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Regulatory T cells (Tregs) offer new immunotherapeutic options to control undesired
immune reactions, such as those in transplant rejection and autoimmunity. In addition,
tissue repair and regeneration depend on a multitude of tightly regulated immune and
non-immune cells and signaling molecules. There is mounting evidence that adequate
innate responses, and even more importantly balanced adaptive immune responses,
are key players in the tissue repair and regeneration processes, even in absence of
any immune-related disease or infection. Thus, the anti-inflammatory and anti-apoptotic
capacities of Treg can affect not only the effector immune response, creating the
appropriate immune environment for successful tissue repair and regeneration, but
growing evidence shows that they also have direct effects on tissue cell functions. Here
we summarize the present views on how Treg might support tissue regeneration by
direct control of undesired immune reactivity and also by direct interaction with non-
immune tissue cells. We describe tissue-resident Treg and their specific phenotypes in
skin, visceral adipose tissue, and skeletal muscle. In addition, we touch on the topic of
osteoimmunology, discussing the direct interactions of Treg with bone-forming cells, such
as osteoblasts and their mesenchymal stromal cell (MSC) progenitors—a field which is
under-investigated. We hypothesize a cross-talk between Treg and bone-forming cells
through the CD39–CD73-(adenosine)-adenosine receptor pathway, which might also
potentiate the differentiation of MSCs, thus facilitating bone regeneration. This hypothesis
may provide a road map for further investigations on the cross-talk between the immune
and the skeletal system, and also enable the development of better strategies to promote
bone repair and regeneration.
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Diversity of Tregs

Regulatory T cells (Tregs) are a specialized subpopulation of T cells that can control undesired
immune responses. They play a central role in maintaining homeostasis within the immune system,
including both innate and adaptive immune networks, and also regulate inflammatory processes as
those seen with tissue injury, transplant rejection, and autoimmunity.
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FIGURE 1 | Molecular mechanisms used by Treg for the suppression of immune cells.

As Tregs can function in secondary lymphoid organs, as well
as the periphery, specialized subsets with distinct molecular
mechanisms have developed with respect to these differing
microenvironments. The thymus-derived Treg (tTreg) or so-
called natural Treg is the dominant form of Treg, and shows
a high expression of the transcription factor forkhead box P3
(FoxP3), which is the master control gene of Treg function and
Treg development in the thymus (Hori et al., 2003; Roncador
et al., 2005). FoxP3+ Treg can furthermore be induced from naïve
conventional T cells (Tconv) in the presence of specific cytokines
and low amounts of antigens in the periphery (Furtado et al.,
2002; Apostolou and von Boehmer, 2004; Curotto de Lafaille et al.,
2004), to yield the so-called induced Treg (iTreg). However, only
tTreg express a demethylated region within the FoxP3 promoter,
which stabilizes their phenotype. Type 1 regulatory T cells (Tr1
cells) are another type of adaptive Treg produced in the periphery,
which express FoxP3 weakly, or not at all, but secrete IL10
and express granzyme B to kill myeloid antigen-presenting cells
(Groux et al., 1997; Magnani et al., 2011). All these Treg can
control the immune responses of different cell types with several
specific, partially overlapping mechanisms.

Nevertheless, tissue-resident Treg express different phenotypes,
chemokine receptors, and T-cell receptors (TCRs), depending
on their tissue location. The characteristics of tissue-resident
Tregs have been thoroughly reviewed elsewhere (Burzyn et al.,

2013a). Here, we summarize the phenotype and function of
the best studied tissue resident Treg. Characteristics of Treg in
skin, visceral adipose tissue (VAT), skeletal muscle tissue, and
solid tumor in non-lymphoid tissues are briefly described in
Table 1. These Treg promote the tissue repair process through the
control of immune responses of T cells and other immune cells
infiltrating the tissue (Figure 1), but also through the regulation
of some non-immune pathways. For example, VAT Treg express
peroxisome proliferator-activated receptor gamma (PPAR-γ),
which is mainly present in adipocytes as a “master regulator” of
their differentiation and glucose metabolism. VAT Treg can also
activate the scavenger receptor CD36 expression to take-up lipids
and promote adipogenesis, and PPAR-γ also interacts with FoxP3
to up-regulate Treg signature in vitro (Cipolletta et al., 2012).
In skeletal muscle, Burzyn et al. (2013b) found that a distinct
Treg population can potentiate the muscle repair process through
expression of the epidermal growth factor amphiregulin, which
acts directly on muscle satellite cells in vitro and improves muscle
repair in vivo in mice.

Homing and Accumulation of Tregs at Sites
of Injury

Tissue regeneration is not only influenced by Tregs residingwithin
the injured tissue, but also by recruitment of Tregs to sites of
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FIGURE 2 | A proportion of Treg express an effector-memory phenotype in healthy donors. (A) Proportions of Treg subsets in total Treg in healthy donors
(mean ± SD, n = 36, age 19–87 years). (B) A significant proportion of expanded naïve (TregN) and central-memory Treg (TregCM) converted into EM
(CD45RA−CD62L−) phenotype upon 3 weeks of expansion with poly-clonal stimulation in the presence of rapamycin and interleukin 2. The mean frequency of cells
expressing an EM phenotype is indicated for each cell type before and after expansion. (n = 5), paired t-test, taken from Lei et al. (2015) **p < 0.01.

TABLE 1 | Tissue resident Treg express different phenotype and function in different tissues.

Resident tissue % of local resident Treg phenotype and
characteristics

Treg function Reference
CD4 T cells

Skin 50–60% → Express effector-memory
phenotype → Express CCR10

→ Control inflammation and
keep immune homeostasis in
skin

Xia et al. (2014)

Visceral adipose tissue (VAT) >50% → Express CCR1, CCR2, CCR9 →
Secrete IL10 → Distinct TCR with
lymphoid-organ Treg → Express
PPAR-γ → Express CD36

→ Control CD4 and CD8 Tconv
in adipose tissue → Control
co-resident pro-inflammatory
macrophages and monocytes →
Regulate adipocyte differentiation
and promote Treg survival and
frequency → Take up lipids

Feuerer et al. (2009),
Cipolletta et al. (2012)

Skeletal muscle 50–60% → Up-regulate IL10 production →
Express amphiregulin → Skewed
TCR different with muscle Tconv
TCR

→ Control the switch of
pro-inflammatory to
anti-inflammatory response in
injured muscle → Act directly on
muscle satellite cells and improve
muscle repair

Burzyn et al. (2013a,b)

Solid tumor in non-lymphoid tissue 30–50% → Highly express CCR10, CTLA-4
→ Secrete immune suppressive
cytokines IL10 and TGF-β

→ On immune targets: facilitate
tumor growth → On
non-immune targets:
pro-angiogenic effect

Facciabene et al. (2011),
Tan et al. (2011)

injury, which can lead to a 30–60% increase in cell number
compared to local resident CD4 T cells. This is counterintuitive,
given that most circulating Treg in murine models express
the phenotype of naïve or central-memory T cells, which can
only home to lymphoid tissues via CD62L/CCR7. Nevertheless,
mounting evidence has been published that Treg can promote
the regeneration process directly in the tissue (Burzyn et al.,
2013b), potentially by homing facilitated by their heterogeneous
expression of the naïve/memory marker CD45RA, and some
homing receptors.

The recruitment of Treg from the periphery to various
non-lymphoid tissue is mainly associated with the following
consecutive/overlapping issues:

(i) Expression of chemokine receptors on Treg, like CCR6,
CXCR3, CCR4, CCR7, and CCR10 that support attraction
of Treg to the specific tissues and execute rapid intra-
tissue regulation (Grindebacke et al., 2009; Duhen et al.,
2012; Chow et al., 2015). We recently demonstrated that
about 10% Treg in the peripheral blood of healthy donors
and patients awaiting for kidney transplantation express an
effector-memory phenotype (CD45RA−CD62L−) allowing
migration into inflamed tissues without further activation
(Figure 2A). Upon in vitro expansion, a significant proportion
of both naïve (CD45RA+CD62L+) and central-memory
(CD45RA−CD62L+) Treg shift their phenotype into effector-
memory like (Figure 2B), which could facilitate further
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TABLE 2 | Coverage of the TCR repertoire by the top 20 clones in each
Treg subset repertoire as shown by next-generation sequencing.

Donor TregN (%) TregCM (%) TregEM (%)

D1 5.6 8.8 35.2
D2 2.9 15.7 38.5
D3 9.5 13.9 40.9
D4 2.7 8.1 30.3
D5 7.8 19.7 36.1
Median
(interquartile range) 5.6 (2.8–8.7) 13.9 (8.5–17.7) 36.1 (32.8–39.7)

migration of Treg into tissues when the expanded Treg
products are transferred into patients (Lei et al., 2015).

(ii) Exposure to tissue antigens can induce clonal expansion of
Treg, which could result in the increase of intra-tissue Treg
and bias of the TCR repertoire of Treg. Interestingly, we also
observed that effector-memory Treg express a biased and less
polyclonal TCR repertoire in the peripheral blood as shownby
next-generation sequencing (Table 2; Lei et al., 2015). These
data support the view that an (auto)antigen-driven expansion
of memory-effector Treg can contribute to the control of
intra-tissue inflammation/regeneration.

(iii) Exposure to tissue antigens in a tolerogenic environment can
also induce naïve FoxP3− Tconv to express FoxP3 and to
become iTreg.

(iv) The acquisition of the tissue-specific phenotype of tissue
resident Treg can facilitate their adaption and survival ability
in the tissue (Rosenblum et al., 2011; Burzyn et al., 2013a;
Lehtimaki and Lahesmaa, 2013; Gratz et al., 2014).

Interaction Between Tregs and Immune
Cells

Aside from the direct stimulatory effects of Tregs on tissue specific
cells with regenerative properties (e.g., muscle satellite cells),
Tregs can also impact tissue regeneration by modulation of local
inflammation after injury. The molecular mechanisms that Treg
use for the suppression of immune cells are shown in Figure 1. On
one hand, Treg can secrete several immunosuppressive cytokines
including transforming growth factor beta (TGFβ), IL10, and
IL35 to control the immune responses. Treg are also reported to
induce M2 macrophages, another key player in the tissue repair
and regeneration, partly thorough IL10 and TGFβ pathway (Liu
et al., 2011a; Weirather et al., 2014; Tan et al., 2015). On the
other hand, Treg also express several important molecules to
interact with other cells types and to counteract their activity
(Figure 1):

(i) Tregs express high amounts of CD25, the α-chain of IL2
receptor, leading to IL2 consumption and thus inhibition of
Tconv activation and proliferation (Baecher-Allan et al., 2001;
de la Rosa et al., 2004).

(ii) Tregs express CD39, an ectonucleotidase, that can facilitate
the crosstalk between Treg and CD73-expressing cells
to hydrolyze ATP (Schuler et al., 2014; Zhang et al.,
2015), which is released into areas of tissue injury upon

apoptosis of cells. The cleavage of ATP by Treg through
the ectonucleotidase CD39 (ATP → ADP/AMP) and CD73
(AMP → Adenosine) would result finally in adenosine
formation. Through adenosine receptor activation (primarily
adenosine receptorA2A) and subsequent intracellular protein
kinase A (PKA) activation by the second messenger cAMP,
inhibitory pathways in inflammatory T cells andmacrophages
are triggered (Deaglio et al., 2007).

(iii) Regarding the interactions of Treg with dendritic cells (DC)
and B cells, Treg express high amounts of the inhibitory
molecule cytotoxic T-Lymphocyte Antigen 4 (CTLA4), which
competes for binding to CD80/CD86 with the co-stimulatory
molecule CD28, thus decreasing the cross-talk between
Tconv and antigen presenting cells in vitro and in vivo. In
addition, Treg can also increase the expression of the enzyme
indoleamine 2, 3-dioxygenase (IDO) in DCs via CTLA-4
induced signaling, resulting in starvation of Tconv and arrest
of cell cycle, as IDO can catalyze degradation of the essential
amino acid tryptophan, and also induces iTreg generation
(Fallarino et al., 2003; Curti et al., 2007; Schmidt et al., 2012).

(iv) Granzyme, another important molecule expressed by Treg,
can facilitate the killing of responder cells in a perforin-
dependentmanner in human andmice (Grossman et al., 2004;
Gondek et al., 2008). It is also reported that the restraint of
NK cell cytotoxicity by Treg is related with both granzyme B-
perforin dependentmanner and the limiting of IL2 availability
(Cao et al., 2007; Gasteiger et al., 2013).

(v) The co-inhibitory molecule TIGIT, expressed by a distinct
Treg population, specifically suppresses proinflammatory T
helper 1 (Th1) andTh17 cell, but not Th2 cell responses (Joller
et al., 2014).

(vi) Treg can also induce target tissue cells to express molecules
like heme oxygenase 1 (HO-1), an enzyme that degrades
heme. Heme is released within post-trauma hematoma, and
acts as a pro-inflammatory mediator through activation of
toll-like receptor 4. Thus heme degradation can reduce the
inflammation dramatically (Blancou et al., 2011; Simon et al.,
2011). Moreover, heme degradation further results in the
formation of carbonmonoxide, iron, and biliverdin, and these
products also have cytoprotective and anti-inflammatory
properties (Soares and Bach, 2007), which can protect
endothelial cells to support angiogenesis as one of the first
steps of successful tissue repair (Street et al., 2000; Simon et al.,
2011).

Thus, the interaction between Treg and immune cells can create
an anti-inflammatory and anti-apoptotic immune environment to
promote successful tissue repair.

Bone Tissue Regeneration

As in other tissues, successful bone tissue repair depends on
a multitude of tightly regulated immune and non-immune
cells and signaling molecules. However, bone repair and
regeneration is becoming increasingly popular as a topic of
tissue regeneration studies, as bone is able to heal without
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scar formation. Better understanding of the interactions
between immune and bone forming non-immune cells will
continue to gain importance in an aging human population.
Both the skeletal and the immune systems undergo changes
with aging, affecting the specific cellular potential and the
interaction of both systems (Xing et al., 2010). A deeper
understanding of the positive aspects of Treg could be beneficial
for the emerging therapeutic needs of an aging population.
Thus, the new research crossfield of osteoimmunology, has
been created in recent decades (Takayanagi, 2009; Okamoto
and Takayanagi, 2011; Zhao, 2012; Greenblatt and Shim,
2013).

Mounting evidence has demonstrated that both adequate
innate, and balanced adaptive immune responses are necessary
for successful fracture repair, independently of any immune-
related disease or infection (Kolar et al., 2010; Reinke et al.,
2013; Sun et al., 2014), which implies a role for Tregs in bone
regeneration.

The tissue healing process has been divided into several
consecutive and overlapping processes, including inflammation,
repair and remodeling (Kolar et al., 2010; Schmidt-Bleek et al.,
2014). During the early phase of healing, when vessels are
disrupted upon bone fracture, coagulation forms a hematoma,
which is marked by low pH and hypoxia, a milieu not suitable
for most cells. The hematoma includes the immune cells
present in the blood upon clotting. These immune cells are
adapted to survive under the difficult conditions and remain
active (Buttgereit et al., 2000), secreting large amounts of
pro-inflammatory mediators, such as heme and cytokines like
interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα;
Street et al., 2000; Soares and Bach, 2007; Blancou et al., 2011;
Simon et al., 2011). This pro-inflammatory reaction determines
the beginning of the healing process (Kolar et al., 2010, 2011).
However, the timely termination of this pro-inflammatory process
is a prerequisite for the initiation of later regenerative phases
such as angiogenesis and onset of endochondral ossification
(Serhan and Savill, 2005; Schmidt-Bleek et al., 2012; Reinke
et al., 2013). Thus, the highly controlled pro-inflammatory and
anti-inflammatory phases generated by the immune system are
essential to create the appropriate conditions for successful bone
tissue repair. For many years research on this topic focused
on innate immunity only, however more recent data supports
the important role of the adaptive immunity in regeneration
as well.

Bone Homeostasis

Bone homeostasis is maintained by coordination between the
processes of bone formation managed by osteoblasts (OBs), and
bone resorption by osteoclasts (OCs). OCs derive from the
monocyte-macrophage lineage under the effect of macrophage
colony-stimulating factor (M-CSF) and receptor activator factor
of nuclear factor κB ligand (RANKL), which can bind with RANK
on OCs precursors. This interaction can induce the fusion of
OC precursors to form mature OCs. On the other hand, the
bone forming cells, OBs are derived from the bone marrow
mesenchymal stromal cells (MSCs) following different pathways

involving several key transcription factors like Core-binding
factor alpha1/Runt-related transcription factor 2 (Cbfa1/Runx2).
Moreover, OBs can regulate the activity of OCs through
expression of RANKL and osteoprotegerin (OPG), which can
oppose the RANKL/RANK interaction (Mori et al., 2013). Balance
between OBs and OCs is also heavily influenced by the immune
system, mainly mediated by cytokines. Many immune cells,
including T cells and B cells can produce RANKL to further
promote the differentiation of OCs. Other pro-inflammatory
cytokines like TNFα, interleukin 1 (IL1), IL6 and IL17 secreted
by macrophages, T cells, natural killer cells, and neutrophils
can also act on stromal cells to up-regulate the expression
of RANKL and potentiate OCs differentiation. TNFα is the
key player in the bone resorption as it can also inhibit the
differentiation and bone-forming activity of OBs. The effect
of IFNγ is rather weak in this process though it can also
inhibit OC differentiation by down-regulation of TNF receptor-
associated factor 6 (TRAF6). Additionally, the production of
anti-inflammatory cytokines like IL4, IL10, IL35 and TGFβ by
T cells, monocytes and different Treg can suppress synthesis of
pro-inflammatory cytokines and inhibit OC differentiation. The
effects of pro-inflammatory and anti-inflammatory cytokines on
the differentiation of OBs and OCs are summarized in Table 3
(Greenblatt and Shim, 2013; Mori et al., 2013; Feng et al.,
2014).

In addition, dual-specificity phosphatase 5 (DUSP-5)
is a phosphatase that specifically dephosphorylates both
phosphoserine and phosphotyrosine residues of MAPK to
suppress its activity. The over expression of DUSP5 in splenic
CD4 T cells can decrease the number of TH17 cells and
increase the frequency of Treg in mouse by modulating
their key transcriptional factor STAT3 and STAT5, which
was related to inhibited ERK activity (Liu et al., 2013; Moon
et al., 2014). These effects can further control exaggerated
inflammation and facilitate the tissue repair process. DUSP-
5 was also shown to down regulate pro-osteoclastogenic
molecules like RANKL, RANK, NFATc1, thus playing an
important role in keeping bone homeostasis (Moon et al.,
2014).

Interaction Between Treg and Osteoclasts

So far osteoimmunology research has mostly focused on the
interaction between Treg and OCs that are derived from the
hematopoietic system. OCs are reported to function as antigen-
presenting cells to activate CD4 T cells (Li et al., 2010).
Treg have been shown to suppress OC differentiation through
cell-cell contact via CTLA4, though IL4 and TGF-β were also
shown to be related, but not essential to the inhibitory effect
on osteoclastogenesis in vitro (Kim et al., 2007; Zaiss et al.,
2007; Axmann et al., 2008). Meanwhile, protection of local and
systematic bone destruction by Treg was observed in vivo (Zaiss
et al., 2010a,b), indicatingmultiple levels of cross-talk between the
skeletal and immune systems. Additionally, STAT5, an important
transcriptional factor for Treg, might be another interesting
modulator between OCs and Treg as it can negatively regulate
the bone-resorbing function of OCs by promoting Dusp1 and

Frontiers in Pharmacology | www.frontiersin.org September 2015 | Volume 6 | Article 1845

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Lei et al. Cross-talk between Treg and bone-forming-cell

TABLE 3 | Pro- and anti-inflammatory cytokines secreted during tissue repair.

Pro-inflammatory cytokines Cellular sources (immune system) Effects on bone cells (bone
resorption)

Reference

TNFα Macrophages, T cells, NK cells,
neutrophils, mast cells, B cells

→ Inhibit the differentiation and
bone-forming activity of osteoblasts
(OB) → Promote stromal cells to
express RANKL for OC
differentiation → Promote OC
differentiation directly

Charatcharoenwitthaya et al. (2007),
Reinke et al. (2013)

IL1, IL6 T cells, macrophages, monocytes Up-regulate RANKL to promote OC
differentiation

Greenblatt and Shim (2013), Mori
et al. (2013)

IL17 T cells (Th17) → Acts on stromal cells and OB to
up-regulate RANKL and OC
differentiation

Lubberts et al. (2005), Tucci et al.
(2013)

IFNγ NK cells, T cells → Inhibit OC differentiation by
down-regulating TRAF6 → Indirectly
effect TNF and RANKL expression
→ Block OB differentiation by
inhibiting induction of RUNX2, a
master regulator of OB differentiation

Takayanagi et al. (2000), Mori et al.
(2013)

Anti-inflammatory cytokines Cellular sources (immune system) Major effect on bone cells (bone
formation)

IL4 T cells (Th2), mast cells, B cells, stromal
cells

→ Inhibit OC differentiation →
Inhibition of LPS-induced
pro-inflammatory cytokine synthesis
→ Positively influence OB migration

Zaiss et al. (2007), Greenblatt and
Shim (2013), Schmidt-Bleek et al.
(2015)

IL10 Monocytes, T cells, type 1 regulatory T
cells

→ Inhibit monocyte/macrophage
and neutrophil cytokine production
→ Inhibit Th1-type lymphocyte
response → Block NFκB pathway

Shouval et al. (2014)

IL35 Regulatory T cells, regulatory B cells → Suppress the proliferation of
conventional T cells → Inhibit the
differentiation of Th17 cells

Egwuagu and Yu (2015), Sun et al.
(2015)

TGFβ Constitutively expressed in many cell
lines

→ Inhibit monocyte/macrophage
MHC class II expression →
Suppress proinflammatory cytokine
synthesis MHC class II expression
→ Suppress pro-inflammatory
cytokine synthesis

Schmidt-Bleek et al. (2015)

Dusp2 expression (Hirose et al., 2014). However, almost no data
are available on OBs.

Possible Direct Interaction Between Treg
and Osteoblasts and Their Precursors

Consistent with the interactions of Treg with other tissue cells
like adipocytes and muscle satellite cells, Treg may also directly
interact with bone-forming cells or their progenitor cells, the
MSCs. As MSCs are the progenitor cells for many tissue cells
(e.g., OBs and adipocytes) and use very similar suppression
mechanisms for immune responses as Treg, theymight havemore
intensive interactions (Glenn and Whartenby, 2014). Recently,
many groups have reported that administration of MSCs can
either increase the number and function of FoxP3+ Treg
in a Jagged-1 dependent manner, or convert FoxP3− Tconv
into FoxP3+ Treg (Chao et al., 2014; Obermajer et al., 2014;
Takahashi et al., 2014; Cahill et al., 2015; Cortinovis et al.,
2015; Wang et al., 2015). However, the effect of Treg on MSCs
is under-investigated. One group showed a positive effect on
healing upon administration of combined Treg and bone marrow

MSCs in a calvarial defect model in mice (Liu et al., 2011b),
although, the underlying molecular mechanisms have not been
revealed.

It is known that both Treg and MSCs use the CD39–CD73-
mediated adenosine-producing pathway to control inflammation.
However, the dominant tTreg population mainly expresses
CD39 (ENTPD1) rather than CD73 (NT5E), while bone
marrow-derived MSCs mainly express CD73 rather than
CD39 in human. We and others have shown that human Treg
produce adenosine upon contact with CD73+ cells (Saldanha-
Araujo et al., 2011; Schuler et al., 2014; Zhang et al., 2015).
Therefore, it is possible that Treg cooperate with MSCs to
convert ATP into adenosine. The resulting adenosine can signal
via 4 receptor subtypes: adenosine receptor A1 (ADORA1),
ADORA2A, ADORA2B, and ADORA3. Undifferentiated bone
marrow-derived MSCs mainly express ADORA2B. Various
receptors are important for particular differentiation outcomes.
ADORA2B is the essential receptor for MSCs differentiation
into OBs, enabling bone formation, while ADORA1 and
ADORA2A are more related with MSC differentiation toward
adipocytes (Gharibi et al., 2011; Trincavelli et al., 2014).
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FIGURE 3 | Hypothesized direct cross-talk between Treg and osteoblasts (MSCs). (i) CD39 expressing Treg may co-operate with CD73 expressing
osteoblasts (MSCs) to hydrolyze ATP to form adenosine, which can further bind to its receptor on osteoblasts (ADOR) to trigger the inhibitory pathways;
(ii) Treg may up-regulate IDO and HO-1 expression on osteoblasts; (iii) Treg play a role in the balance of RANKL/OPG, thus facilitating osteoblast differentiation.

Based on these facts, we hypothesize that Treg could act
directly on OBs through coordination of the CD39–CD73-
(adenosine)-ADOR pathway (Figure 3). This coordination
regarding purinergic signaling may also exist between Treg
and the tissue progenitor cells, which could potentiate the
differentiation of MSCs and thus facilitate tissue regeneration.
IDO and HO-1 induction by Treg on OBs may also be a result
of direct cross-talk between Treg and OBs (Oliveira et al.,
2006).

In addition, Treg may also play a role in regulating the ability
of OBs to express RANKL and secrete OPG, influencing thereby
the extent and degree of osteoclastogenesis. It is reported that
expression of CD40L on activated CD4 T cells can induce the
expression of RANKL and the suppression of secretion of OPG
to facilitate osteoclastogenesis. However, Treg can inhibit CD40L
expression on T cells very fast (Canavan et al., 2012; Lei et al.,
2015), thus the interaction between Treg and Tconv may regulate
the RANKL/OPG balance to favor OB differentiation and bone
formation. Nevertheless, Treg might also induce OPG production

by OBs directly in some other manner. The hypothesized
direct cross-talk between Treg and OBs (MSCs) are shown in
Figure 3.

Summary or Outlook

Taken together, Treg have been shown to be resident in various
tissues, with specific phenotypes and functions. They create
an anti-inflammatory and anti-apoptotic environment in these
tissues through the control of undesired immune activities mainly
caused by other immune cells, and thus facilitate the tissue
repair and regeneration process indirectly. Here, we hypothesize
possible direct cross-talk between Treg and OBs (MSCs), mainly
through purinergic signaling, which might also potentiate the
differentiation of MSCs, and facilitate bone regeneration. This
hypothesis may provide a model for further investigations on the
cross-talk between the immune and skeletal system, and enable
the development of better strategies to promote bone repair and
regeneration.
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