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Inspiratory flow limitation (IFL) is a critical symptom of sleep breathing disorders. A characteristic flattened flow-time curve
indicates the presence of highest resistance flow limitation.This study involved investigating a real-time algorithm for detecting IFL
during sleep.Three categories of inspiratory flow shape were collected from previous studies for use as a development set. Of these,
16 cases were labeled as non-IFL and 78 as IFL which were further categorized into minor level (20 cases) and severe level (58 cases)
of obstruction. In this study, algorithms using polynomial functions were proposed for extracting the features of IFL. Methods
using first- to third-order polynomial approximations were applied to calculate the fitting curve to obtain the mean absolute error.
The proposed algorithm is described by the weighted third-order (w.3rd-order) polynomial function. For validation, a total of 1,093
inspiratory breaths were acquired as a test set.The accuracy levels of the classifications produced by the presented feature detection
methods were analyzed, and the performance levels were compared using a misclassification cobweb. According to the results, the
algorithm using the w.3rd-order polynomial approximation achieved an accuracy of 94.14% for IFL classification. We concluded
that this algorithm achieved effective automatic IFL detection during sleep.

1. Introduction

Respiratory event identification is necessary for diagnosis
and treatment of sleep-disordered breathing (SDB), includ-
ing obstructive sleep apnea/hypopnea syndrome (OSAHS),
upper airway resistance syndrome (UARS), and snoring.
These three conditions comprise the entire SDB spectrum,
ranging from the most severe to the mildest [1, 2]. The
American Academy of Sleep Medicine states that a subject
may snore without apnea or hypopnea occurring. Several
studies [3–5] have demonstrated that UARS involves a milder
degree of upper airway obstruction than obstructive sleep
apnea (OSA). UARS is thought to occupy an intermediate
position between the two extremes. Before OSA occurs, most

patients experience the UARS stage [6]. Crucially, patients
with UARS may eventually progress to OSA if untreated [7].

Patients with UARS are characterized by upper airway
collapse (apnea-hypopnea index≤ 5 events per hour) ormore
than 30% of total sleep time with inspiratory flow limitation
(IFL) during sleep. In recent years, IFL events have been
recognized as a vital diagnostic tool for mild SDB [8, 9].
According to the Stanford Sleep Clinic scoring rule [10],
for diagnosing mild SDB, at least four successive breaths
must be characterized by an abnormal wave contour. Hence,
the identification of IFL is essential. Because IFL results
from a partial occlusion of the upper airway during sleep,
previous studies [3, 11] have reported that IFL events aremore
difficult to detect than sleep apnea and hypopnea events.
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Manual scoring of abnormal respiratory events is a time-
consuming task. A qualitative grading by visual inspection
is more demanding than merely identifying IFL cycles [12].
Therefore, achieving automatic IFL recognition is a crucial
task that necessitates resolution in clinical practice.

For automatic noninvasive assessment of IFL and related
changes in UARS or OSA, the recognition of both airflow
and intrathoracic pressure changes is required; this has been
described in previous studies [13, 14]. Various mathematical
approaches have been proposed for reliably classifying IFL
breaths using the esophageal pressure-flow relationship [2,
14–16]. Recently, several mathematical methods based on the
peak, flatness, and roundness of the flow-time curve have
been proposed for detecting IFL for autoadjusting positive
airway pressure (auto-PAP) devices [17–19]. The theoretical
considerations on the basis of which the relationship between
flow and time can be characterized using a polynomial equa-
tion are presented in [16]. They demonstrate that a 3rd-order
polynomial model is appropriate to fit an actual inspiratory
flow. On the basis of this study, we hypothesized that a
weighted polynomial approximation can effectively achieve
classification of IFL.

This study investigated a real-time feature extraction
algorithm for detecting IFL during sleep. We propose IFL
detection methods involving weighted polynomial functions
for IFL feature extraction. For comparative study, both the
flatness index (FI) method and polynomial approximation
were used for IFL detection. Vital insights into the ability
of the proposed methods to automatically detect IFL were
thereby obtained.

2. Methods

2.1. Data Collection and Signal Preprocessing

2.1.1. Development Set. To evaluate the potential feature
extraction metrics (or indicators) of IFL and to determine
the best cut points for each metric, a development data
set was obtained from previous studies [17, 20] Clustering
analysis was performed as described in the following section.
Aittokallio et al. (2007) classified inspiratory airflow wave-
forms as non-IFL (normal), IFL Level 1 (mild), and IFL
Level 2 (severe), which are labeled as “I,” “△,” and “×,”
respectively, in Figure 1 [17]. The data were collected from
normal male subjects, normal female subjects, and male
patients with OSAHS.The representative patterns of inspira-
tory flow shape were sorted into Classes 1–10, Classes 11–20,
and Classes 21–40 using cluster analysis. Aittokallio et al.
(2001) described seven categories, in which Classes 41–43
represented the classes with one, two, or three or more peaks;
Classes 41 and 47 differentiate the sinusoidal class and the
flat top flow limitation class; and Classes 44–46 provide
further differentiation of the single-peak shapes regarding the
presence and orientation of the flat part [20]. To quantify
the degree of the midinspiratory flattening of the flow-time
curve, we collected 47 classes of inspiratory flow shapes to
obtain typical and representative single-period waveforms.
These served as fundamental evidence of the extent of the
three major inspiratory flow waveforms and provided a basis

for estimation for characteristic analysis. Data created by
time inversionwere also collected.Thus, the learning samples
consisted of inspiratory flow shapes from 94 breaths andwere
used to tune the parameters of our proposed algorithm. The
distribution is illustrated in Figure 2(a).

2.1.2. Test Set. Thirteen volunteers with OSAHS were
recruited from the community. These volunteers underwent
full nocturnal polysomnography (Alice� 5 Sleep System
Advances Through Simplification, Philips) recordings using
EEG, ECG, EOG, EMG, and Spo2 derived at a sample
frequency of 256Hz at the sleep center of Taipei Veterans
General Hospital in Taipei, Taiwan. The study was approved
by the Institutional Review Board of Taipei Veterans General
Hospital, Taiwan (2012-11-001AC). Sleep stages were manu-
ally scored by experts using Rechtschaffen and Kales criteria.
Apneas and other respiratory events were scored by applying
standard criteria [21]. The respiratory signal was obtained
using a nasal cannula device at a sampling frequency of 20Hz
and a low-pass filter with a cut-off frequency of 2Hz was
applied. Because the frequency content of a flow signal is
located below 1Hz [22], the applied 2Hz filter can reduce
the signal noise from snoring. In this study, inspiratory flow
signals were used to detect flow limitation; the determination
and normalization of inspiratory cycles are essential for auto-
PAP devices. The procedure was as follows: (1) The actual
respiratory flow signal provided by the nasal cannula device
was recorded during sleep. Because breaths are connected in
inspiratory-expiratory pairs, the expiratory partswere filtered
to retain the inspiratory parts for IFL detection. The start
of inspiration was marked by a switch from negative to
positive flow (relative to the baseline). (2) Each inspiratory
flowwaveform amplitude was normalized to a range between
0 and 1. (3) Each inspiratory flow waveform duration was
normalized to an interval between 0 and 1, with a total of
100 points. All respiratory flowwaveforms were preprocessed
according to the previously described normalization process.

Respiratory event-related arousal (RERA) is believed to
be the characteristic event of OSA. Our test set was obtained
from 13 OSA subjects either with or without RERA while
sleeping. Their breathing cycles were analyzed as follows.
Polysomnography was applied for prescoring to detect each
subject’s breathing—for 150 seconds prior to RERA or a
nonrespiratory-event, and for 150 seconds subsequently,
thereby obtaining a section containing non-IFL and IFL
breathing cycles. A set of 2565 respiratory data was obtained
from the 72 sections collected during sleeping. Subsequently,
1093 respiratory data itemswere selected from the set through
subjective visual detection. Processing of visual detection was
conducted as follows. For the separate processing of the non-
IFL and IFL data, two physicians with more than 3 years of
clinical experience assigned levels of 1–3 in accordance with
their respective experience. We used three levels of certainty
in our interviews, namely, (1) strongly negative, (2) balanced,
and (3) strongly positive. The aim was to not exclude the
influence of subjective judgment. Each physician was asked
to judge the inspiratory flow following visual assessment and
to note the IFL degree as a certainty value. The percentage
of agreement was 89.3% between both physicians. The test



Computational and Mathematical Methods in Medicine 3

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12

Class 13 Class 14 Class 15 Class 16 Class 17 Class 18 Class 19 Class 20 Class 21 Class 22 Class 23 Class 24

Class 25 Class 26 Class 27 Class 28 Class 29 Class 30 Class 31 Class 32 Class 33 Class 34 Class 35

Class 37 Class 38 Class 39 Class 40 Class 41 Class 42 Class 43 Class 44 Class 45 Class 46 Class 47

Class 36

Figure 1: The 47 inspiratory flow data sets used in this study. Non-IFL (normal), IFL Level 1 (mild), and IFL Level 2 (severe) are labeled as
“I,” “△,” and “×,” respectively.
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Figure 2: Class distributions determined by the experts. (a) Development set. (b) Test set.

set created with classical non-IFL criteria consisted of 637
breaths and that with the IFL criteria consisted of 456 breaths
(IFL Level 1 (363) and IFL Level 2 (93)), resulting in a total of
1,093 breaths being obtained by strong positive certainty. The
distribution is illustrated in Figure 2(b).

2.2. Feature Extraction for IFL Detection

2.2.1. Flatness Index. A patented FI process [23] was used
to calculate the inspiratory flow of patients during sleep to
determine whether their respiration was abnormal. FI is used
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Figure 3: Comparison of the feature extraction methods for non-IFL (top), IFL Level 1 (middle), and IFL Level 2 (bottom). Curve-fitting
analysis shows the flow-time curve (dashed line) and the fitting curve (solid line). The residuals between 25% and 75% for the inspiratory
flow are indicated by the gray area. (a) FI. (b) First-order polynomial equation. (c) The order of the equation is increased to a second-degree
polynomial. (d) The order of the equation is increased to a third-degree polynomial. (e) The w.3rd-order polynomial approximation.

to treat SDB in various positive airway pressure devices [24].
It is calculated by the root-mean-square deviation from a
unit-scaled flow, which is computed over the middle (50%)
of a normalized inspiratory breath. A characteristic flattened
flow-time curve indicates the highest resistance and the
presence of flow limitation, whereas a rounded flow-time
curve indicates lower resistance and the absence of flow
limitation. A detected indication can acquire a value through
the FI formula shown in the following:

Flattening Index = ∑75%25% (𝑓𝑠 −𝑀)
𝑀 ∗ 𝐷 , (1)

where 𝑓𝑠 is the inspiratory flow signal, 𝑀 is the mean of the
inspiratory flow, and𝐷 is the number of breaths. In this study,
the value of𝐷 is 1 because the flow-time curve relates only to
a single breath. Flatness is determined by the absolute value of
variance between 25% and 75% for the inspiratory flow from
the average of all values in the same period. FI detects IFL
at 50% of the middle area of an inspiratory signal. A normal
inspiratory flow-time curve is rounded or quasi-sinusoidal.
For this reason, it is easy to determine whether an inspiratory
breath is normal or limited. Examples of FI detection are
shown in Figure 3(a).

2.2.2. Polynomial Approximation. To achieve rapid con-
vergence and efficiency, the Levenberg-Marquardt (L-M)
method was achieved for obtaining least-squares coefficient
solutions. The polynomial models were used to fit the
inspiratory flow data and to calculate the residues as feature
extraction. Using the residuals, a receiver operator curve was

produced to determine the threshold of non-IFL, IFL Level 1,
and IFL Level 2 classifications.

Polynomial Approximation. The inspiratory flow signal may
be in compliance with a 𝑘-order linear equation [16, 25, 26]:

𝑆 (𝑖) = 𝑎𝑘 ⋅ 𝑖𝑘 + ⋅ ⋅ ⋅ + 𝑎2 ⋅ 𝑖2 + 𝑎1 ⋅ 𝑖 + 𝑎0. (2)

The polynomial function 𝑆(𝑖) is of exact degree 𝑘 if it is of
degree 𝑘 and 𝑎𝑘! = 0, where the flow index has the following
mathematical representation:

𝑅 =
𝑦

∑
𝑖=𝑥

|𝑟 (𝑖)| =
𝑦

∑
𝑖=𝑥

|𝑆 (𝑖) − 𝐹 (𝑖)| . (3)

Here,𝑅 is the residual of feature extraction, 𝑟(𝑖) is the residual
of the 𝑖th data point for the total points, 𝐹(𝑖) is the measured
inspiratory flow, and 𝑆(𝑖) is the fitted response value. 𝑆(𝑖) is
a 𝑘-order linear equation; 𝑎0, 𝑎1, 𝑎2, 𝑎3, and 𝑎𝑘 are constants;
𝑥 is the starting point of the sampling points; 𝑦 is the ending
point of the sampling points; 𝑖 is each sampling point between
𝑥 and 𝑦; and 𝐹(𝑖) is the amplitude of the inspiratory flow at
the sampling point 𝑖.

Weighted Polynomial Approximation. For our proposed
method, the reference waveform may be in compliance with
a 𝑘-order weighted linear equation 𝑆(𝑖) wherein the feature
index has the following mathematical representation:

𝑅 =
𝑦

∑
𝑖=𝑥

𝑊(𝑖) × |𝑆 (𝑖) − 𝐹 (𝑖)| . (4)
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Here, 𝑅 is the residual of feature extraction and 𝑊(𝑖) is
defined as

𝑊(𝑖) =
{{{{
{{{{
{

𝐴, 𝑖 = 𝑥, 𝑦
𝐵, 𝑖 = max (𝐹 (𝑖)) ,
𝐶, others,

(5)

where 𝑆(𝑖) is the 𝑘-order linear equation, 𝑥 is the starting
point of the sampling points; 𝑦 is the ending point of the
sampling points; 𝑖 is each sampling point between 𝑥 and
𝑦; 𝑊(𝑖) is a weighting function; A, B, and 𝐶 are weighting
factors; and 𝐹(𝑖) is the amplitude 𝐴 of the normalized
waveform at the sampling point 𝑖.

Compared with the fitting effect of the 𝑘-order linear
equation, the 𝑘-order weighted linear equation can further
weight, for example, the starting point 𝑥 or the ending point
𝑦 of the normalized flow curve. This could adjust the end
points of the curve from the 𝑘-order weighted linear equation
and reduce the error caused by the end points. In this study,
the weighted 𝑘-order linear equation cites only the starting
and ending points. We suggest that the weighting factor “𝐴”
ranges from 50 to 100, “𝐵” ranges from 200 to 400, and
“𝐶” is 1. The default values of “𝐴” and “𝐵” are 50 and 200
units, respectively. The value of the weighting factors was
determined from the development set and it did not change
from patient to patient or breath to breath.

2.3. Statistical Analysis. A receiver operator curve (ROC)
was constructed for each index of feature extraction for the
development set, and cut points were chosen to optimize
the separation among the non-IFL, IFL Level 1, and IFL
Level 2 groups. Sensitivity, specificity, and accuracy were then
calculated. An optimal cut-off for separating subjects with
and without IFL was then selected for each index of feature
extraction to simultaneously maximize the sum of sensitivity
and specificity.The two “best” metrics (maximum area under
theROC)were chosen fromamong the evaluated indices.The
test set was then evaluated prospectively, using only the best
indices.

3. Results

3.1. Results of Accuracy Analysis. According to the curve-
fitting results, the flow-time relationships of breaths were
classified as non-IFL, IFL Level 1, and IFL Level 2, as shown
in Figure 3. The rapid convergence and efficiency were
conducted using the L-Mmethod tominimize the sum of the
residuals. In this study, IFL detection methods were investi-
gated, as shown in Table 1. The accuracy of the classifi-
cation of non-IFL, IFL Level 1, and IFL Level 2 in the
development set was evaluated through the area under the
curve (AUC) of an ROC. Predictions of AUC can be rated
as acceptable (>0.7), excellent (>0.8), or outstanding (>0.9).
Figure 2 shows the number of localities in each analyti-
cal class. The feature detection methods using the third-
order and the weighted third-order (w.3rd-order) polyno-
mial approximations demonstrated outstanding distinction
performance for IFL classes. The feature detection methods

using FI, the first-order polynomial approximation, and the
second-order polynomial approximation provided excellent
distinction for the IFL classes. According to the AUC shown
in Figure 4, the best cuff-off values were available to clas-
sify the three IFL categories, as presented in Table 2. The
experimental results of the development set are shown in
Table 3.The classification of the non-IFL part—excluding the
method of FI detection, which reached only 81.25%—could
be trained to 93.75% accuracy. In the classification of the
IFL Level 1 part, the detection methods using FI, the first-
order polynomial approximation, and the second-order poly-
nomial approximation could be trained up to only 70%
accuracy. In the classification of the IFL Level 2, excluding
the detection methods using the first-order and 2nd-order
polynomial approximations, all feature detection methods
could be trained to more than 96% accuracy. Overall, the
w.3rd-order polynomial approximation could reach 96.81%
accuracy; furthermore, the third-order polynomial approx-
imation reached up to 94.68% accuracy. Thus, we found that
the feature detectionmethods using the 3rd-order and w.3rd-
order polynomial approximations achieved much higher
accuracy than the other feature detection methods.

The results of test sets for the five types of feature detec-
tion methods are shown in Table 4. The overall classification
performance indicates that the feature detection method
using the w.3rd-order polynomial approximation achieved
the best accuracy (94.14%). Subsequently, the feature detec-
tionmethodusing the third-order polynomial approximation
achieved up to 89.66% accuracy. The FI feature detection
method achieved only 78.68% accuracy.The feature detection
methods using FI and the first-order polynomial approxima-
tion for non-IFL for the analysis of 1,093 breaths exhibited
high accuracy (96.70% and 98.90%, resp.), but the accuracy
for IFL classification was insufficient. Therefore, this result
displays poor recognition for IFL classification. Moreover,
IFL was unrecognized in the feature detectionmethods using
the first-order and second-order polynomial approximations,
which ultimately displayed accuracy levels of 29.75% and
27.82%, respectively. The sensitivity (true positive rate) and
specificity (true negative rate) for each classification are also
shown in Tables 3 and 4.

3.2. Comparison of Three-Class Classification Performance.
Cobweb representation is a method of performance assess-
ment for multiclass classification [27]. Using a graphical rep-
resentation in which each of the separate misclassifications
represents one corner on a polygon, a visualization is used
to analyze multiclass medical data [28]. In this work, cobweb
representation based on the total number of misidentified
breaths was used as comparative method of assessing three-
class classification performance.The proportion of accurately
classified and misclassified samples obtained from the test
set is presented in Table 4. The misclassified samples are
used in cobweb representation. A chance classification with
three classes represented with 1/3 (0.33) likelihood is given
in Figure 5. The likelihood is generally used to compare
the performance of any classifier with the chance classi-
fier in terms of misclassification rates. In this study, we
used cobweb representation to visualize the performance
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Table 1: Comparison of the area under the ROC curve (AUC). Predictions of AUC are considered acceptable (>0.7), excellent (>0.8), or
outstanding (>0.9).

Two-class FI 1st-order 2nd-order 3rd-order w.3rd-order
ROC (NIFL | IFL level 1) 0.838 0.934 0.856 0.953 0.948
ROC (IFL level 1 | IFL level 2) 0.906 0.822 0.884 0.998 1.000
ROC (NIFL | IFL level 2) 0.989 0.991 0.996 1.000 1.000

Table 2: Cut-off points of classification criteria.

Class\method FI 1st-order 2nd-order 3rd-order w.3rd-order
NIFL >0.175 >6.19 ≤1.17 ≤0.34 ≤0.87
IFL Level 1 >0.095 & ≤0.175 >4.54 & ≤6.19 >1.17 & ≤1.96 >0.34 & ≤1.02 >0.87 & ≤2.7
IFL Level 2 ≤0.095 ≥4.54 >1.96 >1.02 >2.7

Table 3: Overall classification results of the development set (𝑛 = 94). Accuracy, sensitivity = true positive rate (TP), and specificity = true
negative rate (TN) are considered.

Methods Measure NIFL IFL Level 1 IFL Level 2 Total

FI
% correct 81.25% 70.00% 96.55% 88.30%
Correct # 13 14 56 83
TP/TN 0.72/0.96 0.77/0.92 0.97/0.94 —

1st-order
% correct 93.75% 65.00% 68.97% 72.34%
Correct # 15 13 40 68
TP/TN 0.68/0.98 0.43/0.89 0.95/0.65 —

2nd-order
% correct 93.75% 40.00% 77.59% 72.34%
Correct # 15 8 45 68
TP/TN 0.56/0.98 0.40/0.84 0.96/0.72 —

3rd-order
% correct 93.75% 90.00% 96.55% 94.68%
Correct # 15 18 56 89
TP/TN 0.94/0.99 0.86/0.97 0.98/95 —

w.3rd-order
% correct 93.75% 90.00% 100.00% 96.81%
Correct # 15 18 58 91
TP/TN 0.88/0.98 0.95/0.97 1.0/1.0 —

Table 4: Performance results of the test set (𝑛 = 1, 093). Accuracy, sensitivity = true positive rate (TP), and specificity = true negative rate
(TN) are considered.

Methods Measure NIFL IFL Level 1 IFL Level 2 Total

FI
% correct 96.70% 50.41% 65.59% 78.68%
Correct # 616 183 61 860
TP/TN 0.77/0.93 0.75/0.79 0.97/0.97 —

1st-order
% correct 98.90% 29.75% 43.01% 71.18%
Correct # 630 108 40 778
TP/TN 0.70/0.97 0.68/0.73 0.93/0.95 —

2nd-order
% correct 88.85% 27.82% 69.89% 66.97%
Correct # 566 101 65 732
TP/TN 0.70/0.75 0.69/0.72 0.73/0.97 —

3rd-order
% correct 91.52% 85.40% 93.55% 89.66%
Correct # 583 310 87 980
TP/TN 0.98/0.89 0.84/0.93 0.66/0.99 —

w.3rd-order
% correct 93.56% 93.56% 96.77% 94.14%
Correct # 596 343 90 1029
TP/TN 0.98/0.91 0.89/0.97 0.94/0.99 —
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Figure 4: ROC integral curves for the analytical classes. Area Under Curve (AUC) describes the model performance. Predictions of AUC
are rated as acceptable (>0.7), excellent (>0.8), or outstanding (>0.9).
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Figure 5: Comparison of three-class misclassification rates for different feature extraction methods. The cobweb plot enables an intuitive
comparison of the misclassification rates. Each axis ranges from 0 at the center (no misclassification) and extends outward to 1.0 (100%
misclassification) and has been cropped from 0 to 0.5. For example, the axis “IFL Level 2→ IFL Level 1” refers to the percentage of subjects
whowere originally IFL Level 2 butmisclassified as IFL Level 1 using the feature extractionmethod.Theperformances of each feature obtained
from different methods are plotted in different colors. (a) FI, (b) w.3rd-order, (c) first-order, (d) second-order, and (e) third-order polynomial
approximations.

of three-class classifiers on the test set. The performance
evaluation shown in Figure 5 is a summary of the comparison
of all five feature detection methods. As shown in the figure,
the feature detection methods using the third-order and
w.3rd-order polynomial approximations exhibited favorable

performance. The six-dimensional points of the cobweb are
less than 0.1 and less than the chance classifier. However, the
feature detection method using the w.3rd-order polynomial
approximation is superior to that using the 3rd-order poly-
nomial approximation with respect to (IFL Level 1 → IFL
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Level 2)misclassification.We also observed that the detection
methods using FI, the first-order polynomial approximation,
and second-order polynomial approximation showed higher
accuracy than did the chance classifier in terms of (IFL Level
1→NIFL) and (IFL Level 2→ IFL Level 1) misidentification.

4. Discussion

Thedetection of IFL is important in clinical practice involving
SDB. Detecting the existence of IFL could not only verify
diagnoses of SDB but also enable the supply of urgent
airflow support to eliminate flow limitation and treat SDB.
This study demonstrated that a real-time feature extraction
algorithm based on previous feature classification and using
weighted 3rd–order polynomial approximation can effec-
tively identify IFL with a correction rate of up to 96.81%.
This is unequivocally helpful in managing SDB. Regarding
the automatic detection of the shape of airflow signals, auto-
PAP devices have been used for several years to correct
the flattened inspiratory flow in order and associate it with
subtle upper airway obstruction [29, 30]. Although auto-PAP
devices are costlier than standard continuous PAP devices,
they are useful for eliminating adverse respiratory events
and improving subjective restfulness in specific situations
such as home titration and detection of mouth leak. Auto-
PAP devices constantly monitor a person’s breathing and
adapt to the best pressure setting throughout the night.
However, auto-PAP technology relies on the determination of
obstructive events characterized by IFL, apneas, and snoring
to automatically adjust to different pressure settings. The
pressure adjustment between low and high ranges is key
to the success of auto-PAP devices in improving treatment
adherence in patients with SDB.

This study used two indicators—accuracy andmisclassifi-
cation—to assess classification performance. The main find-
ing of this study is that the feature detectionmethods using FI
and the first- and second-order polynomial approximations
are weak. In addition, the feature detection methods using
the third-order and w.3rd-order polynomial approximations
were compared. Although the classification results were
highly similar, the feature detection method using the w.3rd-
order polynomial approximation achieved superior classi-
fication accuracy to that achieved by the method using
the third-order polynomial approximation for IFL Level
1. In cobweb representation, the results reveal that the FI
method, first-order polynomial approximation, and second-
order polynomial approximation yield highly similar results.
All exhibit misclassification in the arm of [IFL1→ IFL2] and
[IFL1 → NIFL]. The reasons for this may be that (1) the
FI method and first-order polynomial approximation apply-
ing 50%–60% standard deviation of the IFL middle wave-
form as a characteristic value and (2) using the second-
order polynomial approximation can only indicate a turning
point. It may describe a non-IFL waveform but can describe
only the trend in the IFL waveform. That is, it cannot
act as effective data of flow-limited breath for improving
the classification. The second-order polynomial approxi-
mation is characterized by only one deflection. In other
words, it does not approximate as closely as the first-order

approximation (see Figure 3 for details). However, the third-
order polynomial approximation is expected to provide
a more accurate estimation of the flow-time relationship
than the second-order polynomial approximation does for
flow-limited breaths because it can be characterized by
two deflections. Moreover, a two-deflection relationship can
approximate the better measured flow-limited breaths in
Levels 1 and 2. Therefore, in this study, a polynomial approx-
imation combined with the weighted principal component
is presented as a more effective method for classifying IFL
waveforms. The polynomial approximation describes the
flow-limited breaths as well as fixing at both ends of the
data points and the maximum value with combination of the
weight of the principal component. The application of auto-
PAP to UARS is a suitable example of the effectiveness of
our algorithm in improving auto-PAP. Currently, all types of
auto-PAP devices are used in providing optimal ventilation
therapy to SDB patients in clinical treatment. The key to
effective treatment is firmware programming for assessing the
degree of upper airway resistance [31]. UARS is often ignored
in classical polysomnographic diagnostic approaches and
misdiagnosed as simple snoring or idiopathic hypersomnia.
There is still considerable disagreement on the type and level
of respiratory abnormality that must be used as a “cut-off”
for significant diseases (e.g., OSA syndrome and UARS).
In a previous study [32], auto-PAP titration was applied
to diagnose and treat patients with UARS to treat daytime
sleepiness or somnolence. A useful noninvasive predictor of
increased upper airway obstruction has been presented by
the evaluation of the inspiratory flow shape. As mentioned,
UARS is characterized by repeated arousal at night. However,
we know that decreasing upper airway resistance is effective
against UARS for patients treated with auto-PAP. The auto-
PAP machine could reduce arousal. Hence, it must be
assumed that the auto-PAP algorithm accurately detects the
presence of flow limitation. Our proposed identification and
classification of IFL can be used to facilitate the application
of auto-PAP in early treatment. We are confident that it is
easy to use and sufficient to detect IFL when using auto-PAP.
In summary, our algorithm can assist auto-PAP in providing
correct and effective pressure to prevent REMS or severe
respiratory obstruction.

Previous studies by Aittokallio et al. [17, 20] have
described an automatedmethod using inspiratory flow shape
clustering formonitoring the functioning of the upper airway
during sleep. In contrast, a reference training set for IFL data
using this summarization approach was successfully applied
in our work. This appears to be the first time that a reference
set has been used to develop a model for estimating IFL.
Furthermore, IFL shapes were classified into different levels
(non-IFL Level 1, IFL Level 2 (mild), and IFL Levels 3 and 4
(severe)) [18, 19]. In our study, the shapes of IFL were classi-
fied into just two levels. Mansour et al. [25, 26] demonstrated
a polynomial equation for determining flow limitation based
on the pressure-flow relationship. In the present study we
applied the w.3rd-order polynomial function using the flow-
time relationship. Several limitations should be considered in
interpreting our findings. First, the inspiratory flow shapes
were visually classified breath-by-breath on one occasion.The
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test set involved a low number of actual respiratory flow
shapes. The results of the sensitivity and specificity analysis
were not compared with other functions, such as the quad-
ratic function [25]. Finally, IFL with inspiratory snoring was
not included in the analysis data.

5. Conclusion

In conclusion, the third-order algorithm demonstrated high
performance for IFL detection. The w.3rd-order polynomial
function significantly improved the population and was
successfully applied for classification of severe IFL.This com-
parative study provides vital insights into the efficacy of auto-
matic detection of IFL for reducing mean airway pressure,
improving subjective sleepiness, and ensuring adherence to
treatment in patients with mild SDB.
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