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Large-scale microbiome studies investigating disease-inducing microbial roles base their
findings on differences between microbial count data in contrasting environments (e.g.,
stool samples between cases and controls). These microbiome survey studies are often
impeded by small sample sizes and database bias. Combining data from multiple survey
studies often results in obvious batch effects, even when DNA preparation and sequencing
methods are identical. Relatedly, predictive models trained on one microbial DNA dataset
often do not generalize to outside datasets. In this study, we address these limitations by
applying word embedding algorithms (GloVe) and PCA transformation to ASV data from
the American Gut Project and generating translation matrices that can be applied to any
16S rRNA V4 region gut microbiome sequencing study. Because these approaches
contextualize microbial occurrences in a larger dataset while reducing dimensionality of the
feature space, they can improve generalization of predictive models that predict host
phenotype from stool associated gut microbiota. The GMEmbeddings R package
contains GloVe and PCA embedding transformation matrices at 50, 100 and 250
dimensions, each learned using ~15,000 samples from the American Gut Project. It
currently supports the alignment, matching, and matrix multiplication to allow users to
transform their V4 16S rRNA data into these embedding spaces. We show how to
correlate the properties in the new embedding space to KEGG functional pathways for
biological interpretation of results. Lastly, we provide benchmarking on six gut microbiome
datasets describing three phenotypes to demonstrate the ability of embedding-based
microbiome classifiers to generalize to independent datasets. Future iterations of
GMEmbeddings will include embedding transformation matrices for other biological
systems. Available at: https://github.com/MaudeDavidLab/GMEmbeddings.
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1 INTRODUCTION

Gut microbiomes can impact the physiology of their human hosts by modifying the availability of
molecules in the environment or through direct interactions with host cells Ruff et al. (2020). The
most commonly used and cost-effective method to observe microbiomes is 16S rRNA amplicon
sequencing, which allows researchers to observe which bacterial species are present in an
environment, their relative quantities, and their relative evolutionary distances to one another
Johnson et al. (2019).
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While 16S rRNA amplicon sequencing has many strengths
and provides insight into general microbiome compositions,
analysis of 16S data is often impeded by small sample sizes
paired with massive feature spaces. This can lead to
underpowered studies and spurious associations being detected
Schloss (2018), Ioannidis (2005), Fan et al. (2012). While meta-
analyses of microbiome datasets generally support associations
between microbiome community structure and disease, these
interactions are often relatively weak and confounded by
inter-study and individual microbiome variation Sharpton
et al. (2021), Sze and Schloss (2016), Holman and Gzyl
(2019), Duvallet et al. (2017), Wirbel et al. (2021). In
addition, 16S analysis generally treats amplicon sequence
variants (ASVs) or operational taxonomic units (OTUs),
also generally called taxa, as independent features, despite
the complex network of known relationships between
bacterial species that influence their function Albright et al.
(2021), Shoaie et al. (2013). By reducing dimensionality while
simultaneously analyzing 16S sequences in the context of co-
occurrence and co-abundance patterns across studies, we can
increase the generalizability of classifiers and gain insight into
microbiome community function.

Embedding has emerged as a method in natural language
processing to both decrease the dimensionality of the feature
space as well as consider co-occurrence relationships between
entities across corpuses of documents. Embedding algorithms
produce a numerical vector representation of every feature, then
datasets can be projected into this newly defined numerical space.
Vector representations can be learned in multiple ways–here we use
both GloVe and Principal Component Analysis (PCA) algorithms on
American Gut Project (AGP) data to produce two sets of embedding
vectors. GloVe is an algorithm designed for natural language
processing which learns numerical representation of features by
projecting a co-occurrence matrix between features into a lower
dimensional space. In the case of natural language, these numerical
vector representations of words can then be used to cluster words by
their shared meanings and relationships (e.g., king–male = queen)
Pennington et al. (2014). PCA is a method used frequently in ecology
which learns numerical representation of features such that samples
fall along the axes of highest variation across the dataset Karl (1901).
To some extent, this method takes into account co-abundances
between taxa across samples to learn a representation.

We used both of these algorithms to create embedding
transformation matrices. Numerical representations of 48,279
ASVs found in 15,709 samples were learned, and representations
were created in 50, 100, and 250 dimensions.

We present GMEmbeddings, an open-source R package that
transforms 16s microbiome data (ASV counts) into an embedding
space that captures information about taxa co-occurrence or co-
abundance patterns. GMEmbeddings currently contains
embedding vectors to enable embedding of 16S V4 reads from
the human gut microbiome. While the presented embedding
matrices are not meant to be used to transform counts from
other 16S regions or other biomes, future iterations will include
other sets of embedding vectors. The package also enables the
ability to interpret the learned numerical representations in the
context of microbial metabolic pathways.

Previous iterations of this work used only forward reads from
the American Gut Project that were ~ 150 bp long, resulting in
less specificity and less coverage during the transformation into
embedding space Tataru and David (2020). This iteration
contains full length V4 reads ( ~ 250 bp) to improve
performance, and is additionally more accessible through use
of a complete R package.

2 METHODS

2.1 Making Embedding Transformation
Matrix
2.1.1 Data Collection
Fastq files were downloaded from ftp://ftp.microbio.me/
AmericanGut/20nov2020-demultiplexed-data/. Only sequences
from stool samples were kept. Each folder represents a study,
and studies with less than 50 samples were removed. Of the 72
folders originally associated with the AGP, 50 folders were kept.
All gzipped FASTQ files were then collected from each folder,
totalling 43,256 individual files sharing a combined size of 113
Gigabytes of space. The files were then filtered using Cutadapt
in order to remove primers from the sequences Martin (2011).
We removed the 515F-806R primer pairs: GTGYCAGCMG
CCGCGGTAA (Fwd V4), GGACTACNVGGGTWTCTAAT
(Rev V4), GTGCCAGCMGCCGCGGTAA (Fwd V4),
GGACTACHVGGGTWTCTAAT (Rev V4) McDonald
et al. (2018). In an effort to keep only the most accurate
samples available, further filtration was performed to retain
only files containing over 5,000 sequence reads.

2.1.2 Process Into ASVs
Fastq files were then processed using the DADA2 pipeline
Callahan et al. (2016). In short, forward and reverse reads were
trimmed to 140 base pairs, and maxEE and truncQ were set to
2. Reads that matched the phiX contamination database were
removed Mukherjee et al. (2015). The error rates were then
learned from the data, and later the core sample inference
algorithm was applied to the filtered and trimmed sequence
data. We then merged the forward and reverse reads together
to obtain the full denoised sequences and removed any
chimeras from the data. Lastly, bloom sequences obtained
from the following link were removed: https://github.com/
knightlab-analyses/bloom-analyses/blob/master/data/
newbloom.all.fna.

2.1.3 Filter for Prevalence
After completing the quality filter and trimming steps in the
DADA2 pipeline, we created a sequence table. The entries in the
sequence table represented counts of the number of times the
sequence read was detected in each of the samples. In total, there
were unique 898,853 ASVs and 15,706 samples (merged forward
and reverse reads). However, many of these ASVs had low rates of
occurrence among the samples, so further filtering was done to
remove reads that were detected in 10 or fewer samples. Filtering
for blooms and prevalence reduced the size of our sequence table
from 898,855 ASVs to 48,279 ASVs.
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2.1.4 Calculate Co-Occurrence
Next, we created an ASV co-occurrence text file. Each line in the
file contained the full length ASV sequence of all ASVs in one
sample. The final file contained 15,706 lines, with one for every
sample. In essence, we could think of each sample as having a

specific sentence/catchphrase, and each line in this file contained
the catchphrase of one sample. However, instead of words, each
catchphrase was composed of the genetic sequences observed in
each sample. This is the format for input files to the GloVe
software (version 0.2). Pennington et al. (2014).

FIGURE 1 | Embedding a dataset. (A) Start with query dataset (sample by ASV counts) and an embedding transformation matrix (either from GloVe or PCA run on
the American Gut Project data). (B) BLAST ASV sequences from the query dataset against the sequences in the transformation matrix. Filter the BLAST output to include
only top hits (min E-value, max percent identity, and max alignment length) per query sequence. (C) Assign ids from BLAST hit column to query sequences. If there are
more than one best hit, split counts from original query sequence between all best hits equally. (D) Matrix multiply the query count table with the embedding
transformation matrix.
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2.1.5 GloVe Algorithm
The GloVe algorithm was then applied to our co-occurrence file
in order to create an embedding transformation matrix of a set
size Pennington et al. (2014). GloVe stands for global vectors for
word representation and is an unsupervised learning algorithm to
generate word embeddings from aggregated global word-word
co-occurrence data. When the algorithm is applied to ASV
sequences instead of words, the result is a vector
representation for each ASV in the set that represents co-
occurrence patterns. Cosine distances between vectors
represents probability of co-occurrence of the corresponding

ASVs. Short distances between sequences represent
higher probabilities of ASVs sharing co-occurrence patterns,
while greater distances represent lower probabilities of
sequences sharing co-occurrence patterns. Distances are
normalized by how frequently ASVs occur overall. The
algorithm was run three times with output vector sizes of 50,
100, and 250.

2.1.6 PCA Algorithm
The PCA transformation matrices were obtained using SVD
decomposition on the sample by ASV count table, and taking
the (VT) matrix. Prior to decomposition, ASV count vectors were
mean centered and scaled to have a variance of 1, to avoid issues
with heteroskedasticity. R/making_embedding_transformation_
matrix/make_PCA_transformation_matrix.py.

2.1.7 Creating BLAST Database for ASVs in
Embedding Database
The ASV sequences from the GloVe output were then used to create
a FASTA formatted file.We then used themakeblastdb functionality
of BLAST (Basic Local Alignment Search Tool) to generate a
database based on the nucleotide sequences in our FASTA file.
The database is used to check nucleotide sequences from other

TABLE 1 | Maximum E-value and minimum length of alignment that were
accepted in aligning sequences from each dataset to embedding
transformation sequences.

Dataset Max E-value accepted Min. Length of
alignment accepted

Halfvarson 3.72e-47 89
Schirmer 2.41e-86 133
M3 4.91e-125 129
Pilot 9.04e-122 110
Baxter 2.11e-133 110
Zeller 2.11e-133 121

FIGURE 2 | Predicting IBD: Model trained on AGP data and tested on Halfvarson data. (A): Models built using GloVe embedded data, PCA embedded data (50,
100, or 250 dimensions), or normalized ASV counts performance on training and testing sets. (B): Confusion matrices showing the distribution of correct to predicted
classes on the testing dataset.
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studies against our “embedding database” sequences. BLAST
database files can be found here: https://files.cgrb.oregonstate.edu/
David_Lab/microbiome_embeddings/blastdb_fullseq/.

2.2 Transforming Query Data Into
Embedding Space
Figure 1 shows the process implemented by the GMEmbeddings
package to transform any query ASV count table into
embedding space.

2.2.1 BLAST Alignment
To embed a query sequence table, we first created a
corresponding FASTA file for the ASVs in that study. We
then used BLAST to obtain all hits for each query sequence
against the sequences in the embedding database:

2.2.2 Filter BLAST Output
We filtered the BLAST hits to include only the top match per query
sequence (lowest E-value, highest percent identity, and highest
length of alignment). We kept matches with a maximum E-value
threshold of 1*10−40. Using a 97% similarity threshold, the
maximum E-value and minimum length of alignment observed

and accepted are available in Table 1. See R/making embedding
transformation matrix/scripts/filter blast hits.sh.

2.2.3 Relabel Query Sequence Ids With Respective
Hit IDs
We relabeled query sequences with their respective hits in the
embedding database. If the query sequence had only one top hit,
we replaced its label with the label from the embedding
database. If the sequence had multiple hits, we split its
counts evenly among all of the top hits. If the sequence had
over 100 hits that are all tied, it was dropped in an effort to
increase the specificity of the method. If a query sequence had
no hits, it was dropped. We also removed any sequences from
the embedding transformation matrix that were never included
as a top hit for any query sequence.

2.2.4 Matrix Multiplication
After the above processing, the column space of the query count
table matched the rowspace of the embedding transformation
matrix.We then took the dot product between the twomatrices to
obtain the embedded form of the query count table. In the final
embedded table, rows were samples and columns were
dimensions in embedding space. Ultimately, the embedded
form of a matrix represents the original samples transformed
into a mathematical space, taking into account the co-occurrence
patterns of ASVs across a population.

2.3 Machine Learning Process
We trained seven random forest models per dataset to predict
phenotype, one using normalized read counts, three using GloVe
embedded data at 50, 100, and 250 dimensions, and three using
PCA embedded data at 50, 100, and 250 dimensions.

Model feature spaces had to match between training and
testing sets, so some modification of feature spaces was required:

1) For the model on normalized read counts, we included only
the ASVs that were present in both datasets. We performed a
BLAST alignment between the query dataset and AGP
sequences using a 100% sequence similarity cutoff, and
assigned the ASV full length sequences from AGP to the
secondary dataset (similar to the process of embedding
without matrix multiplication). Only the best hits were
considered from the resulting BLAST alignment after
imposing the 100% similarity cutoff. Read counts from the
secondary dataset were split equally among all the tied best
hits in the AGP data.

2) For the models based on embedded data, we followed the
procedure outlined above in “Transforming Query Data into
Embedding Space”.

Prior to being fed to a machine learning model, all data was
normalized using an inverse hyperbolic sin function,
(sin−1(x) � log(x + (x2 + 1)1/2), which mimics the function
log(2x) almost exactly, except for behavior near 0. Below 1,
the log function returns a negative value, and is undefined at
0. In contrast, inverse hyperbolic sin does not fall below 0 when
the argument is low, and is defined as 0 at 0 Burbidge et al. (1988),

TABLE 2 | Performance metrics of models trained on AGP data and tested on
Halfvarson data using a 97, 99 and 100% sequence similarity threshold.
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Sankaran and Holmes (2019). This function allows log
transformation of counts without the addition of pseudocounts.

All models were trained entirely on one large dataset and
tested on an independent dataset, paired as follows (AGP:
Halfvarson, AGP: HMP2, M3: Pilot, Baxter: Zeller). Datasets
are described below. We used random forest predictive
models, and set maximum tree depth to the square root of the
number of input features and the number of trees to 100. Classes
were weighted inversely to their a priori probabilities in the
training dataset (pos_weight � N

Npos
). For example, if the

positive class is represented by 5% of the training samples, the
weight on the positive class for the training classifier is 20, and the
weight on the negative class is 1.

2.4 Metabolic Pathway Correlation
In order to interpret the dimensions that define embedding
spaces, we correlated each dimension in embedding space to all
prokaryotic metabolic pathways available in the KEGG
database Kanehisa et al. (2015). An infographic describing
the process is available in Supplementary File S1. First, we
created a binary pathway (ko id) by gene (KO id) table
describing which genes are present in which metabolic
pathways using the KEGGREST API in R (A). Then, we
created a matrix of gene (KO id) by ASVs by using

PICRUSt Langille et al. (2013) (B). We multiplied the
pathway by gene table (A) with the gene by ASV table (B)
to obtain an ASV by pathway table (C), where higher values
suggest a higher presence of a pathway in that organism. We
then calculated the Spearman correlation between all columns
of these two matrices to obtain a pathway by dimension
correlation matrix. These values can be used to interpret
dimensions in a biological context.

2.5 Test Dataset Descriptions
2.5.1 American Gut Project
In the American Gut Project (AGP) dataset, the majority of
samples come from participants residing in the United States (n =
6,634) and the United Kingdom (n = 2,071), with a small number
of samples generated from people living in other countries and
territories. Participants in the United States inhabit largely urban
areas (n = 7,317), with rural (n = 29) and mixed (n = 98)
communities (2010 U.S. Census data based on participant ZIP
codes) contributing in much smaller numbers. These participants
also span a wide range of ages, race, and ethnicity. The read length
of each sequence was around 150 base pairs which, when merged,
resulted in a read length of 250 base pairs.

In the present study, we used a subset of 15,709 samples that
were part of cohorts with > 50 samples in the consortium. These

FIGURE 3 | Predicting IBD: Model trained on AGP data and tested on HMP2 data. (A): Models built using GloVe embedded data, PCA embedded data (50, 100, or
250 dimensions), or normalized ASV counts performance on training and testing sets. (B): Confusionmatrices showing the distribution of correct to predicted classes on
the testing dataset. (full).
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samples contained a collective 898,855 ASVs. We removed ASVs
present in less than 10 samples, and 50,425 ASVs remained, each
253 base pairs in length.

2.5.2 Halfvarson
The Halfvarson dataset Halfvarson et al. (2017) consists of 683
samples taken from 118 patients at multiple timepoints.
Microbiome composition for each sample is ascertained by
sequencing the V4 region of the 16S rRNA gene for a total of
248 million 16S rRNA gene amplicons and a total of 38,513
unique amplicon sequence variants (ASVs) at a read length of
253 bp.

In the present study, we filtered to include only samples with
the diagnoses Crohn’s disease (CD), ulcerative colitis (UC), and
healthy control (HC). We used 608 of these samples from 118
patients (220 CD, 290 UC, and 54 HC samples). When
embedding using a 97% similarity threshold, 15,998 ASVs
(61%) from the Halfvarson dataset aligned to some read in the
embedding dataset (Supplementary File S2). Each query
sequence was aligned to a mean of 10.4 and a median of 2
embedding sequences (Supplementary File S3). These same
statistics applied to the PCA transformed data.

2.5.3 HMP2
The HMP2 study Lloyd-Price et al. (2019) follows 132 subjscts for
1 year to generate longitudinal molecular profiles.

In the present study, we used only the 16S samples from the
HMP2 study consisting of 197 samples taken from 83 individuals
sampled at multiple timepoints (111 CD, 44 UC, 42 HC). This
subsetted dataset contained a total of 5,869 unique ASVs at a
length of 253 bp. When embedding using a 97% similarity
threshold, 4,977 ASVs (85%) from the HMP2 dataset aligned
to some read in the embedding dataset (Supplementary File S2).
Each query sequence was aligned to amean of 7.8 and amedian of
2 embedding sequences (Supplementary File S3). These same
statistics applied to the PCA transformed data.

2.5.4 M3
The M3 dataset Tataru et al. (2021) consists of 432 total samples
from 72 age-matched sibling pairs. The pairs included one sibling
diagnosed with ASD and the other who is developing typically
(TD). The participants were between the ages of 2 and 8 years old.
Researchers recorded 331 diet and lifestyle variables for each
individual participating in the study. For each sample collected
there were an additional 100 variables detailing lifestyle and
dietary variables recorded. Samples were collected across the
United States. Before filtration, the average depth of reads per
sample measured 157,103 nucleotides (with a minimum of 23,321
and maximum of 996,530). The dataset contains a total of 5,265
ASVs (16S V4) at a length of 233 bp.

In the present study, all samples from the M3 dataset were
used. When embedding using a 97% similarity threshold, 4,555
ASVs (87%) from the M3 dataset aligned to some read in the
embedding dataset (Supplementary File S2). Each query
sequence was aligned to a mean of 2 and a median of 1
embedding sequences (Supplementary File S3).

2.5.5 Pilot
The dataset obtained from the Pilot study David et al. (2021)
contained 117 samples, of which, 60 were considered autism
spectrum disorder (ASD) and 57 were controls. The population
in the study consisted of age-matched sibling pairs between the ages
of 2 and 7 years old, where the siblings needed to be within 2 years of
each other. Of the 117 child subjects, there were 55 sibling pairs, two
sibling pairs accompanied by a third sibling with autism, and 5
singleton samples. Samples were collected from 24 states: California,
Colorado, Florida, Georgia, Hawaii, Illinois, Indiana, Massachusetts,
Maryland, Michigan, Minnesota, Missouri, North Carolina,
Nebraska, New Jersey, Nevada, New York, Ohio, Pennsylvania,
Tennessee, Texas, Utah, Washington, and Wisconsin. The dataset
contains a total of 1,664 ASVs (16S V4) at a length of 233 bp.

In the present study, all samples from the Pilot dataset were
used. When embedding using a 97% similarity threshold, 1,500
ASVs (90%) from the pilot dataset aligned to some read in the
embedding dataset (Supplementary File S2). Each query
sequence was aligned to a mean of 1.8 and a median of 1
embedding sequences (Supplementary File S3).

TABLE 3 | Performance metrics of models trained on AGP data and tested on
HMP2 data using a 97, 99 and 100% sequence similarity threshold.
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2.5.6 Zeller
The Zeller dataset Zeller et al. (2014) consists of three populations
of participants: 129 colonoscopy patients from a French hospital
(53 CRC, 42 adenoma, and 61 controls), 38 colorectal cancer
patients from a German hospital, and 5 healthy individuals living
in Germany. A subset of these participants were chosen for fecal
sample 16s sequencing by the original authors for stool 16S
sequencing.

The present study used 75 control and 41 CRC samples, and
this set of samples contained a total of 6,968 unique ASVs at a
length of 253 bp. When embedding using a 97% similarity
threshold, 5,581 ASVs (80%) from the Zeller dataset aligned to
some read in the embedding dataset (Supplementary File S2).
Each query sequence was aligned to amean of 1.2 and amedian of
1 embedding sequences (Supplementary File S3).

2.5.7 Baxter
The Baxter dataset Baxter et al. (2016) contains participants of ages
29–89 years with a median of 60 years. All patients were
asymptomatic and were excluded if they had undergone surgery,
radiation, or chemotherapy for current CRCprior to baseline samples
or had inflammatory bowel disease, known hereditary non-polyposis
CRC, or familial adenomatous polyposis. Colonoscopies were
performed and fecal samples were collected from participants in

four locations: Toronto (ON, Canada), Boston (MA, United States),
Houston (TX, United States), and Ann Arbor (MI, United States).

The present study used 314 samples, (187 control and 127 CRC).
When embedding using a 97% similarity threshold, 7,879

ASVs (88%) from the Baxter dataset aligned to some read in
the embedding dataset (Supplementary File S2). Each query
sequence was aligned to a mean of 1.33 and a median of 1
embedding sequences (Supplementary File S3).

2.6 Metrics
2.6.1 Precision
Precision is an indicator of a model’s performance and refers to the
number of true positives divided by the total number of positive
predictions. Total number of positive predictions can be found by
summing the number of true positiveswith the number of false positives.

precision � (truepositives)
(truepositives)+(falsepositives)

2.6.2 Recall
Recall gives indication of positive samples that the model has
missed. It is calculated by dividing the number of true positives
found by the model by the total number of positive samples that
could have beenmade. The number of possible positive samples is
the sum of true positives and false negatives.

FIGURE 4 | Predicting autism spectrum disorder: Model trained on the M3 dataset and tested on the Pilot dataset. (A): Models built using GloVe embedded data,
PCA embedded data (50, 100, or 250 dimensions), or normalized ASV counts performance on training and testing sets. (B): Confusionmatrices showing the distribution
of correct to predicted classes on the testing dataset.
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recall � (truepositives)
(truepositives)+(falsenegatives)

2.6.3 F1
The F1 score is the weighted average of precision and recall. It
takes both false positives and false negatives into account and tells
us a model’s performance on a dataset. A perfect model would
have an F1 score of 1.

F1Score � 2*(recall)*(precision)
(recall)+(precision)

3 RESULTS

From the sequence counts from the American Gut Project (AGP),
we created GloVe and PCA based embedding transformation
matrices at 50, 100, and 250 dimensions. We then projected the
sequence tables from six independent datasets, as well as that
from the AGP, into both GloVe and PCA spaces. We then trained
random forest predictive models to predict host phenotype using
microbiome data in one of seven forms (GloVe embedded at 50,
100, and 250 dimensions, PCA embedded at 50, 100, and 250
dimensions, and normalized ASV counts). For each phenotype of
inflammatory bowel disease (IBD), autism spectrum disorder
(ASD), and colorectal cancer (CRC), models were trained on
one dataset and tested on an independent set with no fine-tuning.

No other metadata about samples was included in addition to
microbiome data.

3.1 Inflammatory Bowel Disease Prediction
Random forest models were trained on the American Gut Project
data, then tested on both the Halfvarson and HMP2 datasets
Halfvarson et al. (2017), Lloyd-Price et al. (2019) to predict host
phenotype of “healthy control” vs. “inflammatory bowel disease”
which included Crohn’s disease and ulcerative colitis. On the
Halfvarson test dataset, models that used normalized ASV counts
(full) had a higher training performance but much lower testing
performance than any of the other methods, implying an overfit
model (Figure 2; Table 2). Similarly, while larger models using 250
dimensions generalized to a testing set less well (f1 = 0.68–0.71),
small models using only 50 dimensions were able to generalizemuch
more effectively (f1 = 0.9–0.95). GloVe and PCA embedding
methods exhibited largely similar performance, regardless of the
choice of sequence alignment threshold (Table 2, Supplementary
File S4).

On the HMP2 test dataset, a similar phenomenon emerged. The
full model trained well but failed to generalize well to the testing
dataset, and the larger embedding-based models performed less well
than smaller embedding-based models (Figure 3). Increasing
sequence similarity threshold resulted in removing more original
sequences (Supplementary File S3), and in this case, decreased
overall performance considerably (Supplementary File S5,Table 3).
There was similar performance between GloVe and PCA
embedding-based models when using a 97% sequence similarity
threshold, but PCA based methods maintained a higher
performance as similarity threshold increased, as compared to
GloVe based models (Supplementary File S5, Table 3).

3.2 Austism Spectrum Disorder Prediction
Random forest models were trained on the M3 dataset and tested on
the Pilot dataset (see Test Dataset Descriptions) Tataru et al. (2021),
David et al. (2021) to classify the phenotype of participants with autism
spectrumdisorder and their typically developing siblings.While the full
model outperformed other models during training, it obtained an F1
score of 0.56 in testing, while the GloVe_50, GloVe_100 models
obtained higher F1 scores of 0.67, 0.66 respectively (Figure 4;
Table 4). Increasing sequence similarity threshold improved the
performance of GloVe_250 and PCA_100 models, and did not
significantly effect other models (Supplementary File S6).

3.3 Colorectal Cancer Prediction
Random forest models were trained on the Baxter dataset and
tested on the Zeller dataset (see Test Dataset Descriptions) Baxter
et al. (2016), Zeller et al. (2014) to classify the phenotype of
participants with colorectal cancer vs. healthy controls. The full
model had higher training performance but failed to generalize to
the test set, and this trend repeated in the models built on more
features in both GloVe and PCA based models. The highest
performing models were PCA_50 and GloVe_50 with F1 scores
of 0.45 and 0.4 respectively (Figure 5; Table 5). Sequence
similarity threshold had little effect on final performance
(Supplementary File S7, Table 5).

TABLE 4 | Performance metrics of models trained on M3 data and tested on Pilot
data using a 97, 99 and 100% sequence similarity threshold.
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3.4 Metabolic Pathway Correlation
We correlated each embedding dimension with metabolic
pathway genetic potential obtained from KEGG and PiCrust
(See Methods). From this, we saw that dimensions all
correlate to some groupings of metabolic pathways but not
others (Supplementary Files S8–S13). This serves as a
starting point in interpreting the biological functions of
the otherwise mathematically defined dimensions in
embedding space.

4 DISCUSSION

16S studies often result in spurious associations between
specific ASVs and host phenotype due to necessarily small
sample sizes in comparison to feature spaces and the
treatment of ASVs as independent features Schloss (2018),
Ioannidis (2005), Fan et al. (2012). Embedding methods can
address these issues by defining a new feature space, which
can be thought of as combinations of ASVs, where ASVs are
considered similar if they share co-occurrence or co-
abundance patterns across a large dataset Pennington
et al. (2014). Applying embedding methods to smaller

datasets can increase the generalization of predictive
classifiers that use gut microbiome data, and may lead to
new insights about overarching microbial properties that
independent ASV counts do not otherwise reflect Tataru and
David (2020).

The embedding methods presented here are aimed to address
the curse of dimensionality caused by a large number of variables
(ASVs) measured across a relatively small number of samples.
Machine learning models with too many input variables can
easily overfit the training data, as observed with the normalized
count data in this study. In addition, having too many input
variables can saturate distance metrics, giving datapoints unique
feature subsets that cause them to all appear equidistant Bai
(2014). By reducing the dimensionality of the input data, we show
that models are able to learn generalizable microbial patterns of
disease and avoid overfitting on biomarkers specific to single
datasets.

In the datasets tested, 50 dimensions offered the best, most
consistently high performance on test set predictions. PCA-
based transformation obtained higher recall without
significant drop in precision as compared to GloVe-based
transformation, but, in these datasets, both obtained
considerably improved performance over the method of

FIGURE 5 | Predicting Colorectal Cancer: Models trained on the Baxter dataset and tested on the Zeller dataset. (A): Models built using GloVe embedded data,
PCA embedded data (50, 100, or 250 dimensions), or normalized ASV counts performance on training and testing sets. (B): Confusionmatrices showing the distribution
of correct to predicted classes on the testing dataset.
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using normalized ASV counts. In most datasets, increasing the
sequence similarity threshold did not affect generalizable
performance significantly, with the exception of the HMP2
dataset where increasing threshold decreased recall
significantly. This may be due to the relatively low number
of original sequences utilized in embedding under the more
stringent threshold.

4.1 Comparison to Other Work
Kubinski et al. tested machine learning predictive models
using a leave one study out cross-validation across 15 IBD
datasets that performed 16s sequencing on stool samples.
Their random forest models obtained average F1 scores of
0.72 across studies when using species level annotations
Kubinski et al. (2021). A study from Manandhar et al. also
obtained a similar F1 score of 0.74 on a hold-on test portion
of the American Gut Projet dataset Manandhar et al. (2021).
These performances are just below the IBD testing results
from this study using the Embed 50 and PCA50 models (F1 =
0.82–0.95) on HMP2 and Halfvarson datasets respectively.
Interestingly, a study from Hassouneh et al. that combined
metagenomic features (as opposed to 16s) and included 3
independent datasets obtained an F1 score 0.87, suggesting
that perhaps the integration of multiple datasets into the
training data combined with the use of non-amplicon
microbiome features may lead to increased accuracy
Hassouneh et al. (2021).

Wu et al. tested the predictive power of 16s microbiome
features in predictive autism by annotating OTUs from five
studies at the genus level, then applying a random forest
model. When training on one dataset and testing on another,
the models’ performance ranged from an F1 of 0.17–0.73 Wu
et al. (2020). In comparison, the best performing model in the
present study, GloVe_50, obtained an F1 of 0.68 on the
testing data. Though they did not report F1 scores, other
studies have reported surprisingly high values for area under
the receiver operating curve when predicting autism (AUC =
0.93 and 0.98)Ding et al. (2020), Dan et al. (2020). This
exceedingly high performance may be attributable to the
sampling strategy, where ASD participants were recruited
from the local hospital and typically developing participants
from local kindergardens.

Wu et al. created a classifier that used fecal microbiome
16s sequences as well as age, sex, and BMI to distinguish
patients with adenomas from colorectal cancer patients, and
obtained an F1 score of 0.72. Models with equivalent
hyperparameters and feature inputs trained on additional
datasets also obtained F1 scores of 0.77 and 0.72) Wu et al.
(2021). This is in line with the training F1 score obtained
from the full model in this study from the Baxter data (F1 =
0.86) but higher than the training scores obtained from
embedding methods (F1 = 0.58–0.68). Zhou et al. trained a
random forest classifier to differentiate CRC from healthy
controls using the same Baxter dataset presented in this
study, and obtained an F1 score of 0.41, which is in the
range of the F1 scores obtained here when testing the PCA50
model on an independent dataset (F1 = 0.43) Zhou et al.
(2021). Neither of these studies tested their pre-trained
models on independent datasets, so their true
generalization capacity remains untested.

4.2 Limitations
This study used only the American Gut Project data to form the
embedding transformation matrices. Integration of other,
independent datasets would likely make the transformation
process even more generalizable, especially to populations outside
the United States.

In addition, Dada2 processing of reads and error model
learning was performed on all the sequencing runs from the
American Gut Project simultaneously in order to obtain one set of
ASVs for all samples. This resulted in over 800,000 ASVs, most of
which were not present in more than 10 samples. Learning an
error model per sequencing run may have resulted in a lower rate
of chimeric ASVs, which may have seen higher presence across
samples Callahan et al. (2016).

While data transformed with either PCA or GloVe did
provide grounds for more generalizable models, the
interpretation of the learned representation remains a
challenge. We find that correlations between learned taxa
vector representations and metabolic pathway potential exist,
however, each dimension correlates to a mixture of pathways,
making direct implications difficult to conclude. In previous
work, we found that mixtures of phylogenetic signal are also
captured by learned dimensions Tataru and David (2020).

TABLE 5 | Performance metrics of models trained on Baxter data and tested on
Zeller data using a 97, 99 and 100% sequence similarity threshold.
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Utilizing other natural language processing methods for
dimensionality reduction like deep learning networks may
allow us to take advantage of other interpretation methods
like attention, saliency maps, or explanation generation to
obtain a more complete understanding of the system Sun
et al. (2021).

Lastly, the embedding matrices provided are specific to human
gut microbiomes as measured from stool–embedding matrices for
other biomes will be provided in future iterations.
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