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investigating the pathogenic Snps 
in BLM helicase and their biological 
consequences by computational 
approach
faisal A. Alzahrani 1,2,15, Firoz Ahmed 3,4,15*, Monika Sharma 5,15, Mohd Rehan6,7, 
Maryam Mahfuz8, Mohammed N. Baeshen9, Yousef Hawsawi 10, Ahmed Almatrafi11, 
Suliman Abdallah Alsagaby 12, Mohammad Azhar Kamal3,4, Mohiuddin Khan Warsi3,4, 
Hani Choudhry13 & Mohammad Sarwar Jamal6,7,14*

the BLM helicase protein plays a vital role in DnA replication and the maintenance of genomic 
integrity. Variation in the BLM helicase gene resulted in defects in the DNA repair mechanism and was 
reported to be associated with Bloom syndrome (BS) and cancer. Despite extensive investigation of 
helicase proteins in humans, no attempt has previously been made to comprehensively analyse the 
single nucleotide polymorphism (SNPs) of the BLM gene. In this study, a comprehensive analysis of 
SNPs on the BLM gene was performed to identify, characterize and validate the pathogenic SNPs 
using computational approaches. We obtained SNP data from the dbSNP database version 150 and 
mapped these data to the genomic coordinates of the “NM_000057.3” transcript expressing BLM 
helicase (P54132). There were 607 SNPs mapped to missense, 29 SNPs mapped to nonsense, and 
19 SNPs mapped to 3′-UTR regions. Initially, we used many consensus tools of SIFT, PROVEAN, 
Condel, and PolyPhen-2, which together increased the accuracy of prediction and identified 18 highly 
pathogenic non-synonymous SNPs (nsSNPs) out of 607 SNPs. Subsequently, these 18 high-confidence 
pathogenic nsSNPs were analysed for BLM protein stability, structure–function relationships and 
disease associations using various bioinformatics tools. These 18 mutants of the BLM protein along 
with the native protein were further investigated using molecular dynamics simulations to examine 
the structural consequences of the mutations, which might reveal their malfunction and contribution 
to disease. In addition, 28 SNPs were predicted as “stop gained” nonsense SNPs and one SNP was 
predicted as “start lost”. Two SNPs in the 3′UTR were found to abolish miRNA binding and thus may 
enhance the expression of BLM. Interestingly, we found that BLM mRNA overexpression is associated 
with different types of cancers. Further investigation showed that the dysregulation of BLM is 
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associated with poor overall survival (OS) for lung and gastric cancer patients and hence led to the 
conclusion that BLM has the potential to be used as an important prognostic marker for the detection 
of lung and gastric cancer.

The BLM gene encodes an important nuclear protein, BLM helicase, which is involved in DNA replication and 
the maintenance of genomic integrity. BLM is a 3′ to 5′ DNA helicase that belongs to the evolutionarily conserved 
RecQ helicase family. Most mammals have five RecQ helicases (RECQL1, BLM, WRN, RECQL4, and RECQL5). 
Helicases are crucial for unwinding duplex DNA to produce the transient single-stranded DNA (ssDNA) inter-
mediates necessary for replication, recombination, and  repair1–3. In a complex with topoisomerase Topo IIIa 
and Rmi1/Rmi2, BLM helicase repairs, double-strand DNA breaks (DSBs) through a homologous recombina-
tion (HR)  pathway4. Consequently, cells lacking functional BLM show an about tenfold increase in chromatid 
breaks, mitotic recombination, and sister chromatid crossover  formation5. Bloom syndrome (BS) is a rare auto-
somal recessive genetic disorder caused by pathogenic variants in the BLM gene. BS belongs to OMIM  entry 
210900, which is characterized by genome instability that includes increased crossovers between homologous 
 chromosomes6. The BLM gene is transcribed to a 97.93 kb-long precursor-mRNA with 21 exons, which encode 
a 1,417 amino acid protein. The literature shows that a large number of BS patients show insertion, deletion and 
missense mutations that change the amino acid sequence or nonsense mutations that introduce a premature 
stop codon in the BLM gene and thus inactivate the BLM  helicase7–9. Symptoms of BS include low birth weight, 
dolichocephaly (long, narrow head), congenital short stature, growth retardation, sun-sensitive facial rash, an 
elevated risk of diabetes mellitus, reduced fertility and immune  deficiency6,10–12. The absence of BLM protein 
activity causes a defect in DNA repair with a consequent increased rate of mutations and thus poses an elevated 
risk of  cance12–15. The average life span of BS patients is approximately 27 years, with the most common cause of 
death being cancer (https ://weill .corne ll.edu/bsr/).

Single nucleotide polymorphisms (SNPs) are a common genetic variation contributing greatly to phenotypic 
variation in the general  population6. SNPs can alter the functional consequences of proteins. In the coding region 
of genes, SNPs may be synonymous, non-synonymous (nsSNPs) or  nonsense16. Synonymous SNPs change the 
nucleotide base residue but do not change the amino acid residue in the protein sequence due to the degeneracy 
of the genetic code. The nsSNPs, also called missense variants, alter amino acid residues in protein sequences and 
thus change the function of proteins through altering protein activity, solubility and protein structure. Nonsense 
SNPs introduce premature termination in the protein sequence.

The non-coding region of the gene contains several regulatory cis-elements, such as miRNA binding sites, 
that can also affect the regulation of gene  expression17–20. SNPs have emerged as genetic markers for diseases, 
and there are many SNP markers available in public databases. Previous reports have shown the value of defin-
ing mutations as deleterious or non-deleterious and their connection with certain diseases, thus identifying 
pathogenic SNPs that are functionally compromised due to structure-damaging  properties21–27.

In recent decades, the computational approach has become established as an effective method that streamlines 
time consuming, laborious experimentation and allows researchers to shortlist the most critical or pathological 
SNPs. This ability leads us to focus on selectively targeted SNPs instead of scanning full genes for the identifi-
cation of pathological SNPs by experimental mutational analysis. Computational studies have also evaluated 
and analysed genetic mutations for their pathological effects and are effective in establishing the underlying 
molecular  mechanism26–34.

With recent advances in high-throughput sequencing technology, hundreds of new SNPs have been mapped 
to human BLM genes. However, not all SNPs are functionally important. Despite extensive studies of helicase 
proteins in humans and the effect of their polymorphisms in  cancer11, no attempt was previously made to com-
prehensively and systematically analyse and establish the functional consequences of SNPs of the BLM gene. The 
aim of this study was to identify the high-confidence pathogenic SNPs of the BLM gene and to determine their 
structural, molecular and functional consequences using computational approaches. This work may be useful in 
the development of precision medicine-based treatment for diseases caused by these genomic variations. In the 
future, this report can be used for biomarker discovery by establishing the importance of SNPs for the diagnosis 
of Bloom syndrome, as well as cancer, and will further aid in targeted therapies.

Materials and methods
Application of computational methodological approaches for acquiring biological insight is well  established35–41. 
Earlier studies support the notion that the application of various powerful tools and algorithms leads to increased 
prediction  accuracy42–45. To ensure that the results are of the highest accuracy, we utilized several computational 
algorithms that can be used for the prediction of nsSNPs of BLM helicases because of their disease-related 
properties. For this purpose, we used tools such as  SIFT15,  PROVEAN46, Polyphen-2.047, SNAP2-248,  Muscle49, 
 Weblogo50,51, SNP&GO52,  nsSNPAnalyzer53, and Mutpred-254. This approach enabled greater accuracy for the 
prediction of most disease-associated mutations in BLM genes and their structural consequences.

Snp dataset. The SNPs of the BLM helicases were retrieved from the dbSNP database build 150 and 
mapped on genome assembly GRCh38 using Variation  Viewer12. We used “BLM” as our search term and filtered 
for SNPs (https ://www.ncbi.nlm.nih.gov/varia tion/view/?q=BLM). Furthermore, we mapped these SNPs to the 
genomic coordinates of the “NM_000057.3” transcript expressing the BLM helicase (P54132) for computational 
analysis of the effect of missense variants and nonsense SNPs as well as SNPs in the UTR region. The protein 
sequences of the genes for BLM (P54132) were retrieved from the UniProt database (https ://www.UniPr ot.org). 

https://weill.cornell.edu/bsr/
https://www.ncbi.nlm.nih.gov/variation/view/?q=BLM
https://www.UniProt.org
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We employed various sets of computational tools that together increased the accuracy and reliability of the iden-
tification of pathogenic SNPs and their effects on the structural and functional consequences of BLM (Fig. 1).

Tools used to predict the SNP effects. Predicting deleterious and damaging nsSNPs. SIFT. An algo-
rithm that predicts tolerant and intolerant coding base substitutions based upon amino acid properties and 
sequence  homology15. The tool considered the vital positions in the protein sequence that have been conserved 
throughout evolution, and therefore, substitutions at conserved alignment positions are expected to be less toler-
ated and to affect protein function more than those at diverse positions. We used SIFT version 2.0 (https ://sift.
jcvi.org/), which predicted an amino acid substitution score from zero to one. SIFT predicted substituted amino 
acids to be damaging at a default threshold score < 0.05, while a score ≥ 0.05 was predicted to be tolerated.

PROVEAN. An online tool (https ://prove an.jcvi.org/) that uses an alignment-based scoring method for pre-
dicting the functional consequences of single and multiple amino acid substitutions and in-frame deletions 
and  insertions46. The tool has a default threshold score, i.e., -2.5. If a protein variant is below the threshold, it is 
predicted as deleterious; above that threshold, a protein variant is considered neutral.

Condel. A tool (https ://bbgla b.irbba rcelo na.org/fanns db/) that predicts the consequences of non-synonymous 
SNPs as neutral or  deleterious55. It uses a consensus deleteriousness (Condel) score calculated by integrating the 
normalized score of five predictive tools:  SIF15, PolyPhen-247,  Logre56,  MAPP57, and  MutationAssessor58. The 
Condel score could vary between 0 to 1, where a higher score indicates SNPs as deleterious.

PolyPhen-2. A tool that predicts the structural and functional consequences of a particular amino acid substi-
tution in a human  protein47. The prediction of the PolyPhen-2 server (https ://genet ics.bwh.harva rd.edu/pph2/) 
is based on a number of features, including structural and sequence comparison information. Its score var-
ies between 0.0 (benign) and 10.0 (damaging). The PolyPhen-2 prediction output categorizes SNPs into three 

Figure 1.  Flow chart of the in silico analysis of pathogenic SNPs in the BLM gene and their biological 
consequences.

https://sift.jcvi.org/
https://sift.jcvi.org/
https://provean.jcvi.org/
https://bbglab.irbbarcelona.org/fannsdb/
https://genetics.bwh.harvard.edu/pph2/
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basic categories: benign (score < 0.2), possibly damaging (score between 0.2 and 0.96), and probably damaging 
(score > 0.96).

BLM helicase sequence retrieval and SNP position sequence logo. BLM helicase sequences were retrieved from 
the UniProt protein sequence database using a search option with the key words ‘BLM helicase’. The sequences 
containing the key words ‘Bloom’ and/or ‘Blm’ with the names were considered, and then the fragments and 
irrelevant sequences were removed. Finally, 153 sequences were obtained and considered for multiple sequence 
alignment. The multiple sequence alignment was performed by Muscle v.3.8.3149, and all the respective sites for 
human BLM helicase SNPs were extracted from the alignment using an in-house Perl script. The sequence logo 
for the SNP positions was prepared using Weblogo v.2.8.250,51. A sequence logo is a graphical representation of 
a multiple sequence alignment, whereby a stack of amino acid symbols corresponds to a column position in the 
alignment. Within a stack, the varying heights of amino acid symbols show the relative frequency of each amino 
acid at that position.

Predicting disease‑associated nsSNPs. SNPs&GO. A webserver that predicts whether an amino acid substitu-
tion is associated with a disease or not (https ://snps.biofo ld.org/snps-and-go)52. It is a support vector machine 
(SVM)-based tool that considers protein sequence features, evolutionary information, and functional annota-
tion according to Gene Ontology terms. We input the Swiss-Prot Code of BLM helicase (P54132) and provided 
the list of amino acid mutations. The results predicted whether helicase polymorphisms would be disease asso-
ciated or not by three methods: (a) SNPs&GO, (b) PhD-SNP, and (c) PANTHER. A probability score > 0.5 is 
predicted as a disease-associated variation.

nsSNPAnalyzer. A random forest classifier developed using curated SNP datasets from SwisProt to predict the 
phenotypic effects of nsSNPs (https ://snpan alyse r.uthsc .edu/)53. It can predict (a) the structural environment of 
SNPs; (b) the normalized probability of substitution in the multiple sequence alignment; and (c) the similarity 
and dissimilarity between the variant and the original amino acid.

Predicting the molecular and phenotypic impact of nsSNPs. SNAP2. A tool used to predict the functional 
consequences of non-synonymous SNPs using a neural network (https ://rostl ab.org/servi ces/snap/)48. SNAP2 
incorporates various features, including evolutionary similarity from multiple sequence alignments and second-
ary structure and solvent accessibility, to predict whether a substitution is likely to alter the protein effect. It pre-
dicts a score from -100, considered strongly neutral, to + 100, considered as a strong effect. A threshold score > 0 
is considered an effect. We input the protein sequences of BLM helicases and obtained the score of SNPs.

MutPred2. A neural network-based method to predict the molecular and phenotypic impact of amino acid 
variants as pathogenic or benign in humans (https ://mutpr ed.mutdb .org/)54. It is programmed on 53,180 patho-
genic and 206,946 putatively benign amino acid substitutions from HGMD, Swiss-Prot, dbSNP, and orthologous 
alignments. It also incorporated the impact of amino acid substitutions on over 50 different local structural 
and functional protein properties and thus helped to infer the molecular mechanisms of pathogenicity. The 
outcome of MutPred2 includes the following: (A) a general pathogenicity score (g), which is the likelihood that 
a substituted amino acid is pathogenic; (B) predicted molecular mechanism; (C) property score (pr) of molecu-
lar mechanism and its P-value (P); and (D) affected PROSITE and ELM Motifs. General scores vary from 0.0 
(benign) to 1.0 (pathogenic), where with g ≥ 0.5 would suggest pathogenicity; however, g ≥ 0.68 yields a false 
positive rate (fpr) of 10%, whereas g ≥ 0.80 yields an fpr of 5%. The higher the property score (Pr), the more likely 
that the molecular mechanism of the disease involves the alteration of the property.

Structural characterization of predicted nsSnps. Modelling of mutant BLM helicase proteins. The 
coordinates of the native human BLM helicase were retrieved from the PDB database with PDB id ‘4O3M’59,60, 
referred to in the article as the wild type (WT). The WT structure consists of the BLM protein (640–1,290) 
bound to 1 ADP molecule, 1  Ca2+ ion, 1  Zn2+ ion, and a 3′-overhang DNA duplex. A few residues were miss-
ing in the crystal structure: 799–807, 1,011–1,013, 1,069–1,071, 1,093–1,104, 1,195–1,206, and 1,292–1,298. 
We modelled these residues using  Modeller9v1561. The modelled structure was minimized and refined using 
simulations. Corresponding point mutations were introduced in the obtained structure using  Modeller9v1561 
to generate mutant structures. For the simulations, the protein and nucleic acids were represented by Amber 
forcefields:  ff14SB62 and DNA (OL15)63, respectively. For bound ADP and two ions, GAFF charges provided 
with the AMBER forcefields were used. The modelled systems were solvated in a cubic box with TIP3P potential 
at a 10 Å marginal radius and neutralized with  Na+ or  Cl− ions. Long-range interactions were modelled using 
particle mesh Ewald (PME) with a tolerance of 1e-05 and a grid spacing of 1.2 Å. A non-bonded cut-off of 12 Å 
was applied to the Lennard–Jones potential, and the cut-off for the direct-space part of the Coulomb forces was a 
switching function starting at a distance of 10 Å and reaching zero at 12 Å. A 2 fs time step was used for all simu-
lations while constraining bonds involving hydrogens with the Lincs algorithm. Periodic boundary conditions 
were employed to eliminate surface effects. To reach the desired temperature and pressure, minimized systems 
were simulated for 5 ns while coupled to a v‑rescale thermostat and Parinello-Rahman barostat implemented in 
Gromacs2016.564. The equilibrated structures of the WT and 18 mutants were simulated further for 20 ns each.

Trajectory and structural analyses. Structural analyses were performed using built-in programs of 
Gromacs2016.5 and VMD-1.9.365. Root mean square deviations (rmsd) and radius of gyration values for all 

https://snps.biofold.org/snps-and-go
https://snpanalyser.uthsc.edu/
https://rostlab.org/services/snap/
https://mutpred.mutdb.org/
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backbone atoms were calculated with respect to the crystal structure. Root mean square fluctuations (rmsf) of 
Cα atoms in all trajectories were also calculated. The changes in the secondary structure of proteins during the 
course of simulation were analysed using the DSSP program as implemented in the Bio3D package written in 
 R66–68. Domain-wise rmsd values were calculated for each domain after aligning the rest of the protein.

Assessment of the effect of BLM genes on survival by Kaplan–Meier plots. Kaplan–Meier plots 
were analysed using online KM plotter software (https ://kmplo t.com/analy sis/)69. The tool analyses the effect 
of 54,675 genes on the survival outcome of patients using 10,293 cancer samples from the Affymetrix microar-
ray data in the Gene Expression Omnibus (GEO: https ://www.ncbi.nlm.nih.gov/geo/), the European Genome-
phenome Archive (EGA: https ://ega.crg.eu/) and The Cancer Genome Atlas (TCGA: https ://cance rgeno me.nih.
gov/) databases. We analysed the potential effect of BLM gene expression on overall survival in a large number 
of cancer patients, including patients with gastric (1,065), ovarian (1816), lung (2,437), and breast (5,143) cancer. 
The hazard ratio (HR) with 95% confidence intervals and log rank P-value (below 0.05 were considered signifi-
cant) were calculated. Biased arrays were excluded for quality control.

The GEPIA. A web-based tool for analysing the differential expression of mRNA in tumour and normal cells 
(https ://gepia .cance r-pku.cn/index .html)70. The tool uses expression data from 8,587 normal and 9,736 tumour 
samples obtained from the TCGA and the Genotype-Tissue Expression (GTEx) projects. The mRNA expression 
on box plot was calculated using “Expression DIY” module using parameters: Gene “BLM”; |Log2FC| cut-off 
“1.5”; p-value cut-off “0.01”, and match TCGA normal and GTEx data.

PolymiRTS 3. A database of variants in miRNA and miRNA target sites (https ://compb io.uthsc .edu/miRSN 
P/)71. It was used to examine the impact of SNPs on miRNA-target (BLM) binding and on BLM gene expression.

Results and discussion
The application of computational biology in genome research is well  established18,72 and is frequently used to filter 
for the most potential deleterious nsSNPs in target genes to understand the aetiology of various  diseases28,73–75. 
Computational analysis can provide molecular insight into the changes in protein structure and function due 
to point mutations in the target genes. In the current study, we report nsSNPs in BLM genes, which are most 
likely associated with pathogenic conditions involving BLM and other BS-associated diseases, such as cancers. 
Our findings suggest that the application of multiple powerful algorithms to SNP datasets identifies the most 
deleterious SNPs, which might be associated with diseases. The accuracy of nsSNP prediction was also supported 
by various reports discussed below.

For this study, we retrieved 11,983 rsIDs of SNPs mapped in the human BLM gene from dbSNP (Table S1). 
However, these rsIDs fall in different molecular consequence classes. For instance, some rsIDs are associated 
with multiple SNPs and therefore belong to different classes. We mapped these SNPs to the genomic coordinates 
of the “NM_000057.3” transcript expressing BLM helicase (P54132). There were 883 SNPs (825 #rsID) mapped 
to the CDS region, 19 SNPs (17 #rsID) to the 3′UTR, and 10,362 SNPs (9,956 #rsID) mapped to introns. We did 
not find any SNPs in the 5′UTR of the NM_000057.3 transcript. In the CDS region, 608 SNPs (570 #rsID) were 
missense mutations, 28 SNPs (28 #rsID) were nonsense, and 247 SNPs (233 #rsID) belonged to the synonymous 
group (Table S2). For the study of the functional consequences of nsSNPs in BLM genes, we selected the “mis-
sense” and “nonsense” variant map to reference transcript “NM_000057.3”. In addition, we analysed the effects 
of SNPs in the 3′UTR of the “NM_000057.3” transcript on miRNA binding and poly (A) signals. The selection 
gave us a final dataset of 636 nsSNPs with 597 rsIDs and 19 SNPs (17 #rsID) mapped to the 3′UTR, which were 
then used for further analysis.

predicting deleterious and damaging nsSnps. To predict the damaging nsSNPs, we employed 
multiple consensus tools. Initially, we used the online tool VEP (https ://www.ensem bl.org/Tools /VEP). VEP 
has advantages, such as using the latest human genome assembly, GRCh38.p10, and predicting thousands of 
SNPs from multiple tools, including SIFT, PROVEAN, Condel, and PolyPhen‑2, to retrieve accurate results. We 
uploaded the 597 nsSNP accession numbers to the VEP tool, and the prediction results were used for further 
analysis.

We found 28 nsSNPs predicted as “stop gained” and one nsSNP as a “start lost” mutation (Table S3). The 
remaining nsSNPs were filtered on default scores of consensus tools based on sequence and structure homology 
methods: (a) SIFT (score < 0.5) and (b) PROVEAN (score < − 2.5) and Condel (score > 0.522), which showed 136 
nsSNPs as damaging (Table S4). To obtain very high-confidence nsSNPs that impact the structure and func-
tion of the BLM helicase, we considered highly stringent scores across different consensus tools at parameters 
of SIFT (score = 0), PROVEAN (score < -8.0) and Condel (score > 0.9), we obtained 18 nsSNPs (Table 1). These 
18 nsSNPs were further analysed by PolyPhen-2, which gave a score greater than 0.96 for all 18 nsSNPs and 
therefore placed them in the predicted category of probably damaging. Additional analysis of these 18 nsSNPs 
with SNAP2 showed that these amino acid substitutions have a damaging effect on protein structure with high 
accuracy (Detail information: Table S5).

The sequence logo for nsSNP positions in BLM helicase sequences show that these positions are highly con-
served among various species (Fig. 2). The reported 18 nsSNP variants were looked into the sequence logo, and 
three of them, W803R, H805L, and G891V, were found to naturally occur in other sequences; however, their 
frequency was very low. The two positions G952 and G978 were found to be 100% conserved, as shown in the 
sequence logo. The complete sequence alignment of BLM helicases is also provided in Supplementary_file1. 

https://kmplot.com/analysis/
https://www.ncbi.nlm.nih.gov/geo/
https://ega.crg.eu/
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://gepia.cancer-pku.cn/index.html
https://compbio.uthsc.edu/miRSNP/
https://compbio.uthsc.edu/miRSNP/
https://www.ensembl.org/Tools/VEP
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Afterwards, these 18 high-confidence nsSNPs were further assessed for functional and structural consequences 
using different bioinformatics tools.

Predicting the effect of 18 deleterious nsSNPs. Effect of nsSNPs on protein stability. Studies have 
shown that most disease-associated missense mutations change the stability of  proteins76,77. Therefore, we ana-
lysed these nsSNPs in terms of amino acid substitutions and their effect on the stability of mutant BLM proteins 
by IMutant2 (https ://foldi ng.biofo ld.org/i-mutan t/i-mutan t2.0.html) and PoPMuSiC v3.1 (https ://soft.dezym 
e.com)  tools78,79.

Both IMutant2 and PoPMuSiC predict the effect of mutations on proteins based on protein 3D structures. 
Because the whole protein 3D structure of the BLM gene is not yet available, partial protein structures, such as 
PDB id 4O3M with a length of 640–1,290 amino acids, i.e., 613 amino acids long, were used for analysis. We 
submitted the 18 amino acid substitutions to IMutant2 and PoPMuSiC, which predicted the stability of the BLM 
protein variants. We found that three mutants (P690L, P702L, and P825L) and two mutants (P702L and G891V) 
were predicted to stabilize the mutant proteins by IMutant2 and PoPMuSiC, respectively (Table 2). However, 
twelve mutants (Y811C, G891V, G952V, G972V, Y974C, G978V, C1036F, Y1044C, C1055R, C1055Y, D1064V, and 
C1066Y) were predicted to destabilize the proteins by IMutant2; while thirteen mutants (P690L, Y811C, P825L, 
G952V, G972V, Y974C, G978V, C1036F, Y1044C, C1055R, C1055Y, D1064V, and C1066Y) were predicted to 
destabilize the proteins by PoPMuSiC. We found 12 mutants out of 15 predicted results showed consensus effect 
on the protein stability between IMutant2 and PoPMuSiC; while three mutants (W803R, W803L, H805L) were 
not predicted by both tools because the amino acid residues from 799 to 807 are missing in the BLM helicase 
crystal structure (PDB id: 4O3M) (Table 2).

Identifying disease‑associated nsSNPs. Eighteen selected amino acid substitutions in the BLM protein were 
used to analyse disease association. BLM protein ID “P54132” and its amino acid mutations were submitted to 
the “SNPs&GO” tool (https ://snps.biofo ld.org/snps-and-go/snps-and-go.html). The predicted disease associa-
tions from three different tools were analysed. The output of (a) SNPs&GO and (b) PhD-SNP predicted that 
all the tested SNPs were associated with diseases, while (c) PANTHER predicted 16 SNPs as disease associated 
and two as neutral (Table S6). In addition, these nsSNPs were also analysed with the nsSNPAnalyzer tool to 
predict disease association. This tool also provides supplementary information about nsSNPs, such as secondary 
structure, structural environment, area buried and fraction polar. We uploaded the BLM protein sequence, list 
of 18 amino acid substitutions, and PDB structure (4O3M) to the nsSNPAnalyzer. The output of nsSNPAnalyzer 
reported 17 nsSNPs as disease associated and one nsSNP reported as neutral (Table 3).

Eighteen amino acid substitutions were further analysed with the Fathmm server (https ://fathm m.bioco 
mpute .org.uk/) at the default threshold for cancer-promoting mutations and disease-causing  mutations80. The 
output results of these tools showed that two (G952V and G978V) were associated with cancer (Table 4), while 
three (G952V, P702L and G978V) were also associated with cancer (Table 5).

Table 1.  List of deleterious missense SNPs in the BLM gene using consensus bioinformatics tools. These SNPs 
are selected based upon the parameters SIFT (score = 0), PROVEAN (score < -8.0) and Condel (score > 0.9).

S.N #rsID VSc Amino acid SIFT PROVEAN Condel

1 rs761589072 C>T Pro690Leu 0 − 9.32 0.935

2 rs770625327 C>T Pro702Leu 0 − 9.24 0.945

3 rs148394770 T>C Trp803Arg 0 − 13.05 0.945

4 rs761938011 G>T Trp803Leu 0 − 11.92 0.935

5 rs766292814 A>T His805Leu 0 − 10.26 0.935

6 rs145029382 A>G Tyr811Cys 0 − 8.26 0.945

7 rs749632465 C>T Pro825Leu 0 − 8.37 0.902

8 rs763471784 G>T Gly891Val 0 − 8.8 0.906

9 rs367543034 G>T Gly952Val 0 − 8.34 0.935

10 rs150475674 G>T Gly972Val 0 − 8.15 0.911

11 rs1051102270 A>G Tyr974Cys 0 − 8.35 0.945

12 rs750210123 G>T Gly978Val 0 − 8.55 0.945

13 rs137853153 G>T Cys1036Phe 0 − 10.13 0.945

14 rs747571272 A>G Tyr1044Cys 0 − 8.29 0.902

15 rs746218707 T>C Cys1055Arg 0 − 11.05 0.935

16 rs367543029 G>A Cys1055Tyr 0 − 10.13 0.945

17 rs367543032 A>T Asp1064Val 0 − 8.29 0.945

18 rs367543025 G>A Cys1066Tyr 0 − 8.63 0.935

https://folding.biofold.org/i-mutant/i-mutant2.0.html
https://soft.dezyme.com
https://soft.dezyme.com
https://snps.biofold.org/snps-and-go/snps-and-go.html
https://fathmm.biocompute.org.uk/
https://fathmm.biocompute.org.uk/
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Predicting protein structural and functional consequences. MutPred2 was used to infer the structural, molecular 
and phenotypic impacts of amino acid variants. The results for MutPred2 are shown in Table S7. There are 18 
nsSNPs reported with high confidence to affect the structure and function of BLM proteins.

Substitution effect on helicase structure of BLM via molecular dynamics simulations. Bloom syndrome pro-
teins comprise three domains: ATPase domain (642–1,068), RecQ family-specific C-terminal (RQC) domain 
(1,074–1,194), and Helicase and RNase D C-terminal (HRDC) domain (1,208–1,290). The C-terminus of the 
ATPase domain, known as the Zn subdomain, consists of Zn-binding residues (994–1,068). One ADP molecule 
is observed to be bound to the inter-subdomain cleft between two ATPase subdomains, 1A (642–857) and 2A 
(858–1,068). In the BLM WT crystal structure, the duplex region of DNA is bound to the RQC domain surface 
via an unconventional winged-helix domain. This interaction differs from that known in conventional winged-
helix domains, where the minor and major grooves of dsDNA are recognized by one recognition helix and β 
 wing81. In the BLM RQC domain, dsDNA does not form direct interactions with the recognition helix. Instead, 
a loop connecting two helices serves as the prominent DNA-interacting entity of the RQC domain. The termi-
nal region of the dsDNA duplex interacts with the β wing of the RQC domain, which seems to act as a scalpel 
for splitting the dsDNA duplex. The third domain of BLM, the HRDC domain, folds as a helical bundle of five 
α-helices and one  310 helix connected by a short loop. However, much remains unknown regarding the func-
tional aspects of the HRDC domain and how it occurs in two of the five human RecQ-family helicases (BLM 
and WRN), as well as in RecQ helicases in bacteria and yeast. BLM mutants lacking the HRDC domain possess 
core helicase and ATPase activities similar to those of the wild-type  protein82–84 but are defective in both strand 
 annealing74 and double Holliday junction  dissolution83.

We evaluated the 18 predicted deleterious amino acid substitutions for possible damage to the 3D structure 
of the BLM helicase using molecular dynamics simulations. When these SNP positions were mapped onto the 
structure of the BLM helicase (Fig. 3), we found that the SNP positions were distributed in the helicases and 
coil structures. Three SNP positions, C1036, C1055, and C1066 (interestingly all cysteines), were in the Zn 
subdomain, directly interacting with the Zn atom. The SNP position, D1064, was also found close to the Zn 
atom. We then compared the deviations by rmsd (Fig. 4) and rmsf values (Fig. 5) observed during simulations 
within mutant proteins with those observed for native (or WT) proteins and classified the mutants into two cat-
egories: (a) mutants with considerably higher rmsd values, suggestive of instability induced in the protein; and 
(b) mutants with similar rmsd values, and thus, possessing significantly more or equally stable conformations 
compared to those of the WT. Mutants G891V, G952V, G972V, G978V, C1036F, and C1055R destabilize the BLM 
structure and belong to category (a), Mutants P690L, P702L, W803R, W803L, H805L, Y811C, P825L, Y974C, 
Y1044C, C1055Y, D1064V, and C1066Y belong to category (b). Interestingly, the mutation of C1055 seems to be 
residue specific. If C1055 is mutated to arginine, it destabilizes the complete BLM structure, whereas mutation 
to tyrosine is tolerated. The mutant C1055Y shows similar deviations from the WT. Below, we will describe the 
effects of each mutant in detail. For visual inspection, we compared the final structure obtained after 20 ns of 
sampling of each mutant with the final structure obtained for the WT or native state (Figs. S1, S2). We calculated 
rmsd values for each domain for these mutants (Figs. 6, S3). We further analysed the variation in secondary 
structure for mutants and WT with respect to time (Fig. S4).

Mutations in ATPase domain 1A. Mutations P690L and P702L are present in ATPase domain 1A, near 
the ADP binding pocket. Our computational results suggest that their properties are similar to those of the 
WT. However, Mirzaei et al., reported six mutant residues (P690L, R717T, W803R, Y811C, F857L, G972V) that 
cause loss of function for the BLM  protein85. Modelling studies of the BLM residues confirm that P690 along 
with R717, W803, and Y811 are located in the first lobes of the helicase domain. Among the point mutations of 
BLM, P690L does not affect the extremely conserved GK(T/S) residues of motif I (Walker A). Another report 
from Shashtri et al. showed, using a HU-based hypersensitivity-based study, that the P690L mutant of the BLM 
protein was unable to rescue the DNA damage response in the BS cell line compared to the  WT5. The reason 
behind the loss of function could be due to leucine (hydrophobic) replacing proline (helix breaker), which may 
culminate in reduced flexibility and hydrophobicity, causing weakened dsDNA binding and altering the location 
of the dsDNA within the motif, which leads to failure to bind ATP and/or  Mg2+5,85.

Studies from Mirzaei et al. showed that the W803 mutation leads to impaired BLM function associated with 
Bloom syndrome. This mutation site is located in the highly conserved region called the aromatic-rich (AR) 
loop and is crucial for ATP binding, hydrolysis, DNA binding, ssDNA binding and  unwinding86–89. Because it is 
situated as a key residue in a loop region, it plays a crucial role in various functions. Another set of mutations, 
W803L, W803R, H805L, Y811C, P825L in ATPase domain 1A show similar dynamics as WT. W803, a residue 
that is conserved in all five human RecQ homologs (BLM, WRN, RecQL1, RecQL4, and RecQL5), suggests that 
this residue plays a key role in helicase activity. Hence, the W803R mutation might hamper helicase activity, 
which is one of the major causes of BS development. Though our molecular dynamics simulation-based study 
suggests similar dynamics to those of the WT, other studies suggest that these residues are crucial for the above-
mentioned activities. Hence, we also speculate that this mutation may lead to a deterioration in BLM activity, 
which may lead to the development of BS. The downstream Y811C and P825L mutations showed no structural 
differences as WT. Though there is no evidence for P825 or Y811, it is identified as a key residue for the func-
tioning of BLM  proteins85,91,93,96–98. Another  report5 suggested based on HU hypersensitivity that, similar to 
P602L, the Y811C mutant of the BLM protein was unable to rescue the DNA damage response in the BS cell 
line compared to the WT.



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12377  | https://doi.org/10.1038/s41598-020-69033-8

www.nature.com/scientificreports/

Mutations in ATPase domain 1B. Mutations in ATPase domain 1B, destabilizing the BLM structure, 
are observed for glycines (G891V, G952V, G972V, G978V). The structural influence of these mutants can be 
observed by larger variations in domain-wise rmsd plots (Fig. 6). A report from Rong et al.90, also endorsed our 
results, which suggests that the G891 mutation along with Q672R, I841T and C901Y inactivates the helicase 
 domain7,8. There are also point mutations, such as K803A, Q680P and I849T, in mouse  BLM7,8,90,91. All these 
point mutations hamper ATPase and DNA unwinding activity. G972V mutation, in the N terminal region of 
BLM, may hamper the replicative role of BLM as reported by Selak et al.92, a major issue in Bloom  Syndrome93–97. 
972 is proximal to the nucleic acid overhang. Mutating G972 to valine pushes the nearby K968, which is directly 
interacting with the nucleic acid overhang, and this further affected the downstream RCQ domain and to some 
extent to the Zn subdomain, as observed from the domain-wise rmsd values. To depict that the nsSNP leads to 
full inactivation of the BLM protein, Mirzaei et al.85, exploited a yeast model system by designing a chimera BLM 
gene consisting of the yeast and human BLM genes. The introduction of nsSNP into the chimera BLM leads to 
impaired BLM function, which was examined and confirmed by a hypersensitivity assay of cells to hydroxyurea 
(HU), a DNA-damaging  agent85. The hypersensitivity assay showed that six-point mutations (P690L, R717T, 
W803R, Y811C, F857L, G972V) cause total loss-of-function of BLM, and three cause partial loss-of-function 
(R791C, P868L, G1120R). The location of G972 is in close proximity to the arginine finger; therefore, this muta-
tion might impair coordination among the ATP binding of lobe 1 with lobe 2. G978V mutation resulted in a 
change in the backbone orientation of the ATPase domain 1B, induced structural deviations in this interface 
area, as well as in the Zn subdomain, and influenced the downstream HRDC domain (Fig. 6). Since there is no 
report available for this mutation, in future studies, it may be informative to sequence this pathogenic mutation 
site, especially in BS patients and in other related diseases, and/or study it using mutational approaches using 
various models. We speculate that this mutation may also be a hypomorphic mutation in which, instead of caus-
ing BS, it may be connected with other BS-associated diseases, such as cancer or type 2  diabetes5.

Another set of mutations, Y974C and Y1044C in ATPase 1B domain, showed no significant destabilizing 
structural effects during the sub-nano seconds simulations. Y974 is present at the interface, pointing towards 
the cleft between ATPase domains 1A and 1B and forming stacking interactions with F1045 of the nearby helix. 
In the native structure, Y1044 forms hydrogen-bonding interactions with E971 of the nearby helix, and this 
interaction is maintained throughout the simulations of the WT. Mutating tyrosine to cysteine disrupts these 
hydrogen-bonding interactions but results in another set of stable interactions with S1025 of a nearby helix, 
thus maintaining the structural dynamics of the BLM. Although our computational results suggest that Y1044C 
is similar to the WT, other studies suggest that Y1044C is present along with S897C in Japanese male patients 

Figure 2.  Sequence logo for 16 chosen SNP positions in BLM helicase sequence alignment. The height of the 
amino acid symbols shows the relative frequency of amino acids in the alignment. The amino acids are coloured 
according to their chemical properties. The polar amino acids (G, S, T, Y, C, Q, N) are green, basic (K, R, H) are 
blue, acidic (D, E) are red and hydrophobic (A, V, L, I, P, W, F, M) amino acids are black.
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and white female patients with metachronous colon cancer in the C-terminal of BLM in CRC. This issue can 
be further explored in the future using BS cells and model organisms. Highly conserved BLM variants were 
reported to be found in the C-terminal helicase domain, which may lead to a predisposition to hereditary CRC 98.

Mutations in Zn subdomain. In the Zn subdomain, highly conserved residues C1036, C1055, C1063, and 
C1066 form interactions with the Zn atom in the BLM protein. C1036F mutation influenced the RQC domain. 
In the native structure, C1055 interacts with the Zn atom, along with C1063. For the C1055R mutation, when 
the conformations of mutants after simulation are visualized with respect to the native structure, arginine being 
positively charged shows repulsion with positively charged Zn and destabilization of the domain (Figs. 5, 6). This 
destabilization disrupts the C-terminus of ATPase domain 1A (Figs. 4, 5, 6). The destabilizing effect is indicated 
by the large variations observed in the rmsd and rmsf plots. We further calculated the domain-wise rmsd values 
for C1055R and observed that the mutation resulted in larger deviations within the Zn subdomain and the fol-
lowing RQC domain. However, the tyrosine mutant of C1055 is oriented towards the solvent and forms favour-
able hydrogen bonds with N858 and stacking interactions with I1039 and F1050, thus leading to less structural 
disruption than the arginine mutation, which completely disrupts the helical structure (Fig. 7). Therefore, we 
observe higher rmsd variations for C1055R than for C1055Y. Nonetheless, the loss of Zn ion binding is observed 
for both mutations. C1055 may form disulfide bridges with one of the cysteines present in close proximity to 
stabilize the helix structure of the BLM protein. This model predicts that the residues in the helix are important 
for ssDNA binding, contributing to the formation of the BLM–DNA complex. Consistent with this study, Guo 
et al. used a gel-shift assay to show that similar mutant C901Y leads to a significant reduction in dsDNA binding 
and an even greater loss of ssDNA  binding99. This lower binding of BLM with counterparts of the DNA region 
may lead to disruption in the functional outcome. This may result in a predisposition to many unwanted muta-
tions and thus to Bloom syndrome. A comprehensive site-directed mutational analysis by Guo et al.100, suggests 
that there is a significant reduction in zinc binding ability, which further indicates that these highly conserved 
cysteine residues are essential for  Zn2+ ion binding and thus for BLM activity. The effect of cysteine residue 
mutation on DNA binding ability was shown by Guo et al.100, using a gel shift assay, which indicates that there 
was a significant reduction in DNA binding. This result suggests that conserved cysteine residues are key to the 
function of zinc binding domains, which are essential for the DNA helicase and ATPase activity of BLM. There-
fore, the study suggests that DNA-binding ability is compromised due to this  mutation100. Another study also 
showed, using the chimera mutational approach, that mutating C1055 leads to hypersensitivity to hydroxyurea 
(HU)85,100.

D1046 is present within the Zn subdomain and forms hydrogen-bonding interactions with the nearby R1037. 
This interaction is maintained intermittently during the simulations of the native structure. Though hydrophilic 
and negatively charged residues have been mutated to neutral and hydrophobic valines, the mutation occurred 
at the periphery of the protein, thus inducing local perturbations in the structure, and did not significantly affect 
the overall structural dynamics of the helicase except for the RQC domain (Fig. S3). The loss of the Zn-binding 
ability of such a mutant is observed as the Zn ion diffuses out of its pocket. Although our computational results 
suggest that its properties are similar to those of the WT, other studies suggest its crucial role in BS  development85. 
C1066 is one of the four cysteines binding the Zn atom in the Zn subdomain. Our in silico results suggest that 
there is no effect because of the C1066Y mutation, but another report using site-directed mutational analysis 
suggests (Guo et al.) that there is a significant reduction in the zinc-binding ability, which further indicates that 
these highly conserved cysteine residues are essential for  Zn+2 ion binding for subsequent BLM  activity100. A 
report from Shashtri et al. noted that C1066Y is crucial for Zn coordination, which is required for helicase activity 
and consequently for the development of  BS5.

For these 18 nsSNP mutations, we observed that few mutations disrupt the overall BLM structure within a 
sub-nanosecond timescale and thus disrupt the functioning of BLM helicases. These mutations are specifically 
present within the cleft of two ATPase subdomains, 1A and 1B, and thus hamper the binding of ADP to this site. 
These mutations were also supported by other experimental studies mentioned in earlier  sections5,85,100. For some 
mutations, however, local disruptions are observed in subdomains but can result in a complete loss of function. 
For instance, the mutation of cysteines (C1036F, C1055Y, C1066Y) and glutamate (D1064V) in the Zn binding 
subdomain, which results in the loss of Zn binding upon mutation and thus hinders the functioning of BLM 
helicase, was also supported by other  reports100. However, in all the mutations, we did not find considerable 
changes in the binding of DNA. This result may be attributed to the fact that the mutations are performed in the 
ATPase domain, and the simulation timescales in this study are not long enough to observe large allosteric effects. 
For the mutations G891V, G952V and G978V, however, we did find larger deviations in RCQ domain binding 
and in the C-terminal HRDC domain, as indicated by rmsd values, thus suggesting the possibility of allosteric 
effects of mutations in the ATPase domain in nucleic acid binding. This conclusion was further strengthened 
by reports suggesting a role for cysteine residues in the Zn-binding domain in helicase activity. The mutation 
of cysteine hampers BLM helicase activity, which may be responsible for the development of  BS100. The overall 
secondary structure remained consistent throughout the simulations of mutants as well as of the native structure 
within the simulated timescale (Fig. S4).

Relation between BLM dysregulation and survival analysis in cancer. To infer the functional con-
sequences of BLM deregulation, we studied the relationship between the dysregulation of BLM and the clinical 
database of cancer patients. Using Kaplan–Meier plot analysis, we found that BLM dysregulation has distinct 
consequences in different types of cancers. High expression of the BLM gene (Affy probe id 205733_at) is associ-
ated with lower overall survival for lung and gastric cancer patients, whereas we did not find a significant asso-
ciation between expression of the BLM gene and overall survival for breast and ovarian cancer patients (Fig. 8).
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Table 2.  Effect of amino acid substitutions on the stability of mutant BLM protein using IMutant2 and 
PoPMuSiC v3.1 tools. IMutant2: Gibbs free energy change value (DDG) in Kcal/mol, where DDG < 0 is 
decrease stability, while DDG > 0 is increase stability of mutant protein. PoPMuSiC: The ΔΔG indicates change 
in folding free energy in Kcal/mol where ΔΔG < 0 is stabilizing mutation. Consensus effect on amino acid 
substitutions between IMutant2 and PoPMuSiC are in bold. The DDG/ΔΔG score for W803R, W803L, and 
H805L are absent because the amino acid residues from 799 to 807 are missing in the BLM helicase crystal 
structure (PDB id: 4O3M).

Substitutions

IMutant2 PoPMuSiC

DDG Stability of variants ΔΔG Stability of variants

P690L 0.74 Increase 0.51 Destabilizing

P702L 0.70 Increase − 1.68 Stabilizing

W803R – – – –

W803L – – – –

H805L – – – –

Y811C − 0.74 Decrease 2.37 Destabilizing

P825L 0.50 Increase 1.43 Destabilizing

G891V − 3.71 Decrease − 1.09 Stabilizing

G952V − 2.83 Decrease 2.20 Destabilizing

G972V − 0.09 Decrease 0.56 Destabilizing

Y974C − 1.56 Decrease 2.63 Destabilizing

G978V − 1.53 Decrease 0.90 Destabilizing

C1036F − 1.48 Decrease 1.32 Destabilizing

Y1044C − 0.68 Decrease 1.36 Destabilizing

C1055R − 2.29 Decrease 1.70 Destabilizing

C1055Y − 1.49 Decrease 0.45 Destabilizing

D1064V − 1.65 Decrease 0.16 Destabilizing

C1066Y − 1.50 Decrease 1.09 Destabilizing

Table 3.  Predicting disease-associated amino acid substitution and phenotypic effect using nsSNPAnalyzer. 
Phenotype: Phenotype annotated by the Swiss-Prot DB. "Disease" or "Neutral". Environment: The structural 
environment of the SNP B1, B2, B3, P1, P2 and E* AreaBuried: Solvent accessibility score. FracPolar: 
Environmental polarity score. Secondstr: Secondary structure. H: alpha-helix, S: beta-sheet, C: coil. *The first 
character denotes the solvent accessibility B: buried, P: partially buried, E: exposed. The second number (if 
exists) denotes different environmental polarity provided the solvent accessibility is the same, with a larger 
number corresponding to a larger polarity. The structural features of last four columns for W803R, W803L, 
and H805L are absent because the amino acid residues from 799 to 807 are missing in the BLM helicase crystal 
structure (PDB id: 4O3M).

SNP Phenotype Environment Area buried Frac polar Secondstr

P690L Disease P1C 0.472 0.458 C

P702L Disease B2H 0.526 0.417 H

W803R Disease – – – –

W803L Disease – – – –

H805L Disease – – – –

Y811C Disease B2H 0.68 0.417 H

P825L Neutral P2C 0.432 0.708 C

G891V Disease ES 0.171 0.292 S

G952V Disease EC 0.165 0.333 C

G972V Disease EH 0.105 0.844 H

Y974C Disease B3H 0.713 0.448 H

G978V Disease EH 0.138 0.687 H

C1036F Disease P1C 0.221 0.24 C

Y1044C Disease B3H 0.615 0.615 H

C1055R Disease P1H 0.239 0.354 H

C1055Y Disease P1H 0.239 0.354 H

D1064V Disease P2H 0.385 0.594 H

C1066Y Disease P1H 0.227 0.458 H
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Mutation in the BLM gene in BL cells showed a reduction in the expression of its mRNA and protein, result-
ing in excessive chromosome instability and a high frequency of sister chromatid exchanges (SCEs)101. However, 
another study found that BLM mRNA overexpression is associated with poor survival of breast cancer  patients102. 
Interestingly, the same study reported that subcellular localization of the BLM protein is found to be high in the 
cytoplasm compared to the nucleus, although the analysis of normal breast tissue revealed that BLM protein is 
strongly localized in the nucleus and not the  cytoplasm102. It might be possible that variants of the BLM gene 
express a truncated BLM, which lacks signals for protein localization.

Therefore, this study also indicates the importance of BLM gene expression as a better prognostic marker for 
the detection of gastric and lung cancers. Studies have found that nsSNPs can affect the functional activity of 
proteins; therefore, we expect that the 18 nsSNPs identified here have functional effects, as in BLM deregulation.

Expression levels of BLM genes in different cancers. To understand the role of the BLM gene in can-
cer, we studied the its expression levels in different cancers. A box plot was generated using GEPIA (|Log2FC| 
cut-off = 1.5; p-value cut-off = 0.01), which showed that the expression of BLM significantly increased in different 
cancer patients compared to normal expression (Fig. 9). Therefore, based upon this data, we propose the role of 
BLM as a diagnostic marker for several cancers.

Substitution Prediction Score HMM ID HMM description HMM Pos HMM prob. W HMM prob. M HMM weights D HMM weights O

P690L PASSENGER/OTHER 1.79 41,442
P-loop containing 
nucleoside triphos-
phate hydrolases

118 0.148 0.011 1 4

P702L PASSENGER/OTHER 1.49 41,442
P-loop containing 
nucleoside triphos-
phate hydrolases

130 0.346 0.070 1 4

W803R PASSENGER/OTHER 1.92 41,442
P-loop containing 
nucleoside triphos-
phate hydrolases

231 0.088 0.033 1 4

W803L PASSENGER/OTHER 2.01 41,442
P-loop containing 
nucleoside triphos-
phate hydrolases

231 0.088 0.092 1 4

H805L PASSENGER/OTHER 1.99 41,442
P-loop containing 
nucleoside triphos-
phate hydrolases

233 0.092 0.086 1 4

Y811C PASSENGER/OTHER 2.45 DEAD DEAD/DEAH box 
helicase 140 0.050 0.026 5 28

P825L PASSENGER/OTHER 2.41 DEAD DEAD/DEAH box 
helicase 154 0.076 0.029 5 28

G891V PASSENGER/OTHER 2.84 36,155
P-loop containing 
nucleoside triphos-
phate hydrolases

11 0.017 0.173 1 6

G952V CANCER − 1.49 Helicase_C Helicase conserved 
C-terminal domain 46 0.798 0.006 8 14

G972V PASSENGER/OTHER 3.06 36,155
P-loop containing 
nucleoside triphos-
phate hydrolases

83 0.002 0.282 1 6

Y974C PASSENGER/OTHER 2.68 36,155
P-loop containing 
nucleoside triphos-
phate hydrolases

85 0.001 0.067 1 6

G978V CANCER − 1.12 41,442
P-loop containing 
nucleoside triphos-
phate hydrolases

263 0.885 0.001 1 4

C1036F PASSENGER/OTHER 2.62 36,155
P-loop containing 
nucleoside triphos-
phate hydrolases

167 0.017 0.039 1 6

Y1044C PASSENGER/OTHER 2.55 36,155
P-loop containing 
nucleoside triphos-
phate hydrolases

175 0.033 0.011 1 6

C1055R PASSENGER/OTHER 2.61 36,155
P-loop containing 
nucleoside triphos-
phate hydrolases

207 0.012 0.027 1 6

C1055Y PASSENGER/OTHER 2.61 36,155
P-loop containing 
nucleoside triphos-
phate hydrolases

207 0.012 0.029 1 6

D1064V PASSENGER/OTHER 2.47 36,155
P-loop containing 
nucleoside triphos-
phate hydrolases

215 0.097 0.022 1 6

C1066Y PASSENGER/OTHER 2.62 36,155
P-loop containing 
nucleoside triphos-
phate hydrolases

217 0.008 0.029 1 6

Table 4.  Predicting cancer and disease-associated amino acid substitution and phenotypic effect using 
Fathmm cancer.
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Impact of 3′UtR Snps in BLM gene regulation. Earlier studies have shown the role of SNP in the 
3′UTR of mRNA, which may lead to the partial or complete attenuation of complementary binding of miRNAs 
to the 3′UTR  region19. On the other hand, SNPs in the 3′UTR region of mRNA can introduce new binding sites 
for other new miRNAs. We analysed the impact of gene regulation by miRNA due to SNPs in BLM mRNA using 
PolymiRTS v3.0. A list of 17 #rsIDs mapped to the 3′UTR and was fed into the PolymiRTS server, which yielded 
a list of binding miRNAs affected by these polymorphisms. The results showed that the binding of hsa-miR-
6507-5p and hsa-miR-3976 to BLM mRNA was abolished due to polymorphisms rs116293756 and rs28363374, 
respectively (Table 6). Therefore, due to these SNPs, the BLM genes were not under the control of hsa-miR-
6507-5p and hsa-miR-3976, which might result in higher expression of the BLM protein. In past decades, small 
interfering RNAs (siRNAs) have been widely used to silence the expression of target  genes103,104. Designing 
allele-specific siRNAs using desiRm webserver (https ://crdd.osdd.net/ragha va/desir m/) against disease-causing 
SNPs would be a very promising therapeutic approach to suppress the overexpression of the BLM mutant  gene105.

the possible mechanism of defective BLM and cancer predisposition. DNA damage during the 
replication process is corrected by the HR pathway. The HR starts with the degradation of 5′-terminal of DSBs, 
which generates 3′-overhang  ssDNA106. Subsequently, RAD51 recombinase assembles at the ssDNA break-
point and catalyzes the HR and DNA repair. During the HR process, invasion of ssDNA into the homologous 
sequence, typically a sister chromatid that works as a template, synthesizes the damaged DNA. At the last stage of 
HR, BLM forms a complex along with other enzymes and helps to separate the repaired DNA from the template 
DNA strand, and in this way BLM helps to maintain the genomic  integrity107.

Biochemical studies showed that the deletion of BLM enhances the assembly of RAD51 at the ssDNA break 
site, while overexpression of BLM disrupts the RAD51 assembly through its helicase  activity108,109. Therefore, 
BLM works as a ‘anti-recombinase’ at early and late stages of HR by: (i) preventing HR by disrupting the RAD51 
assembly on the ssDNA of DSBs to make sure that HR only occurs between sequences with high homology; 

Table 5.  Predicting cancer and disease-associated amino acid substitution and phenotypic effect using 
Fathmm Disease Ontology.

Substitution Prediction Score HMM ID HMM Description HMM pos HMM prob. W HMM prob. M HMM weights D HMM weights O

C1036F TOLERATED − 0.97 36,155 P-loop containing nucleoside 
triphosphate hydrolases 167 0.017 0.039 12 6

C1055R TOLERATED − 0.98 36,155 P-loop containing nucleoside 
triphosphate hydrolases 207 0.012 0.027 12 6

C1055Y TOLERATED − 0.98 36,155 P-loop containing nucleoside 
triphosphate hydrolases 207 0.012 0.029 12 6

C1066Y TOLERATED − 0.97 36,155 P-loop containing nucleoside 
triphosphate hydrolases 217 0.008 0.029 12 6

D1064V TOLERATED − 1.11 36,155 P-loop containing nucleoside 
triphosphate hydrolases 215 0.097 0.022 12 6

G891V TOLERATED − 0.75 36,155 P-loop containing nucleoside 
triphosphate hydrolases 11 0.017 0.173 12 6

G952V DAMAGING − 3.19 Helicase_C Helicase conserved C-termi-
nal domain 46 0.798 0.006 26 14

G972V TOLERATED − 0.52 36,155 P-loop containing nucleoside 
triphosphate hydrolases 83 0.002 0.282 12 6

G978V DAMAGING − 4.12 41,442 P-loop containing nucleoside 
triphosphate hydrolases 263 0.885 0.001 8 4

H805L TOLERATED − 1.01 41,442 P-loop containing nucleoside 
triphosphate hydrolases 233 0.092 0.086 8 4

P690L TOLERATED − 1.21 41,442 P-loop containing nucleoside 
triphosphate hydrolases 118 0.148 0.011 8 4

P702L DAMAGING − 1.51 41,442 P-loop containing nucleoside 
triphosphate hydrolases 130 0.346 0.070 8 4

P825L TOLERATED 2.41 DEAD DEAD/DEAH box helicase 154 0.076 0.029 5 28

W803L TOLERATED − 0.99 41,442 P-loop containing nucleoside 
triphosphate hydrolases 231 0.088 0.092 8 4

W803R TOLERATED − 1.08 41,442 P-loop containing nucleoside 
triphosphate hydrolases 231 0.088 0.033 8 4

Y1044C TOLERATED − 1.03 36,155 P-loop containing nucleoside 
triphosphate hydrolases 175 0.033 0.011 12 6

Y811C TOLERATED 2.45 DEAD DEAD/DEAH box helicase 140 0.050 0.026 5 28

Y974C TOLERATED − 0.9 36,155 P-loop containing nucleoside 
triphosphate hydrolases 85 0.001 0.067 12 6

https://crdd.osdd.net/raghava/desirm/
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Figure 3.  Various domains were observed in the BLM helicase crystal structure. (PDB id: 4O3M). The 
eighteen SNPs discussed in this study are shown by magenta spheres for Cα atoms. The bound ADP (in stick 
representation), Zn ion (grey sphere), Ca ion (green sphere) and DNA duplex with 3′ overhang are also shown.

Figure 4.  Variation in rmsd values with respect to time during simulations. Black lines correspond to mutant 
structures, and red lines correspond to WT or native structures.
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and (ii) preventing SCEs by separating the repaired DNA from the template DNA strand that arises at the final 
stages of  HR110,111.

Previous studies showed that overexpression of BLM displaces the localization of RAD51 to the sites of DNA 
 damage109,112. The loss of RAD51 leads to insufficient HR resulting in genomic instability and DNA damage. 
However, defective BLM increases the hyperaccumulation of RAD51 at DNA damage site resulting in a high 
level of HR and high frequency of  SCEs106,111,112. Therefore, our study supports previous findings that an aber-
ration in the activity of BLM through pathogenic nsSNPs or high expression of BLM (Figs. 8 and 9) could lead 
to genomic instability and predisposition to different cancer types.

conclusion
This study identifies eighteen highly deleterious and damaging nsSNPs for BLM inactivation using various pow-
erful bioinformatic tools. Four of these mutations (P702L, W805L, P825L, and Y974C) have been reported in 
the literature to have a partial effect on helicase  activity76. In support of this hypothesis, our MD studies of these 
mutations suggest that they maintained structural integrity during the simulations. Combining computational 
approaches with literature mining, we identified 14 more pathogenic mutations: P690L, W803R, W803L, Y811C, 
G891V, G952V, G972V, G978V, C1036F, Y1044C, C1055Y, D1064V, and C1066Y. Interestingly, we observed that 
only six of these mutations strongly destabilize the helicase structure within the simulation time: G891V, G952V, 
G972V, G978V, C1036F, and C1055R. The remaining mutations either showed weak destabilizing effects and 
maintained the structural integrity of the helicase structure or showed similar structural deviations to those 
observed in the WT/native structure. However, one cannot rule out the possibility that these mutations may 
contribute to the likely allosteric effect, which the limited time scales of our simulation studies could not capture. 
Visualizing the time-evolution of domain-wise rmsd values, as a general trend, we observed that the mutations 
observed in the Zn subdomain not only destabilized the Zn subdomain, but also destabilized the nearby RQC 
domain as observed from their higher rmsd values. This suggests the allosteric effect of these mutations. One 
probable reason can be that in the crystal structure, Zn subdomain interacts with the DNA 3′ overhang, while 
RQC domain interacts with the upstream duplex DNA, and thus, the nucleic acid may induce changes in RQC 
domain when Zn subdomain is mutated. Nonetheless, these observations warrant the detailed comparative 
studies in the future with longer sampling time to ascertain the allosteric effect of mutations.

Figure 5.  RMSF values calculated for each Cα atom with respect to residue. Black lines correspond to mutant 
and red lines correspond to WT or native structures. The bars below depict the domains, with coral for ATPase 
1A, brown for ATPase 1B, blue for RQC and green for the HRDC domain.
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Since the MD simulation-based results suggest that G978V is pathogenic but no experimental evidence 
suggests its role in BS, future studies may sequence this pathogenic mutation site, especially in BS patients and 
other related diseases, and/or study it using mutational approaches using various models. Most of the pathogenic 
nsSNPs listed in the BLM protein suggest hampering the activity, such as ATP hydrolysis, DNA binding, and DNA 
unwinding, which is associated with various cellular procedures, such as replication, recombination, and DNA 
repair. BLM protein interacts with various factors for proper DNA replication and repair of DNA damage using 
the HR pathway. Turbulence during such a procedure always leads to the incorporation of erroneous copying of 
genomic information, giving rise to genomic instability and consequently leading to neoplastic transformation. 

Figure 6.  Domain wise rmsd plots for mutants destabilizing the complete BLM structure. Black line 
corresponds for mutants and red line corresponds for WT/native structure.

Figure 7.  Interactions observed in the final conformations of mutants C1055R and C1055Y.
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Further future studies of BLM protein-related pathological nsSNPs will allow us to manage BS and its associated 
diseases. Figure 10 summarises our finding on pathogenic nsSNPs in BLM helicase.

Our study found 28 nsSNPs as “stop gained” and one nsSNP as “start lost” mutations, which can express a 
truncated form of BLM with the loss of important domains and nuclear signals and thus strongly localized BLM 
in the cytoplasm instead of the nucleus. As other studies have found, cancer cells have high cytoplasmic BLM, and 
it would be interesting to experimentally validate the nsSNPs with BLM protein localization in cancer cells. Fur-
thermore, our investigation found that two SNPs, rs116293756 and rs28363374, at the 3′UTR of BLM abolished 
the binding affinity with the miRNAs hsa-miR-6507-5p and hsa-miR-3976, respectively, and thus enhanced the 
expression of BLM. Interestingly, we also found that BLM expression was significantly higher in some cancers 
including BLCA (Bladder Urothelial Carcinoma), COAD (Colon adenocarcinoma) and LUSC (Lung squamous 
cell carcinoma) (Fig. 9). Furthermore, Kaplan–Meier survival analysis suggested that high expression of the 
BLM gene is one of the reasons for the reduced survival of patients with lung or gastric cancer. Therefore, a deep 
understanding of how SNPs affect BLM transcription regulation and expression in cancer might be highly useful 
for the diagnosis and prognosis of disease.

In the future, our selected nsSNPs in the BLM gene can be further studied in different populations to explore 
and validate the contribution of these variants in BS and cancer, which may further lead to the design and devel-
opment of potential drugs for the better management of BS and other associated diseases. Furthermore, our 
study provides key support to investigators to conduct future studies on pathological mutations and their struc-
tural consequences on BLM. The SNPs predicted from our study can be further validated by wet-lab scientists 
to investigate the evidence of BLM protein mutations in association to BS and develop a potential drug target 
for BS. These findings may enrich the available SNPs databases and then can be utilized for further research.

Figure 8.  Kaplan–Meier curves showing the association of BLM mRNA expression and survival of patients in 
four cancers: (A) lung, (B) gastric, (C) breast, and (D) ovarian cancer.



17

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12377  | https://doi.org/10.1038/s41598-020-69033-8

www.nature.com/scientificreports/

Figure 9.  BLM mRNA expression level in normal tissues (N) and different cancer (T) samples. In each plot, 
y-axis indicates gene expression score calculated by mean value of  log2(TPM + 1). The red box indicates the 
tumor samples while the gray box represents the normal samples, and the number of samples is given in 
brackets. The significant differential expression of mRNA between tumor and normal samples and indicates 
with symbol “*” with p-value < 0.01. ACC  Adrenocortical, BLCA Bladder Urothelial Carcinoma, BRCA Breast 
invasive carcinoma, CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma, CHOL 
Cholangio carcinoma, COAD Colon adenocarcinoma, DLBC Lymphoid Neoplasm Diffuse Large B-cell 
Lymphoma, ESCA Esophageal carcinoma, GBM Glioblastoma multiforme, HNSC Head and Neck squamous cell 
carcinoma, KICH Kidney Chromophobe, KIRC Kidney renal clear cell carcinoma, KIRP Kidney renal papillary 
cell carcinoma, LAML Acute Myeloid Leukemia, LGG Brain Lower Grade Glioma, LIHC Liver hepatocellular 
carcinoma, LUAD Lung adenocarcinoma, LUSC Lung squamous cell carcinoma, OV Ovarian serous 
cystadenocarcinoma, PAAD Pancreatic adenocarcinoma, PCPG Pheochromocytoma and Paraganglioma, PRAD 
Prostate adenocarcinoma, READ Rectum adenocarcinoma, SARC  Sarcoma, SKCM Skin Cutaneous Melanoma, 
STAD Stomach adenocarcinoma, TGCT  Testicular Germ Cell Tumors, THCA (Thyroid carcinoma, THYM 
Thymoma, UCEC Uterine Corpus Endometrial Carcinoma, UCS Uterine Carcinosarcoma.
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