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Objective: Diabetic kidney disease (DKD) is the leading cause of chronic

kidney disease and end-stage renal disease worldwide. Early diagnosis is

critical to prevent its progression. The aim of this study was to identify

potential diagnostic biomarkers for DKD, illustrate the biological processes

related to the biomarkers and investigate the relationship between them and

immune cell infiltration.

Materials and methods: Gene expression profiles (GSE30528, GSE96804, and

GSE99339) for samples obtained from DKD and controls were downloaded

from the Gene Expression Omnibus database as a training set, and the

gene expression profiles (GSE47185 and GSE30122) were downloaded as

a validation set. Differentially expressed genes (DEGs) were identified using

the training set, and functional correlation analyses were performed. The

least absolute shrinkage and selection operator (LASSO), support vector

machine-recursive feature elimination (SVM-RFE), and random forests (RF)

were performed to identify potential diagnostic biomarkers. To evaluate

the diagnostic efficacy of these potential biomarkers, receiver operating

characteristic (ROC) curves were plotted separately for the training and

validation sets, and immunohistochemical (IHC) staining for biomarkers was

performed in the DKD and control kidney tissues. In addition, the CIBERSORT,

XCELL and TIMER algorithms were employed to assess the infiltration of

immune cells in DKD, and the relationships between the biomarkers and

infiltrating immune cells were also investigated.

Results: A total of 95 DEGs were identified. Using three machine learning

algorithms, DUSP1 and PRKAR2B were identified as potential biomarker genes

for the diagnosis of DKD. The diagnostic efficacy of DUSP1 and PRKAR2B

was assessed using the areas under the curves in the ROC analysis of the

training set (0.945 and 0.932, respectively) and validation set (0.789 and 0.709,
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respectively). IHC staining suggested that the expression levels of DUSP1

and PRKAR2B were significantly lower in DKD patients compared to normal.

Immune cell infiltration analysis showed that B memory cells, gamma delta

T cells, macrophages, and neutrophils may be involved in the development

of DKD. Furthermore, both of the candidate genes are associated with these

immune cell subtypes to varying extents.

Conclusion: DUSP1 and PRKAR2B are potential diagnostic markers of DKD,

and they are closely associated with immune cell infiltration.

KEYWORDS

diabetic kidney disease, immune infiltration, diagnostic biomarker, bioinformatic
analysis, machine learning strategy

Introduction

The increase in the prevalence of diabetes mellitus (1)
has had a major impact on the prevalence of diabetic kidney
disease (DKD), which is the cause of approximately 50% of
cases of end-stage renal disease (ESRD) in developed countries
(2); the prevalence of DKD has also been increasing in China
(3). Therefore, DKD is now placing a substantial burden
on the healthcare system (4). Fibrosis, hypertrophy, and the
accumulation of extracellular matrix around glomerular and
tubular cells are typical pathological changes in DKD (5). The
progression of DKD is associated with microalbuminuria in
the early stages and uremia in the later stages (6). Although
renal biopsy is the most accurate method of diagnosis,
it is not widely used because of its invasiveness. Instead,
the diagnostic criteria are typically based on the clinical
manifestation of the disease and vary around the world. These
criteria include albumin/creatinine ratio, estimated glomerular
filtration rate, serum creatinine concentration, the results of
renal ultrasonography, and the presence of retinopathy (7).
However, these parameters are not highly sensitive or specific
diagnostic measures and do not reflect the severity of the renal
damage. It is universally accepted that proteinuria is negative in
the early stage of DKD and microalbuminuria may revert back
to normal urinary albumin excretion rates over declined renal
function (8, 9). Therefore, more accurate biomarkers that could
be used for the early diagnosis of DKD would facilitate early
intervention and improve the outcomes of patients.

Machine learning is increasingly being used to help identify
genes that may have diagnostic potential, and the accuracy
of identification of genes that are differentially expressed on
microarrays has markedly improved (10). With more and more
studies revealing the role of immune system and immune cells in
the occurrence and development of DKD (11), people gradually
regard DKD as an immune-mediated disease (12). Currently,
immune infiltrating cells mediated oxidative stress process is

considered to play an important role in the occurrence and
development of DKD (13). Animal experiments also showed
that the number and activity of immune cells in the kidney
are related to the renal damage (14). At present, some drugs
have been confirmed by experiments that influence the protein
expression in renal tissues interacting with infiltrated immune
cells could improve DKD fibrosis (15), which provides new
therapeutic strategies for the treatment of DKD. Therefore,
it is important to reveal the infiltration of immune cells in
kidney tissue of DKD and explore the relationship between the
identified biomarkers and immune infiltrating cells.

In the present study, we first downloaded microarray
datasets obtained from patients with DKD from the Gene
Expression Omnibus (GEO) database, merged them, and
performed differential expression analysis. Gene set enrichment
analysis (GSEA) was then performed using the obtained
differentially expressed genes (DEGs), and three different
machine learning algorithms were used to identify potential
diagnostic markers for DKD. Subsequently, we utilized
CIBERSORT, XCELL and TIMER to understand the features of
the immune cell infiltration into the kidneys of patients with
DKD, in comparison to normal renal tissue. Finally, we assessed
the relationships between the identified candidate diagnostic
markers and the immune infiltration to further investigate the
molecular mechanisms of the progression of DKD.

Materials and methods

Identification of differentially
expressed genes

Microarray datasets for renal glomeruli from patients with
DKD and controls (GSE30528, GSE96804, and GSE99339)
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were obtained from the GEO database1 (16). The three data
sets were merged and used as a training set, and the inter-
batch differences were corrected for using the SVA package
in R (17). The limma package in R was then used for the
identification and normalization of the differentially expressed
genes (DEGs) by comparing the expression levels in the
glomeruli from controls and patients with DKD (18). An
adjusted P-value < 0.05 and a | log fold change (FC)| > 1 were
the criteria used to define DEGs.

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses of the enriched
DEGs were performed through the “clusterProfiler” package
in R, and an adjusted P-value < 0.05 was considered
to represent statistical significance (19). GSEA was
conducted to identify the functional terms that significantly
differed between the DKD and control samples (20). We
used “c2.cp.kegg.v7.4.symbols.gmt” from the Molecular
Signatures Database (MSigDB) as the reference gene set and
screened for significantly enriched genes using an adjusted
P-value of <0.05.

Screening for potential diagnostic
biomarkers

To identify the potential diagnostic biomarkers for DKD,
three machine learning algorithms were used to predict
disease status: the least absolute shrinkage and selection
operator (LASSO), support vector machine-recursive feature
elimination (SVM-RFE), and random forests (RF). LASSO
is a regression analysis algorithm that uses regularization
to improve the accuracy of prediction and was performed
using the “glmnet” package in R, in which the minimum
absolute shrinkage was considered optimal (21). SVM is a
supervised machine learning technique that is widely used
for regression and classification, and the RFE algorithm is
often applied to avoid overfitting. SVM-RFE was performed
through the “e1071” package in R, with fivefold cross-
validation (22). RF is an ensemble learning method that is
based on the construction of many classification trees and
was performed using the “randomForest” package in R, with
genes awarded importance scores >2.0 being screened out
(23). Finally, the genes identified using all three classification
models were selected as potential gene biomarkers for
further analysis.

1 http://www.ncbi.nlm.nih.gov/geo/

Diagnostic value of the candidate
biomarkers for diabetic kidney disease

To test the predictive value of the identified gene
biomarkers, we plotted receiver operating characteristic (ROC)
curves for each using the mRNA expression data for 64 samples
from patients with DKD and 44 samples from controls that
comprised the training set. The GSE47185 and GSE30122 data
set was then used as the validation set to test the efficacy of
prediction using the identified gene biomarkers in more depth.
The area under the ROC curve (AUC) was calculated to evaluate
the diagnostic efficacy of the gene biomarkers identified using
the algorithms. ROC curves were plotted using the “pROC”
package in R, and a two-sided P-value of <0.05 was taken to
indicate statistical significance.

Renal immunohistochemical staining

To further understand the difference in expression of
identified gene biomarkers in DKD and control kidney tissues,
immunohistochemical (IHC) staining was conducted. The DKD
kidney tissues were obtained from the patients with DKD
diagnosed by renal biopsy pathology, while the normal kidney
tissues were obtained from normal tissue next to kidney cancer.
For IHC staining, all 50 DKD and 30 normal tissues from
the kidney were fixed in 10% formalin for 24 hours and
embedded in paraffin, then were cut into 5 µm thickness sliced
sections. Paraffin-embedded tissue slides were deparaffinized in
xylene and hydrated by increasing the alcohol concentrations.
Tissue sections were treated with sodium citrate (pH = 6)
and hydrogen peroxide for 15 min, then washed with PBS
for antigen retrieval. Tissue sections were incubated in 5%
BSA for 2 h (24). Subsequently, the tissue sections were
treated with primary anti-DUSP1 and anti-PRKAR2B (1:200
dilution, the antibodies were purchased from Abcam) and
incubated overnight at 4◦C. Subsequently, the sections were
incubated with horseradish peroxidase-conju-gated secondary
antibodies for 60 min at room tempera- ture and stained
through a horseradish peroxidase-DAB kit. All the stained
sections were examined using an OLYMPUS cellSens Entry
microscopy system. IHC staining was analyzed by Image-Pro
Plus 6.0 software using a semiquantitative scoring method based
on the staining intensity and the percentage of positively-stained
cells (25).

GSVA and GSEA analyses for the
candidate biomarkers

To further illustrate the biological processes related to
the candidate biomarkers, we divided the DKD samples into
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high and low expression groups based on the median values
of the candidate biomarkers’ expressions respectively, and
the GSVA and GSEA analyses were performed. The gene
sets of “c5.go.bp.v7.4.symbols” were downloaded from the
MSigDB database to enrich the biological process pathways
(26). GSVA algorithm was used to analyze the data set to find
biological process pathways with significant differences between
samples (27).

Immune cells infiltration

The CIBERSORT, XCELL, and TIMER algorithms were
used to analyze the immunological characteristics of the DKD
groups and control groups. CIBERSORT is the most widely
used immune infiltration algorithm. It uses the linear support
vector regression to deconvolute the tissue expression matrix
and can accurately quantify the abundance scores of 22 types
of immune cells for each sample (28). XCELL is a new method
for cell-type enrichment analysis using single-sample gene set
enrichment analysis. It could calculate the enrichment scores
for 64 cell types, including not only 34 types of immune
cells but also 30 stromal and other cells (29). Tumor immune
estimation resource (TIMER) is a tool which integrates multiple
state-of-theart algorithms for immune infiltration estimation
(30). Subsequently, the “ggplot2” package in R was used
for principal components analysis (PCA) clustering studies
of the immune cell infiltration matrix. A heat map of the
immune cell infiltration matrix by different methods was
plotted using the “pheatmap” package to show the allocation
of immune cell infiltrates in the respective kidney specimens.
The correlations among the infiltrating immune cells identified
were also plotted by the “pheatmap” package in the form of
a heatmap. The “vioplot” package in R was used to draw a
violin plot to aid visualization of the difference in immune
cell infiltration between samples from patients with DKD and
controls. Spearman’s rank correlation analysis in R was used
to further analyze the relationships between the key diagnostic
genes and immune infiltrating cells, and the “ggstatsplot” and
“ggplot2” packages were used to aid visualization of the results.

Results

Identification of DEGs in samples from
patients with diabetic kidney disease
and controls

The flowchart of this study was shown in Figure 1. Data
from a total of 64 samples from patients with DKD and
44 controls obtained from three GEO data sets (GSE30528,
GSE96804, and GSE99339) were retrospectively analyzed.
The DEGs were identified using the limma package after

the elimination of batch effects. A total of 95 DEGs were
identified; 39 genes were significantly upregulated, and 56 were
significantly downregulated (Figure 2).

Functional correlation analysis

Gene Ontology functional enrichment, KEGG pathway
enrichment, and GSEA were used to investigate the mechanisms
involved in the pathogenesis of DKD. The ten most significant
biological process (BP), cellular component (CC), and molecular
function (MF) terms in the GO functional enrichment for the
DEGs were identified (Figure 3A). KEGG pathway enrichment
revealed that the DEGs principally represented extracellular
matrix (ECM)-receptor interaction, the interleukin (IL)-17
signaling pathway, focal adhesion, the advanced glycation
end-product (AGE)-receptor for AGEs signaling pathway
in diabetic complications, protein digestion and absorption,
and glycolysis/gluconeogenesis (Figure 3B). Furthermore,
GSEA identified the following principal enriched pathways:
asthma, cytokine-cytokine receptor interaction, ECM receptor
interaction, focal adhesion, and systemic lupus erythematosus
(Figure 3C). All these findings suggest that the immune
response plays a significant role in DKD.

Identification and verification of
diagnostic markers

Three different algorithms were used to identify potential
diagnostic markers for DKD. Nineteen genes among the
DEGs were identified as potential biomarkers using the
LASSO logistic regression algorithm (Figure 4A), eight genes
were identified as potential biomarkers using the SVM-RFE
algorithm (Figure 4B), and six genes were identified as potential
biomarkers using the RF algorithm (Figure 4C). Two genes,
DUSP1 and PRKAR2B, were identified using all three algorithms
and were therefore regarded as strong candidate predictors of
DKD (Figure 4D).

As shown in Figures 5A,B, the expression of these two genes
was effective at discriminating DKD from control samples,
with AUCs of 0.945 (95% CI 0.891–0.988) for DUSP1 and
0.932 (95% CI 0.879–0.976) for PRKAR2B. To further evaluate
the diagnostic efficacy of the two candidate biomarkers, the
GSE47185 and GSE30122 datasets were merged as a validation
set, which comprised 33 samples from patients with DKD and 67
samples from controls. As shown in Figures 5C,D, ROC curves
for DUSP1 and PRKAR2B were also plotted for the validation
set and yielded AUCs of 0.789 (95% CI 0.686–0.875) and 0.709
(95% CI 0.598–0.813), respectively. These results indicate that
expression of the two genes show good potential in the diagnosis
of DKD.
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FIGURE 1

Study flow chart.

Renal immunohistochemical staining

Immunohistochemical staining was performed in 50 DKD
kidney tissues and 30 normal kidney tissues. Compared with the
normal, patients with DKD presented with significantly lower
expression levels of the DUSP1 and PRKAR2B (Figures 6A,B).

GSVA and GSEA analyses for the
candidate biomarkers

The results of exploring the biological processes related to
DUSP1 using GSVA and GSEA were shown in Figures 7A,B

respectively, while the results of PRKAR2B were shown
in Figures 7C,D respectively. The results showed that the
expression of both DUSP1 and PRKAR2B was closely related to
renal function, such as the regulation of glomerular filtration,
glomerular epithelial cell development, renal system process
involved in regulation of blood volume, etc.

Analysis of immune cell infiltration

The heatmap of immune cells with differential infiltration
between DKD patients and controls based on CIBERSORT,
XCELL and TIMER algorithms is shown in Figure 8A. In
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FIGURE 2

Volcano plots of the differentially expressed genes. Red: genes upregulated in diabetic kidney disease (DKD); green: genes downregulated in
DKD.

CIBERSORT algorithm, the correlation heatmap for the 22
immune cell subtypes demonstrated that two immune cell
subtypes (activated mast cells and resting mast cells) were
negatively correlated (Supplementary Figure 1), and the violin
plot of the differentially infiltrated immune cells demonstrated
that B memory cells, gamma delta T cells, resting natural killer
(NK) cells, macrophages, and resting mast cells were present
in larger numbers in the DKD samples than in the control
samples, whereas follicular helper T cells, resting dendritic cells,
activated mast cells, and neutrophils were present in smaller
numbers (Supplementary Figure 2). The results of XCELL and
TIMER algorithms also support the finding of CIBERSORT that
macrophages infiltrate more in DKD samples and neutrophils
infiltrate more in controls. Violin plots of the different infiltrated
immune cells identified by XCELL and TIMER algorithms were
shown in Supplementary Figures 3, 4 respectively.

The relationships between the candidate diagnostic marker
genes and the infiltrating immune cells were also analyzed.

DUSP1 expression positively correlated with neutrophil
infiltration (r = 0.69, P < 0.001), activated mast cell infiltration
(r = 0.41, P < 0.001), and T follicular helper cell infiltration
(r = 0.32, P < 0.001) and negatively correlated with plasma
cell infiltration (r = –0.23, P = 0.017), resting dendritic cell
infiltration (r = −0.25, P = 0.010), memory B cell infiltration
(r = –0.34, P < 0.001), resting mast cell infiltration (r = –0.44,
P < 0.001), and M2 macrophage infiltration (r = −0.52,
P < 0.001) (Figure 8B). PRKAR2B expression positively
correlated with neutrophil infiltration (r = 0.68, P < 0.001),
active mast cell infiltration (r = 0.34, P < 0.001), resting NK
cell infiltration (r = 0.29, P = 0.003), T follicular helper cell
infiltration (r = 0.26, P = 0.007), resting memory CD4 + T cell
infiltration (r = 0.22, P = 0.020), and naïve B cell infiltration
(r = 0.20, P = 0.039) and negatively correlated with resting
dendritic cell infiltration (r = –0.20, P = 0.037), resting mast cell
infiltration (r = –0.43, P < 0.001), memory B cell infiltration
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FIGURE 3

Results of functional enrichment analyses. (A) Gene Ontology enrichment analysis of the differentially expressed genes. (B) Kyoto Encyclopedia
of Genes and Genomes pathway enrichment analysis results. (C) Gene set enrichment analysis (GSEA) profiles, showing the five significant GSEA
sets.

(r = –0.44, P < 0.001), gamma delta T cell infiltration (r = –
0.48, P < 0.001), and M2 macrophage infiltration (r = –0.65,
P < 0.001) (Figure 8C).

Discussion

Diabetic kidney disease is the most common cause of
CKD and ESRD worldwide (31) and involves the hyperplasia
or hypertrophy of various cell types in the glomerulus and
tubules, thickening of the glomerular and tubular basement
membranes, and expansion of the tubulointerstitial and
mesangial compartments (32). Because the early clinical
manifestations of DKD are easy to ignore, it has usually
progressed to an advanced stage by the time it is recognized,

which is associated with a poor prognosis. In addition, immune
cell infiltration plays a significant role in the development of
DKD (33). Therefore, the prognosis of patients with DKD
could be improved by the identification and use of specific
diagnostic markers and a fuller characterization of the pattern
of immune cell infiltration into the glomerular region of the
kidneys of patients with DKD. Recently, bioinformatics and
CIBERSORT tools have been increasingly used to identify novel
diagnostic markers and to analyze the patterns of immune
cell infiltration in tissues (34, 35). However, few studies have
focused on characterizing the relationships between candidate
gene biomarkers and the immune cell infiltration in DKD (36).
Therefore, we aimed to identify candidate diagnostic biomarkers
for DKD and further investigate the role of immune cell
infiltration in DKD.
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FIGURE 4

Candidate diagnostic marker genes identified using the three algorithms. (A) Least absolute shrinkage and selection operator (LASSO) logistic
regression algorithm. (B) Support vector machine-recursive feature elimination (SVM-RFE) algorithm. (C) Random forest (RF) algorithm.
(D) Venn diagram showing the overlaps in the candidate diagnostic genes identified using the three algorithms.

We downloaded expression profile datasets from the
GEO database and identified a total of 95 DEGs. GSEA
showed that the following principal pathways were enriched:
asthma, cytokine-cytokine receptor interaction, ECM receptor
interaction, focal adhesion, and systemic lupus erythematosus.
Cui et al. (37) showed that the DEGs in glomerular and tubular
samples from patients with DKD were primarily associated with
pathways involved in ECM-receptor interactions and cytokine-
cytokine receptor interactions, which is consistent with the
present findings and suggests that these pathways may play
significant roles in the progression of DKD.

Least absolute shrinkage and selection operator logistic
regression is a machine learning method that determines the
variable by finding λ when the classification error is the
smallest (38). SVM is a machine learning method of pattern
recognition and estimation of function that operates within

the framework of statistical learning theory and structural
risk minimization (39). RF is an algorithm that uses an
ensemble decision tree, in which random subsets are drawn
from the data, with replacement (40). These three algorithms
are principally used to identify the most specific DEGs in order
to facilitate construction of a superior diagnostic model. In the
present study, we identified DUSP1 and PRKAR2B as candidate
diagnostic marker genes using the above three algorithms, and
to further evaluate their diagnostic efficacy, we used a validation
set. The results of this analysis suggested that our integration
strategy was reliable.

The dual-specificity phosphatase (DUSP) family is the
largest group of protein phosphatases that specifically regulate
mitogen-activated protein kinase (MAPK) activity in human
cells (41). One study of the mechanism of fibrosis in DKD
showed that DUSP1 plays an anti-fibrotic role in the HK-2
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FIGURE 5

Receiver operating characteristic (ROC) curves describing the diagnostic efficacy of the two candidate diagnostic marker genes. (A) ROC curve
for DUSP1 using the training set. (B) ROC curve for PRKAR2B using the training set. (C) ROC curve for DUSP1 using the validation set. (D) ROC
curve for PRKAR2B using the validation set.

proximal tubular cell line by inactivating both the p38MAPK
and extracellular signal-related protein kinase 1/2 pathways
(42). Angiotensin II-stimulated proteasome activity results in
DUSP1 degradation and the subsequent activation of signal
transducer and activator of transcription 1 in T cells, leading
to the induction of T helper 1 differentiation (43). Moreover,
the inhibition of DUSP1 expression or function in T cells may
be beneficial for the treatment of T cell-mediated autoimmune
diseases such as multiple sclerosis (44). Thus, DUSP1 influences

the activity of immune cells and the process of fibrosis in tissues
by regulating MAPK, and it has therefore become a potential
therapeutic target in some immune diseases. Therefore, DUSP1
may well influence the pathogenesis of DKD.

cAMP-dependent protein kinase type II-beta (PRKAR2B)
is a member of the protein kinase A (PKA) family that is
primarily expressed in the brain and adipose tissue (45) and
phosphorylates Ser/Thr residues of target proteins (46). In a
previous study, it was shown that a hypoxia-induced reduction

Frontiers in Medicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2022.918657
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-918657 September 24, 2022 Time: 13:25 # 10

Fu et al. 10.3389/fmed.2022.918657

FIGURE 6

Clinical validation of the identified gene biomarkers expression in DKD kidney tissues and normal kidney tissues. (A) Representative images and
(B) statistical analyses of immunohistochemical staining for DUSP1 and PRKAR2B. P < 0.05.

in PRKAR2B transcription is sufficient to increase PKA
activity via hypoxia-inducible factor (HIF)-1α, without affecting
intracellular cAMP concentration (47). In another study, it was
shown that PRKAR2B increases the expression of HIF-1α, which
provides a growth advantage in prostate cancer by increasing
the Warburg effect (48). In DKD, ischemia and inflammation
in the glomeruli and vascular lesions reduce the oxygen supply,
resulting in an increase in HIF-1α expression, which assists
cells to cope with hypoxia. However, hyperglycemia can reduce
the stability of HIF-1α, which leads to tissue fibrosis (49).
Therefore, we speculate that PRKAR2B may be involved in the
progression of DKD under hypoxic conditions. The results of
previous studies have suggested that DUSP1 and PRKAR2B play
significant roles in the activities of immune cells and in the
progression of disease in tissues (50–52). Therefore, these two
genes may represent useful diagnostic markers of DKD, but
further clinical studies are needed to confirm the efficacy of their
use for diagnostic purposes.

The results of immune cell infiltration found that there
was greater infiltration with B memory cells, gamma delta T
cells, resting NK cells, macrophages, and resting mast cells,
and less infiltration with T follicular helper cells, resting
dendritic cells, activated mast cells, and neutrophils, which
may be involved in the development and progression of DKD.
Current studies generally demonstrated that the mechanism of

neutrophils in regulation the pathogenesis of DKD is mediated
by inflammatory response. A study including 22 renal biopsies
of DKD proved that the infiltration of neutrophils increased in
interstitial, peritubular, and capillary regions (53). Neutrophil
extracellular traps (NETs) are the bactericidal mechanism after
neutrophil death. A previous study showed that neutrophils
isolated from diabetic humans and mice were primed to produce
NETs (54). The increase of Biomarkers of NETs correlates with
DKD severity, which NETs promote NLRP3 inflammasome
activation and glomerular endothelial dysfunction under high
glucose stress in vitro and in vivo (14). Additionally, neutrophils
may also migrate into the kidneys of patients with DKD because
their spontaneous adhesion increases (55), which is followed
by abnormal activation and the secretion of proinflammatory
cytokines, degranulation, and the release of reactive oxygen
species (56). To sum up, neutrophils may involve in the
occurrence of DKD. In our study, we found that the proportion
of neutrophils was relatively lower in DKD samples, which is
consistent with the results of Wang et al. on immune infiltration
in DKD (57). We suggested that it may be a potential limitation
of the current immune infiltration algorithms, because the
higher proportion of macrophages in DKD patients makes the
proportion of other immune cells, including neutrophils, appear
lower (57). The mechanism of other immune cells in regulation
the pathogenesis of DKD have also been showed in previous
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FIGURE 7

Exploring the biological processes related to the two candidate diagnostic marker genes. (A) GSVA analysis for the biological processes related
to DUSP1. (B) GSEA analysis for the biological processes related to DUSP1. (C) GSVA analysis for the biological processes related to PRKAR2B.
(D) GSEA analysis for the biological processes related to PRKAR2B.

studies. One previous animal study showed that CD4 + CD8 + T
cells and dendritic cells are present in the glomeruli of diabetic
mice, along with immunoglobulin (Ig)G and IgG + B cells,
which may suggest that the IgG present in the glomeruli may
be produced by the infiltrating B cells in situ (58). Some
features of DKD, such as the high expression of intracellular
adhesion molecule 1 and monocyte chemoattractant protein
1 by renal tubular cells, may increase the recruitment of
macrophages (59, 60), which then respond to the locally high
concentrations of glucose, AGEs, and oxidized low-density
lipoprotein by secreting proinflammatory cytokines (61, 62).
Eller et al. (63) demonstrated that the depletion of regulatory
T cells using an anticluster of differentiation 25 monoclonal
antibody accelerates the progression of renal injury, involving
increases in glomerular hyperfiltration and albuminuria. One
study of streptozotocin-induced diabetes in mice showed that
T helper 17 cells may protect diabetic kidneys by reducing
and modifying the inflammatory response (64). Mast cells have
also been shown to be present in large numbers in the renal

interstitium of patients with DKD, and their number has been
shown to correlate with serum creatinine concentration (65).
The degranulation of mast cells has been demonstrated in renal
biopsies from patients with type 2 diabetes and various stages of
nephropathy (66).

An analysis of the correlations between the expression of
the two candidate diagnostic marker genes and the extent
of infiltration with subtypes of immune cells revealed close
negative correlations of DUSP1 and PRKAR2B expression
with the extent of M2 macrophages infiltration and positive
correlations with neutrophil infiltration. Studies on renal
biopsies showed that M1 and M2 macrophages infiltrating
in the renal tissue of DKD were increased in a process-
dependent manner, and the activation status of M1 and M2
macrophages was positively correlated with the progression
of DKD (67). Another previous vitro cell experiment proved
that M2 macrophage could improve high glucose-induced
podocytes injury via secreting exosomal miR-25-3p to activate
autophagy of the cells through suppressing DUSP1 expression
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FIGURE 8

Analysis of immune cell infiltration. (A) The heatmap of immune cells with differential infiltration between DKD patients and controls based on
CIBERSORT, XCELL and TIMER algorithms. (B) Correlations between DUSP1 expression and the extent of infiltration of immune cell subtypes.
(C) Correlations between PRKAR2B expression and the extent of infiltration with immune cell subtypes.

(68). The above indicates that with the progression of DKD,
M2 macrophages act as a protective factor to inhibit the
expression of DUSP1, thereby ameliorating the renal damage of
DKD. Unfortunately, few study revealed the interaction between
PRKAR2B and M2 macrophages in DKD. Previous studies have
shown that neutrophils and mast cells play significant roles
in the progression of DKD (55, 56, 66). Macrophages and
certain types of T cells may be increasingly recruited during the
progression of DKD (58–60). Therefore, we infer that DUSP1
and PRKAR2B may be involved in regulating the infiltration of
immune cells in the kidney, and thus influence the development
and progression of DKD. However, this hypothesis requires
further testing in preclinical and clinical contexts.

We have used novel bioinformatic methods to filter
potential diagnostic marker genes and validated them through
IHC, and also investigated the relationship between the
identified markers and immune cell infiltration. Nevertheless,
there were a number of limitations to the present study. First,

clinical information regarding the samples and the contributing
patients was not available for the datasets obtained from the
GEO database; therefore, the influences of other disease factors
on the expression of genes could not be evaluated. Second,
our study performed IHC in DKD patients and controls but
did not detect the expression of these two biomarkers in the
blood samples, the early detection potential of DUSP1 and
PRKAR2B of DKD needs to be further explored. Third, the
public database we used did not provide follow up information
for us to explore relationship of these biomarkers with disease
prognosis. Therefore, further prospective clinical studies on the
prognostic relevance of DUSP1 and PRKAR2B to DKD need to
be conducted in the future.

In conclusion, we have shown that DUSP1 and PRKAR2B
may represent potential diagnostic markers of DKD. We
have also shown that immune cells such as B memory cells,
macrophages, resting mast cells, follicular helper T cells,
activated mast cells, and neutrophils may be involved in
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the development and progression of DKD. Furthermore, the
expression of DUSP1 and PRKAR2B was found to significantly
correlate with the numbers of immune cells such as neutrophils
and M2 macrophages in the kidneys of such patients. DUSP1
and PRKAR2B may be involved in regulating the infiltration of
immune cells in the kidney, and thus influence the development
and progression of DKD.
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