golgi stacks are dispersed throughout the 
cytoplasm. In these cells it was shown that individual stacks displayed different sets of modifying 
enzymes and the UDP-sugar transporter Fringe-connection, which suggests specialized modification 
regimes in individual stacks [129]. A similar arrangement may also be possible for mammalian cells, 
but has not yet been described in detail [88]. 

7. Nucleotide Sugars, PAPS and Their Transporters 

The nucleotide sugars and PAPS are synthesized in the cytoplasm, with the exception of CMP-sialic 
acid, which is produced in the nucleus. The synthesis requires energy; for instance does the production 
of one PAPS molecule require one sulfate ion and two molecules of ATP [130]. As the nucleotide 
sugars and PAPS are needed in glycosylation and sulfation mechanisms that take place in the Golgi 
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lumen, they must be transported through specific carriers in the Golgi membrane, in exchange for 
nucleoside monophosphates (like UMP) by an antiport mechanism [131,132]. These transporters in the 
Golgi membrane have been studied to a lesser extent than the modifying enzymes in the Golgi lumen, 
but the supply of both UDP-sugars [133] and PAPS [134,135] has been shown to be essential for 
development. The import of substrate seems to be a rate limiting step, since additional expression of 
PAPS transporters [90] enhances PAPS uptake and the subsequent utilization, while an increase in the 
availability of UDP-N-acetylhexosamine (UDP-GlcNAc and -GalNAc), lead to enhancement of the 
incorporation into glycoconjugates [136]. This suggests that several Golgi enzymes normally operate 
at sub-optimal substrate concentrations. Determination of such substrate concentrations in the intact 
Golgi is difficult, however, since such biochemical assays are conducted with isolated vesicle fractions, 
and the concentration of the substrates might not be uniform across the whole Golgi apparatus. The 
dilatation observed in the presence of monensin (10 μM) gives the Golgi compartment a larger volume 
and leads to enhanced accumulation of nucleotide-sugars [137].  

The substrate availability in the Golgi lumen must to some extent reflect the situation in the 
cytoplasm. Further, a single UDP-sugar transporter has been reported for UDP-glucose, UDP-galactose, 
UDP-GlcNAc, and UDP-GalNAc in the nematode Caenorhabditis elegans [138]. Some redundancy of 
UDP-sugar transport has also been observed in mammalian cells, indicating that some competition for 
uptake into the Golgi lumen among different UDP-sugars is possible [139]. Furthermore, while 
epimerases that operate at the level of nucleotide sugars have been identified in the Golgi lumen of 
plant cells [140], such enzymatic activities have not been reported in the Golgi apparatus of 
mammalian cells. The only enzyme so far found in the mammalian Golgi that converts UDP-sugars is 
a UDP-GlcA decarboxylase, which produces UDP-xylose [141]. 

The possibility that the Golgi apparatus is organized in subdomains containing modifying  
enzymes [142], or in segregated transport and modification routes [88,129], may require some  
co-ordination of modifying enzymes and nucleotide sugar transporters [143,144]. In fact, it has 
recently been shown that the transporters for UDP-galactose and UDP-GlcNAc form heterologous 
complexes in the proximity of GlcNAc-transferases [145]. 

8. Conclusions and Future Perspectives 

It is well established that motifs in the PG protein cores influence the structure of the GAG chains 
that are attached to their potential modification sites. In light of the current knowledge the protein 
cores seem to be sorted into a suitable Golgi environment where the correct modifying enzymes are 
encountered and assembled. An issue that has not been much studied is whether or not the sites of 
GAG modification are 100% occupied. In the case of N-glycosylation, the site occupancy is variable 
and rarely 100% [146]. Some indications exist that PG protein cores sometimes operate without their 
GAG chains [147,148]. Although PG protein cores may be decisive for their own GAG structures, 
individual GAGs extending from xylosides may be variable in type and structure [149]. Xylosides 
consist of xylose units that are linked to sufficiently hydrophobic moieties that will allow for transport 
across the plasma and Golgi membranes. Different xylosides may possibly localize to different  
Golgi membrane regions or their GAG linker regions may recruit different modifying enzymes.  
The organization of Golgi enzymes involved in GAG synthesis is still under investigation [150]. While 
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several Golgi enzymes involved in glycoprotein synthesis form homomeric complexes in the ER,  
but convert to heteromeric complexes in the Golgi apparatus [151], EXT1 and EXT2, the enzymes 
involved in HS polymerization, must associate in the ER to move forward to the Golgi apparatus [152].  
In addition, EXT1 and EXT2 influence the expression of N-deacetylase/N-sulfotransferase (NDST) in 
opposite ways, indicating complex modes of association [153]. In S2 cells from Drosophila, the 
glucuronyl C5-epimerase, converting GlcA to IdoA in HS/heparin chains, is in a complex with 
enzymes mediating 2-O-sulfation and 6-O-sulfation of HS chains [154]. Thus, there is some evidence 
favoring the existence of GAGosome complexes of enzymes involved in PG synthesis [149,155],  
but co-localization of the enzymes in the Golgi apparatus needs to be demonstrated. The organization 
of the enzymes and transporters required for GAG synthesis in the Golgi apparatus should be a topic 
for intensified research activity in the future. 
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