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1 Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of
Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; szilagyi.bence@ttk.mta.hu (B.S.);
kelemen.adam@ttk.mta.hu (Á.A.K.); ferenczy.gyorgy@ttk.mta.hu (G.G.F.)

2 Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest,
Hungary; hargitai.csilla@egis.hu

3 Plasma Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences,
Magyar tudósok krt. 2, H-1117 Budapest, Hungary; racz.anita@ttk.mta.hu

* Correspondence: volk.balazs@egis.hu (B.V.); keseru.gyorgy@ttk.mta.hu (G.M.K.);
Tel.: +36-1-803-5874 (B.V.); +36-1-382-6821 (G.M.K.)

Received: 8 December 2018; Accepted: 10 January 2019; Published: 14 January 2019
����������
�������

Abstract: Most of the known inhibitors of D-amino acid oxidase (DAAO) are small polar molecules
recognized by the active site of the enzyme. More recently a new class of DAAO inhibitors has
been disclosed that interacts with loop 218−224 at the top of the binding pocket. These compounds
have a significantly larger size and more beneficial physicochemical properties than most reported
DAAO inhibitors, however, their structure-activity relationship is poorly explored. Here we report
the synthesis and evaluation of this type of DAAO inhibitors that open the lid over the active
site of DAAO. In order to collect relevant SAR data we varied two distinct parts of the inhibitors.
A systematic variation of the pendant aromatic substituents according to the Topliss scheme resulted
in DAAO inhibitors with low nanomolar activity. The activity showed low sensitivity to the
substituents investigated. The variation of the linker connecting the pendant aromatic moiety and
the acidic headgroup revealed that the interactions of the linker with the enzyme were crucial for
achieving significant inhibitory activity. Structures and activities were analyzed based on available
X-ray structures of the complexes. Our findings might support the design of drug-like DAAO
inhibitors with advantageous physicochemical properties and ADME profile.

Keywords: D-amino acid oxidase (DAAO); inhibitor; lid-open conformation; Topliss scheme;
structure-activity relationship

1. Introduction

D-Amino acid oxidase (DAAO) is a flavoprotein that catalyzes the oxidative deamination of
D-amino acids. It plays a crucial role in oxidizing D-serine, a co-agonist of the NMDA receptor,
whose hypoactivity is thought to be involved in the positive, negative and cognitive symptoms in
schizophrenia. Therefore, increased DAAO activity results in lower D-serine level [1,2] and lower
NMDA activity. Indeed, it has been shown from post mortem brain tissue samples of patients who
suffered from schizophrenia that DAAO expression and enzyme activity were elevated compared to
healthy controls [3]. These findings suggest that the inhibition of DAAO may result in an increase of
brain D-serine level and may have positive effect on the symptoms of schizophrenia [4].

First generation DAAO inhibitors 1–6 [5–10] are mostly small polar molecules in accordance
with the properties of the enzyme active site (Figure 1). These compounds, however, tend to have
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suboptimal pharmacokinetic properties. In particular, they are characterized by poor absorption and
penetration through the blood-brain barrier.
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Figure 1. Known active site DAAO inhibitors in the literature. 

In 2014, Terry-Lorenzo et al. [11] reported that during the screening of a computationally 
prioritized library, a structurally novel compound (7) was identified showing competitive D-serine 
inhibitory properties in the low nanomolar range. An analogue of 7 was synthesized by changing the 
carboxylic acid group to a bioisosteric hydroxypyridazinone moiety to obtain compound 8 (Figure 
2). 

 
Figure 2. Novel DAAO inhibitors that interact with the flexible loop and the structural moieties of the 
lid-open type compounds. 

Compounds 7 and 8 represent a new generation of DAAO inhibitors because, in contrast to 
previous active site inhibitors, these compounds also interact with residues at the entrance of the 
binding pocket. X-Ray structures of the complexes of 7 and 8 with DAAO [11] revealed that the 
pendant phenyl group interacted with the flexible loop formed by residues 218−224. This loop acts as 
a lid that covers the entry of the binding pocket when small compounds are bound, and it remains 
open in the complexes of 7 and 8. Therefore, the compounds in this series can be used to explore the 
properties and optimal interactions of the flexible loop (amino acids 218–224). Moreover, the 
absorption of this compound class is expected to be more favorable than that of small, polar 
compounds. 

Targeting active site lids, if available, is a feasible strategy for enzyme inhibition. Since enzymes 
with lid-gated active sites operate by an induced fit mechanism [12], here we investigated the impact 
of different structural elements on lid opening and stabilization. Compounds 7 and 8 can be divided 
into three structural parts (Figure 2). We can identify an aromatic part which is responsible for 
maintaining the loop in the open conformation, a linker part which is an aromatic moiety with 

Figure 1. Known active site DAAO inhibitors in the literature.

In 2014, Terry-Lorenzo et al. [11] reported that during the screening of a computationally
prioritized library, a structurally novel compound (7) was identified showing competitive D-serine
inhibitory properties in the low nanomolar range. An analogue of 7 was synthesized by changing the
carboxylic acid group to a bioisosteric hydroxypyridazinone moiety to obtain compound 8 (Figure 2).
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lid-open type compounds.

Compounds 7 and 8 represent a new generation of DAAO inhibitors because, in contrast to
previous active site inhibitors, these compounds also interact with residues at the entrance of the
binding pocket. X-Ray structures of the complexes of 7 and 8 with DAAO [11] revealed that the pendant
phenyl group interacted with the flexible loop formed by residues 218−224. This loop acts as a lid that
covers the entry of the binding pocket when small compounds are bound, and it remains open in the
complexes of 7 and 8. Therefore, the compounds in this series can be used to explore the properties
and optimal interactions of the flexible loop (amino acids 218–224). Moreover, the absorption of this
compound class is expected to be more favorable than that of small, polar compounds.

Targeting active site lids, if available, is a feasible strategy for enzyme inhibition. Since enzymes
with lid-gated active sites operate by an induced fit mechanism [12], here we investigated the impact of
different structural elements on lid opening and stabilization. Compounds 7 and 8 can be divided into
three structural parts (Figure 2). We can identify an aromatic part which is responsible for maintaining
the loop in the open conformation, a linker part which is an aromatic moiety with hydrogen-bond
donors and acceptors, and an acid or acid bioisoster headgroup which interacts with Arg283 close
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to the isoalloxazine ring of flavin adenine dinucleotide (FAD). In this paper we present the design,
synthesis and testing of lid-open type analogues with potential DAAO inhibitory activity.

2. Results and Discussion

We introduced modifications in the linker and in the pendant aromatic part while we used acidic
and acid bioisoster headgroups already described for DAAO inhibitors [11,13–16]. In the first step,
we explored what kind of interactions could be formed between the flexible loop and the aromatic
part of the compounds, so we have designed derivatives of compound 8 mono-substituted at the
aromatic part. The scheme proposed by Topliss [17] has been applied for the stepwise selection of
compounds to be synthesized. This scheme is designed for the systematic optimization of aromatic
substituents by identifying the effects of the Hammet constant (σ), the hydrophobic substituent
constant (π) and Taft’s steric constant (Es) on the activity of the compounds. This stepwise process
includes the synthesis and testing of a number of compounds in each step and selection of compounds
for the next step based on the observed activities in the previous step. In this way, the variation of a few
substituents and the activity measurement of a limited number of compounds allow the exploration of
the binding site and the optimization of activity.

The prepared compounds were tested as DAAO inhibitors with the KYNA enzyme inhibitory
assay [18]. Although D-serine is a natural substrate of DAAO, its metabolite is not suitable for
fluorometric evaluation. However in the applied assay, D-kynurenine can be metabolized by
DAAO [19] and the metabolite (KYNA) has a favorable fluorescence property. Thus it can be used for
fluorescence measurements [20].

We started with compounds 8 and 9 (Figure 3). Since they exhibited similar activity (Table 1),
we proceeded with the synthesis of 10. This latter compound showed slightly lower activity, therefore
we decided to synthesize 11. The activity of this 3-Cl substituted derivative (11) was lower than
100 nM therefore we synthesized the 3-Me derivative (12). Although the X-ray structure of the complex
of 8 with DAAO (PDB code: 4QFC [11]) suggested that small substituents in the meta position
could be accommodated in the binding pocket, the larger 3-OMe substituent in 13 did not yield
further improvement in the activity. DAAO binding and activity of representative compounds have
been confirmed in orthogonal differential scanning fluorometry (DSF) and the coupled Horseradish
peroxidase (HRP)/Amplex Red assays, respectively (see Supplementary materials). The designed
compounds were docked into the protein structure obtained from the complex of 8 by the removal
of the ligand. The docking of compounds 9–12 resulted in complexes with ligand positions highly
similar to that of 8 and suggested that the meta substituent in 11 and 12 points away from the
hydroxypyridazinone headgroup (Figure 4).
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Table 1. Enzyme assay test results of compounds 8–13.

Compound IC50 [nM] *

8 112(17)
9 119(24)

10 474(12)
11 69(18)
12 52(9)
13 73(11)

* Standard deviations are shown in parenthesis.Molecules 2018, 23, x FOR PEER REVIEW  4 of 8 
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(B) Details of interactions are indicated by dashed lines: yellow hydrogen-bond, cyan aromatic–
aromatic. (H-bond criterion: heavy atom distance < 2.8 Å; aromatic-aromatic contact criteria: face-to-
face distance < 4.4 Å; face-to edge distance < 5.5 Å). 
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Following the variation of the aromatic substituents, we next focused on the linker region.
Starting from the original linker used in compounds 7 and 8, we selected 1,5-dihydro-2H-pyrrolo
[3,2-d]pyrimidine-2,4(3H)-dione and 1,2,3,4-tetrahydroisoquinoline skeletons that might resemble in
shape and possible substitution pattern (Figure 5).
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Figure 5. Linkers designed to replace the 7-hydroxy-2H-chromen-2-one moiety used in 7 and 8.

As regards the headgroup, the best option would have been the hydroxypyridazinone moiety
used in the original compound (8), but we failed to produce derivative 14 (Figure 6) that would have
been suitable for the coupling reaction. Therefore, we decided to attach a known acidic headgroup of
the pyrrole-2-carboxylic acid by using derivative 15.
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The prepared new compounds 16–26 (Figure 7) were tested in the KYNA enzyme inhibitory
assay, and they did not show any inhibitory activity at 20 µM concentration (see Supplementary
materials). Comparing these compounds with DAAO inhibitors 8–13 and with pyrrole-2-carboxylic
acid containing inhibitors known from the literature [16,21] strongly suggests that it is the linker part
of molecules 16–26 that prevents DAAO activity. The replacement of the 7-hydroxy-2H-chromen-2-one
linker of compounds 7–13 changes the interactions of the linker, in addition it modifies the exit vectors
of both the acidic headgroup and the pendant aromatic moiety in compounds 16–19. An analysis
of the X-ray structure of complexes of 7 and 8 (PDB codes: 4QFD [11] and 4QFC [11]) suggests that
the loss of linker planarity in compounds 20–26 is likely to contribute to the loss of activity as the
planar linker of 7 and 8 beneficially interacts with Tyr55, Leu215 and Tyr224, while these stacking and
hydrophobic interactions may not be optimally formed with the nonplanar tetrahydroisoquinoline
group. Furthermore, the OH group of the 7-hydroxy-2H-chromen-2-one linker in 7 and 8 is able to form
H-bond with the Gln53 backbone carbonyl and the carbonyl group of the linker forms a water-mediated
H-bond to Tyr224. These H-bonds are clearly missing in potential complexes of 20–26. While the
presence of H-bond to the Gln53 backbone is highly possible in DAAO complexes of 16–19, no H-bond
acceptor to the water-mediated interaction with Tyr224 can be assumed. Perhaps more importantly,
the different orientation of the pendant aromatic group in 16–19 compared to compounds 9–13 might
be responsible for the decreased activity. This group in derivatives 9–13 points toward the flexible
loop formed by residues 218−224 and may not be able to adopt a position beneficially interacting with
the loop. These observations suggest that the linker contributes significantly to DAAO activity both by
its interactions with the enzyme and by properly orienting the pendant aromatic moiety.
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3. Materials and Methods

3.1. General Information

Melting points were determined on an OptiMelt SRS instrument (Stanford Research Systems,
Sunnyvale, CA, USA) and are uncorrected. NMR measurements were performed on a System 500 NMR
spectrometer (Varian, Palo Alto, CA, USA) or a Varian System 300 spectrometer. 1H- and 13C-NMR
spectra were measured at room temperature (25 ◦C) in an appropriate solvent. 1H and 13C chemical
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shifts are expressed in parts per million (δ) referenced to TMS or residual solvent signals. Reactions
were monitored with silica gel 60 F254 TLC plates (Merck, Darmstadt, Germany). All chemicals and
solvents were used as purchased. HPLC-MS measurements were performed using a LC-MS-2020
device (Shimadzu, Kyoto, Japan) equipped with a Reprospher 100 C18 (5 µm, 100 × 3 mm) column
and positive-negative double ion source (DUIS±) with a quadrupole mass spectrometer in a range of
50–1000 m/z. Samples were eluted with gradient elution using eluent A (0.1% formic acid in water) and
eluent B (0.1% formic acid in acetonitrile). Flow rate was set to 1.5 mL/min. The initial condition was
0% B eluent, followed by a linear gradient to 100% B eluent by 2 min, from 2 to 3.75 min 100% B eluent
was retained, and from 3.75 to 4.5 min back to initial condition and retained to 5 min. The column
temperature was kept at 30 ◦C and the injection volume was 1 µL. High resolution mass spectrometric
measurements were performed using a Q-TOF Premier mass spectrometer (Waters, Milford, MA, USA)
in positive electrospray ionization mode. Compound 8 was prepared following the procedure reported
in ref. [11]. Preparation of compounds 9–13 and 16–26 is described in the Supplementary materials.

3.2. KYNA Enzyme Inhibition Assay

D-2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid (D-KYN) was used to measure D-amino acid
oxidase activity based on the protocol described in ref. [18,20]. Human DAAO (purchased from
TargetEx Ltd. (Dunakeszi, Hungary)) was used for the measurements. The buffer contained 20 mM
TRIS-HCl and 100 mM NaCl (pH = 8). Flavin adenine dinucleotide (FAD—obtained from Sigma
(St. Louis, MO, USA)) in 5 µM concentration was also included in the assay. Compounds were dissolved
originally in DMSO and the measured samples were diluted with the buffer solution (the final DMSO
concentration was always below 5%). The mixed solution was incubated at 37 ◦C for 1 h. After the
enzymatic reaction, ZnCl2 dissolved in H2O was added and vortex-mixed. Single point measurements
were performed at 20 µm inhibitor concentration. For the IC50 measurements, the inhibitors were used
at 5 nM, 50 nM, 500 nM, 2.5 µM, 5 µM, 10 µM, 50 µM. Measurements were carried out on a Citation3
cell imaging multi-mode microplate reader (BioTek Instruments Inc., Winooski, VT, USA) with 364
well plates. The applied wavelengths were 340 nm and 396 nm.

3.3. Molecular Modeling

Compounds were docked into the DAAO structure (PDB: 4QFC). Protein and ligand preparations
were performed with Schrödinger’s tools [22] with standard settings and Glide [22] was used for
docking and scoring.

4. Conclusions

In the current investigation, we synthesized and tested compounds derived from DAAO inhibitors
that, in contrast to most other reported inhibitors, interact with loop 218−224 at the top of the ligand
binding pocket. This loop must be in the open position to allow for substrate binding and typically
closes when the ligand is within the pocket. However, large ligands force the loop to leave the pocket
partially open after ligand binding and this opens up new opportunities in the development of DAAO
inhibitors. We varied two moieties of extended DAAO inhibitors, namely the pendant aromatic group
and the linker that connects the former with the acid or acid mimetic headgroup. The compounds
produced are of synthetic and medicinal chemistry value, as they explore structure-activity relationship
of lid-open DAAO inhibitors. Moreover, a systematic variation of the aromatic substituents according
to the scheme proposed by Topliss resulted in DAAO inhibitors in the 2−3 digit nanomolar affinity
range. The activity showed low sensitivity to the substituents investigated. The variation of the linker
part revealed that the interactions of the linker with the enzyme were crucial for achieving significant
inhibitory activity. The analysis of the structures and their activities suggests that a planar linker with
H-bond forming ability at suitable positions is indispensable for DAAO activity. These results may
find use in DAAO inhibitor design since these types of compounds broaden the operational space to
develop inhibitors with advantageous physicochemical properties and ADME profile.
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