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Abstract

We present a novel modification of genetic algorithm (GA) which determines personalized

parameters of cardiomyocyte electrophysiology model based on set of experimental human

action potential (AP) recorded at different heart rates. In order to find the steady state solu-

tion, the optimized algorithm performs simultaneous search in the parametric and slow vari-

ables spaces. We demonstrate that several GA modifications are required for effective

convergence. Firstly, we used Cauchy mutation along a random direction in the parametric

space. Secondly, relatively large number of elite organisms (6–10% of the population

passed on to new generation) was required for effective convergence. Test runs with syn-

thetic AP as input data indicate that algorithm error is low for high amplitude ionic currents

(1.6±1.6% for IKr, 3.2±3.5% for IK1, 3.9±3.5% for INa, 8.2±6.3% for ICaL). Experimental

signal-to-noise ratio above 28 dB was required for high quality GA performance. GA was

validated against optical mapping recordings of human ventricular AP and mRNA expres-

sion profile of donor hearts. In particular, GA output parameters were rescaled proportionally

to mRNA levels ratio between patients. We have demonstrated that mRNA-based models

predict the AP waveform dependence on heart rate with high precision. The latter also pro-

vides a novel technique of model personalization that makes it possible to map gene expres-

sion profile to cardiac function.

Introduction

Over the past half century, mathematical models of cardiac electrophysiology came a long way

in terms of complexity, precision, and the area of application. Recent advances in computa-

tional cardiac electrophysiology make clinical application of computer models possible due to

personalization of tissue geometry and fibers orientation [1]. However, while tissue-specific,

person-specific and pathology-specific gene expression profiles affect AP waveform and prop-

agation, these differences are usually not accounted for. The tissue-level simulations are usually

based upon the same averaged single-cell elements of the model.
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A number of publications utilized genetic algorithms (GA) to determine a set of cell

model parameters reproducing experimental AP [2–5]. GA apply evolutionary principles

to computational models aiming to find the optimal solution fitting experimental data. Ini-

tially, a number of model “organisms” with random parameter values are generated. After

that, the “selection” operator is applied to the first generation of models, passing the models

with higher values of fitness function to the “mating pool”. Usually, a fitness function is based

on the Euclidean distance, as a squared difference between model and experiment.Mutation
and crossover operators are then applied to the models in the mating pool. The former modi-

fies model parameters according to a probability distribution function. In the simplest GA

setting, the crossover operator exchanges the parameter values between organisms with a

fixed probability, however more complicated modifications of crossover operators, such as

Simulated Binary Crossover (SBX) were shown to improve algorithm performance [6].

Modified models are then passed to the next generation, new fitness function values are cal-

culated, and the same set of genetic operators is applied iteratively until desirable goodness

of fit is reached.

An obvious advantage of GAs is that these algorithms are perfectly parallel, making its paral-

lelization straightforward: the slowest part of the algorithm, fitness function, could be per-

formed independently for different organisms, while communication between tasks is limited

to a small array of parameters. However, effective implementation of GA requires modification

of genetic operators for each particular set of problems, which is often referred to as “no free
lunch theorem” [7]. One of the goals of the current study was to develop robust GA implemen-

tation making it possible to find the set of cardiac electrophysiology model parameters without

premature convergence to sub-optimal solution.

Another limitation of optimization algorithms as applied to electrophysiological models is

the absence of a unique solution. As was noted previously [8–10] same AP waveforms could

be reproduced by computer models with different sets of parameters, in other words, model

parameters are unidentifiable from the AP. Also, techniques combining stochastic pacing and

complicated voltage-clamp protocols have been recently proposed to overcome the problem

[4,8]. However, these techniques are limited to single-cell voltage-clamp recordings, which are

not feasible in clinical electrophysiology or whole heart and cardiac tissue measurements. The

aim of the current study was to develop a technique that would allow finding a unique solution

using optical, microelectrode, or monophasic AP recordings from cardiac tissue or whole

heart. To the best of our knowledge, this is a first study providing a technique suitable for opti-

cal recordings, where only normalized AP waveform is known, but not the exact transmem-

brane potential values. Arbitrary rescaling and shift of input AP waveform introduces a new

dimension to parameters identifiability problem mentioned above. A possible approach to

address this problem is to utilize so-called restitution property, which is AP dependence on

heart rate or pacing cycle length (PCL). For example, a reduction of the sodium current would

result not only in the reduction of the amplitude of AP, but also in change of the steady state

intracellular ionic concentrations and consequently, in changes of the restitution curve. Several

previous publications [2, 5] utilized restitution property for optimization of GA-based cardiac

models. For example, Syed et. al. [2] have used atrial AP waveform at several PCLs as input for

GA and paced every organism for 10 seconds before fitness function evaluation. As we demon-

strate below in the Final Algorithm subsection of the Results section, this approach results in a

poor convergence. We have identified two reasons behind this fact: firstly, intracellular con-

centrations require much more than 10 seconds to converge to a steady state; secondly, a

model with the particular set of parameters may converge to different steady states depending

on the initial conditions. In order to address these issues, we implemented a modification of

GA allowing optimizing parameters and searching for steady state in the slow variables space
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simultaneously. After each short simulation, variables are saved, modified by genetic operators
and reused as initial states for a new generation.

Finally, we verified the algorithm against the experimental optical AP recordings from

the human heart. Since we could not measure ionic channel conductivities directly, we used

the following assumption instead (Fig 1B): these conductivities should be proportional to

corresponding proteins mRNA level of expression as measured by either Cap Analysis of

Gene Expression (CAGE) [11] or RNA-seq. Thus, given that GA output model parameters

represent actual ionic channels conductivities, the model rescaled in correspondence with

mRNA expression profile differences between two patients, would reproduce AP restitution

properties of both patients. Moreover, we have to note that this approach (i.e. combining

GA with transcription profile) could be regarded as another technique of model personaliza-

tion. As we show below, GA signal-to-noise ratio (SNR) requirements are rather strict and

hard to accomplish in a clinical setting, while mRNA expression profile is possible to mea-

sure from tissue biopsy.

Materials and methods

Computer simulations

We used O’Hara-Rudy model [12] to simulate human ventricular cell electrophysiology. The

genetic algorithm (GA) is based on Bot et al. [3] (Fig 2A). Briefly: tournament selection was

used for selection operator, i.e. two individuals are selected at random from two copies of the

previous generation and the one with higher fitness function goes into the mating pool. Then

random organisms are selected from the mating pool to modify their parameter by crossover
(with a 0.9 probability) andmutation (with a 0.1 probability in the original algorithm, 0.9

probability in the modified algorithm) operators. Simulated binary crossover (SBX) [6] was

used with polynomial probability density function (PDF) of 10th order and 0.5 genewise swap

probability. Polynomial mutation with order 20 PDF was used in the original algorithm (see

below the modifications to mutation operator, that we used in this study). After that, worst

organisms in the mating pool are replaced by elite organisms (i.e. best organisms from the

previous generation) organisms and the same sequence is repeated for the next generation.

We introduced modifications to the algorithm (green-tinted boxes on Fig 1A) as described

below, while their beneficial effects on the algorithm are discussed in the “Results” section.

1. Input data. is steady state AP waveforms recorded at several PCL. The algorithm is opti-

mized for optical AP recordings, where absolute transmembrane potential (TP) values are

not known, and thus input data (both synthetic and experimental) is renormalized by the

algorithm prior to every fitness function calculation. The following technique was used for

renormalization. Firstly, input AP waveform is shifted along the time axis in order to super-

impose compared waveforms; in particular, half-maximum depolarization of the wave-

forms to be compared is used as a reference point. After that, input AP is rescaled: Vrescaled
= αV + β, where α and β coefficients are determined by the least-squares technique to mini-

mize the deviation between input and output AP. In order to discard subthreshold depolari-

zations some large error value was assigned to low-amplitude APs (see below “Fitness

function” subsection).

2. AP calculations. O’Hara-Rudy [12] model was simulated with a custom C++ code using

the Rush-Larsen integration technique [13] with an adaptive step as described in [12]. The

minimal time step was set to 5e-3 ms.

Since cell-to-cell interactions affect AP waveform (S1A Fig), we simulated 1D tissue instead

of a single cell when GA was applied to experimental data recorded from tissue. On the
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other hand, our simulations have shown that within the physiological range of conduction

velocities (CV), 20–100 cm/s, exact gap junction conductivity value does not affect AP (S1B

Fig). Therefore, during a GA run each model was simulated as 1D-tissue with 5 mS/μF con-

ductivity between cells resulting in CV of 27 cm/s. The AP was recorded from the central

cell of 30-cells long 1D tissue. We have found 30-cells long tissue to be sufficient to exclude

boundary effects on the central cell of the tissue in case of CV slower than 27 cm/s (S1A

Fig). 1D model simulations, while being less computationally expensive than 2D or 3D

models, correspond to a plane wave propagating in a 3D tissue at a significant distance

from the pacing electrode. Moreover, given that in a wide range of conductivities (S1B Fig)

exact AP waveform was essentially independent from gap junctions conductivity, we can

conclude that in case of a minor 2D or 3D wavefront curvature, additional perturbations by

diffusion operator would not affect AP waveform as well.

Fig 1. Genetic Algorithm (GA) and CAGE-based personalization block diagrams. (A) Genetic algorithm schematic diagram. Initially a set of

organisms is generated, each of which is determined by a random vector of scaling factors for optimized model parameters (step 1). For each organism

AP waveforms are calculated at several pacing frequencies (cycle lengths) and compared with the input APs (steps 3, 4). Organisms with the lowest Root

Mean Square Error (RMSE) value are saved and directly copied into the subsequent generation, replacing the worst organisms (orange arrow). State

vectors (intracellular concentration, gating variables etc) are also saved after each short simulation and reused as initial state during simulation in the

next generation. After selection (step 6) the fittest organisms form the mating pool are modified by SBX crossover and Cauchy mutation (step 7, 8).

Modified organisms move to the next generation (9). Process of AP and fitness function calculation, selection, crossover and mutation and elite

replacement is repeated until the stop criterion is fulfilled. The algorithm is based on [3], modifications of the original algorithm are highlighted by

green. (B) Algorithm verification with molecular (mRNA expression) and functional data (optical mapping). Patient 1 model parameters (MP1) were

determined by GA. Patient 1 parameters (MP1) were rescaled proportional to Patient 2/Patient 1 mRNA expression level ratio (CAGE2/ CAGE1) and

verified against functional data.

https://doi.org/10.1371/journal.pone.0231695.g001
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3. Fitness function. We used a Root-Mean-Square Error (RMSE) to evaluate how close is a

given organism AP to input data at particular PCL:

RMSEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

t¼0

½Vi
ref ðtÞ � V

i
modðtÞ�

2

s

;

where Vi
ref is a baseline TP, Vi

mod- is a TP of simulated AP, N—is a number of samples. The

fitness function was calculated as a weighted sum of SDi corresponding to different PCLs:

RMSEtot ¼
Xn

i¼0

wi � RMSE
i

where wi is a weight coefficient. Weights were taken equal for all PCLs unless otherwise

noted. In order to eliminate subthreshold depolarizations, APs with an amplitude below 30

mV were discarded, i.e. large RMSE value was assigned to these organisms. Since photon

scattering in the optical mapping setting is known to distort depolarization [14,15], initial

Fig 2. Model convergence to steady state. (A,B) The single-cell O’Hara-Rudy model was paced at 1Hz frequency for 1000 s, from different initial

intracellular concentrations (initial concentrations are listed on panel A). AP waveform on the 1st, 10th and 1000th beats are depicted by dotted, dashed

and solid lines correspondingly. (C, D) [Na+]i and [Ca2+]nsr concentrations change during the simulations. (E, F) Box-and-whiskers plots depict GA

output [Na+]i and [Ca2+]nsr concentrations distance from steady state values.

https://doi.org/10.1371/journal.pone.0231695.g002
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depolarization phase (below -20 mV) was removed from compared AP prior to RMSE

calculation.

4. Save state vector. Computational cost of pacing every organism at every generation until

reaching steady state during a GA run is prohibitively high. Thus, we saved each AP after a

short simulation. We used 9 stimulations before fitness function evaluation since we have

found odd number of stimulations helpful to exclude possible 1:1 alternans in the output

model: in the case of alternating APs, the waveform (and, consequently, RMSE as well) was

different every other generation. Thus, if alternating AP have a low RMSE value on genera-

tion N, the RMSE is going to increase on generation N+1. After that state vector (ionic con-

centrations, gating variables, etc.) are saved for each organism. These state vectors are used

as initial state in the next GA generation. As a result, each organism approaches closer to

steady state variables with every generation.

5. “Elitism strategy”. Since genetic operators tend to spoil a “good” solution, the best organ-

ism is passed to the next generation without any changes replacing the worst [16]. More pre-

cisely: elite organisms do participate inmutation and crossover as usual, but an “unspoiled”

copy is saved to replace the worst organisms in every generation. However, final state of

elite organisms on generation N are still reused as initial state on generation N+1, thus slow

variables get closer to steady state, while AP waveform and RMSE changes correspondingly

(see “save state variables” above). We have found that using a high number of elite organ-

isms (about 6–10% of the whole population) is optimal for our GA modification.

6. Cauchy mutation.

a. As was noted previously [17] Cauchy mutation in general results in better convergence

for functions with many local minima. Therefore, we modified the mutation operator to

use Cauchy distribution:

fXðxÞ ¼
c
p

g

ðx � x0Þ
2
þ g2

" #

where fX is a probability density of the distribution; x0 corresponds to unmutated param-

eter value; γ = 0.18�xO0Hara−Rudy is the half-width at half-maximum of the distribution (i.
e. PDF is half the maximum value, when x − x0 = γ); c

p
is a normalization constant result-

ing from a limited range of parameter values, varied between 0.01 � xO0Hara−Rudy and 4.0 �

xO0Hara−Rudy; xO0Hara−Rudy is original O’Hara-Rudy model parameter value. The particular

value of γ was chosen since test runs indicated best algorithm convergence in this case

(see S3A and S3B Fig).

b. Most commonly in genetic algorithms mutation operator is applied to each parameter

separately with some fixed probability [18], we have found that it has adverse effects on

algorithm convergence, because of the small probability to mutate several parameters

simultaneously. Instead, we choose a random unit vector in multi-dimensional parame-

ter-space and mutate the parameter vector in this direction. For example, in the case of

the two-parameter problem: if (
ffiffi
2
p

2
,
ffiffi
2
p

2
) unit vector was chosen, then both parameters are

going to be increased by the same amount after mutation. See also Fig 3 and the corre-

sponding Results section.

c. The initial values of the slow variables at each PCL (intracellular Na+ and network sarco-

plasmic reticulum Ca2+ concentrations) are included in parameters vector and mutated

as usual model parameters. The [Ca2+]NSR concentration was chosen, because significant
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amount of calcium is stored within SR when the cell is at resting potential. We did not

include potassium concentrations in the optimized parameters vector, since 10 mM

[K+]i concentration changes results only in approximately 2% Nernst potential change,

and thus a major concentration changes have a minor immediate effect on AP wave-

form. This technique allows the algorithm to reach the model steady state more effec-

tively (see corresponding part in the Results section). Note that intracellular

concentrations are different for different PCL, consequently, there are separate values

for each pacing frequency. Thus, when input data included 4 pacing frequencies the full

set of parameters was: gNa, gKr, gK1, gKs, PCaL, gto, gNaK, gNCX, gpCa, Jrel, Jup,

CMDN, CaMKII, [Na+
i]300 ms, [Na+

i]500 ms, [Na+
i]1000 ms, [Na+

i]2000 ms, [Ca2+
NSR]300

ms, [Ca2+
NSR]500 ms, [Ca2+

NSR]1000 ms, [Ca2+
NSR]2000 ms.

In order to verify the algorithm precision against synthetic data, simulated APs with an

arbitrary set of model parameters were used as input data. The input model was paced until

reaching steady state (1000 seconds) at several PCLs: 217 ms, 225 ms, 250 ms, 300 ms, 500 ms,

1000 ms, 2000 ms, unless noted otherwise.

Fig 3. Random mutation direction in multi-dimensional parameter space. (A) Vector mutation: random mutation direction choice, blue points

indicate parameter values after mutation. (B) Point mutation: each parameter value is mutated with fixed probability, which results in low probability to

mutate parameter value in diagonal direction. (C) RMSE averaged over all organisms of 9 GA runs plotted against generation number. Red and blue

lines correspond to point and vector mutations, respectively. (D, E) Objective parameters distribution for 9 GA runs with point mutation (red boxes)

and vector mutation (blue boxes). Dashed line corresponds to the input model parameter values.

https://doi.org/10.1371/journal.pone.0231695.g003
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Multidimensional data visualization

1. Principal Component Analysis technique was used to visualize convergence in multidi-

mensional parametric space (note, that slow variables where not used for PCA analysis).

Organisms parameters of p compared generations form a matrix X of sizem×np, wherem
is the number of organisms and n is the number of optimized parameters. According to the

principal component method, matrix X decomposed into a multiplication of two matrices

T (scores matrix) and P (loading matrix) plus residual matrix E:

X ¼ TPT þ E ¼ t1p
T
1
þ t2p

T
2
þ E;

where pi, (i = 1, 2) correspond to loading matrix rows, columns ti, (i = 1, 2) of matrix T are

Principal Components (PC) being the organisms parameters in the new coordinate system.

P is a transformation matrix from initial variables space to 2D space of principal compo-

nents. The first two principal components explained 75% of parameters variance in the Fig

4 and S2 Fig.

In order to estimate organism parameters convergence in the principal components space

we used Mean Cluster Error (MCE) and Standard Distance (SDist) metrics (S2A Fig):

a. Mean Cluster Error represent the distance between (x0, y0) point corresponding to pre-

cise solution (input model value) and (xc, yc) corresponding to cluster geometric center

calculated within a single generation:

MCE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0 � xcÞ
2
þ ðy0 � ycÞ

2

q

b. Standard Distance was used to estimate cluster size:

SDist ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðxi � xcÞ
2

n
þ

Xn

i¼1

ðyi � ycÞ
2

n

v
u
u
u
t

;

Where xi and yi are principal components of a given organism, (xc, yc) is the cluster geo-

metric center and n is the total number of organisms within a generation.

Donor heart procurement

All studies using human heart tissue were approved by the Institutional Review Board (Office

of Human Research) of the George Washington University. In total, for this study, we pro-

cured from Washington Regional Transplant Community in Washington, DC discarded

ventricular tissues from 14 deidentified donor human hearts, which were unsuitable for trans-

plantation. All hearts were arrested using the ice-cold cardioplegic solution in the operating

room and tissue was transported to the laboratory for dissection and electrophysiological

experiments.

For subsequent CAGE mRNA analysis left ventricular tissue samples were dissected, sub-

merged in RNAlater (Invitrogen) for 24 hours at 4˚C, and stored at -80˚ C until the extraction

of RNA. Tissue for RNA-Seq analysis was collected from the right ventricular (RV) tissue close

to the apical region. Total RNA was extracted from these samples using the RNeasy Fibrous

Tissue Mini Kit (Qiagen) according to the manufacturer’s instructions, from approximately 30

PLOS ONE Genetic algorithm-based personalized models of human cardiac action potential

PLOS ONE | https://doi.org/10.1371/journal.pone.0231695 May 11, 2020 8 / 31

https://doi.org/10.1371/journal.pone.0231695


Fig 4. Modified elitism strategy. Principal component analysis of convergence dependence on the number of elite organisms: 0% (red points), 0.3%

(blue points), 3.3% (green points) and 6.6% (purple points). Higher number of elite organisms results in the faster clusterization around the input

model parameters.

https://doi.org/10.1371/journal.pone.0231695.g004
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mg samples. At the end of the extraction, spin columns were eluted with the eluate to increase

the RNA yield. Total RNA concentration and purity were determined on an Eppendorf Bio-

Photometer D30. Acceptable purity, as quantified by both the 260/280 and 260/230 absorbance

ratios, was between 1.8 and 2.2. CAGE samples were also evaluated for integrity by electropho-

resis on 1.2% agarose gels with 0.25 μg/ml ethidium bromide. RNA-seq samples were evalu-

ated for integrity by Agilent Bioanalyzer, samples with RIN>7 were used for sequencing.

Optical recordings of action potentials

Human left ventricular wedge or right ventricular outflow tract (RVOT) preparations were

used for experiments, as described previously [19]. Briefly, wedges from the posterolateral LV

free wall perfused via the left marginal artery were dissected, cannulated, and mounted in a tis-

sue chamber with 4 surfaces (epicardium, endocardium, and the 2 transmural sides) facing 4

CMOS cameras of the optical apparatus [19]. For Human RVOT preparations, the left coro-

nary artery (LCA) and the right coronary artery (RCA) were cannulated to enable RVOT per-

fusion and the tissue suspended vertically in a bath to enable simultaneous dual-sided optical

mapping with 2 CMOS cameras. Preparations were perfused with oxygenated Tyrode solution

maintained at 37˚C, with a perfusion pressure of 60 to 80 mm Hg. The preparation was washed

with 2 L of Tyrode solution to remove excess transplant solution and restore basal electrophys-

iology. Tissue was immobilized by blebbistatin (10–15 μM) to suppress motion artifacts in

optical recordings, without adverse electrophysiological effects [20]. Di-4-ANBDQBS was used

to map transmembrane potential as described previously [21]. Platinum-iridium tipped bipo-

lar pacing electrode was placed on the epicardial surface. Optical action potentials were

mapped from�5×5 cm field of view from the 4 (LV) or 2 (RVOT) surfaces using 4 or 2

MiCAM05 (SciMedia, CA) CMOS cameras with high spatial and temporal resolutions

(100×100 pixels; sampling frequency, 1 KHz).

Cap-Analysis of Gene Expression (CAGE)

This study was done on RNA extracted from human tissues procured as described above.

After total RNA was extracted, as previously described, 5 μg of total RNA (260/280 2.0±0.01,

260/230 1.9±0.15, RIN 8.0±0.66) were submitted for 5’nAnT-iCAGE libraries preparation

according to standard protocol [11], sequenced and demultiplexed on Illumina HiSeq2500

High throughput mode (50nt single end). In silico processing of sequenced CAGE tags was

performed by using Moirai system [22]. This protocol includes quality control (fastx_trimmer:

-Q33, -l 47), N base, and rRNA trimming (rRNAdust v1.0) with subsequent alignment to the

human genome version hg19 through Burrows Wheeler Aligner (BWA). The median mapping

ratio was 0.88±0.02 and median depth of 11.7M. CTSS (CAGE transcription start sites) and

clusters of CAGE signal generated by applying python scripts: level1 and level2 [23]. The first

script generates CTSS (CAGE tag starting sites) files, where 5’ end of the mapped CAGE reads

are counted at a single base pair resolution. The second script performs signal clustering on

CTSS files with a minimum 10 TPM (tags per million) in at least one sample and minimum

distance between clusters of 20 base pairs. These resulted in median 1.27M of CTSS and 13.1K

of putative promoter regions, where ~12.1K overlap promoters from FANTOM5 [24]. Finally,

11612 predicted promoters were associated with 10355 genes through RefSeq and Ensembl

transcripts obtained from UCSC [25] by extending the searching area of its 5’ ends in ±500

base pairs. CAGE promoters for the key genes were manually curated by visualization in

Zenbu browser [26]. TPM normalized CAGE counts were submitted to edgeR package for R

for differential expression analysis according to the protocol [27].
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RNA-Seq analysis of gene expression

RNA sequencing was done at The George Washington Genomics Core facility. Library prepa-

ration was done with TruSeq Stranded mRNA Library Prep. Sequencing was performed on

Illumina NextSeq 500 with a target of 30,000,000 reads per sample using 2x75 cycle High-Out-

put kit. Raw reads were quality checked with FASTQC [28]. Trimming of the NextSeq

sequencing adapters was done with Flexbar. Read alignment to the human genome 19 and

transcript abundance were performed with Kallisto [29]. Summarization of the abundances

into a matrix for the downstream analysis was done with tximport [30]. Transcript normaliza-

tion was done with DESeq2 according to the published workflow [31].

Optical mapping signals processing

In 2 left ventricular preparations and 7 right ventricular preparations after collecting tissue

samples for CAGE optical APs were recorded from endocardial surface of the wedge. The tis-

sue was paced until reaching steady state (100 seconds) at 4 different PCLs. Unless otherwise

noted the PCLs used for recording AP waveform restitution were: 2000 ms, 1000 ms, 500 ms

and 300 ms. We observed some variation in AP waveform over endocardial surface, therefore

a single pixel recording with higher APD, upstroke velocity and overall signal-to-noise ratio

was chosen manually and used as input data for GA. Low-pass filter was not used, to avoid AP

waveform distortion. 60-Hz hum was removed with narrow band stop IIR Butterworth filter.

Ensemble averaging over a series of APs recorded from the same pixel was used to improve

signal to noise ratio (SNR).

Algorithm verification against mRNA expression profile

When GA was applied to experimental recording, we could not directly measure ionic channel

conductivities to verify the precision of GA output parameters. Instead, the following indirect

approach based on transcription profiling was used (Fig 1B). Genome-wide transcription pro-

file was measured via CAGE (for Patients 1–7) or RNA-Seq (for Patients 8–14) techniques as

described above. We assumed ionic channels conductivity to be proportional to TPM counts

(in case of the CAGE) or DESeq2-normalized counts (in case of RNA-Seq) of the mRNA

encoding the corresponding pore-forming subunit protein. In particular, we considered differ-

ences in SCN5A, KCNH2, KCNJ2, KCNQ1, CACNA1C, KCNA4, ATP1A1, SLC8A1, ATP2B4,

RYR2, ATP2A2, CALM1, CAMK2D genes to be represented in the model by INa, IKr, IK1,

IKs, ICaL, Ito, INaK, INCX, IpCa, Jrel, Jup, CMDN, CaMKII parameters correspondingly

(similar approach was used in [12]). Differences in these genes level of expression among

Patients 1–7 left ventricular preparations are shown in S4 Fig. In the case of CAGE group of

patients, functional data was not available for Patients 3–7, thus only Patients 1 and 2 were

used for algorithm verification. Patients 1 and 2 are highlighted by orange and grey colors in

S4 Fig. Patient 1 functional data from optical mapping was used as input for GA. Output

Patient 1model parameters (ionic channels conductivities) were rescaled proportional to

Patient 2/Patient 1 ratio of corresponding mRNA TPM. The resultingmRNA-based Patient 2
model was compared to Patient 2 functional data as described below in “Results” section. Simi-

larly Patient 8, 9 and 11 right ventricular AP waveform was used as input for GA, output

parameters were rescaled proportional to mRNA profile as measured via RNA-Seq technique

and compared to corresponding Patients 9–14 AP waveform recordings. Due to computa-

tional limitations, after preliminary analysis several patients available were excluded and not

used as input to GA. In particular, Patient 10 was excluded because of a very long depolariza-

tion time (see “Experimental data” subsection of the “Results” section for a brief discussion of

optical mapping artefacts affecting depolarization phase). Patients 12 and 13 were excluded
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because of the very short APD (below 300 ms, which indicated ischemia of the preparation).

Patients 12 and 14 were excluded due to low signal-to-noise ratio, while at high frequencies

alternans was also observed for Patient 14.

Results

Intracellular concentrations

The immediate consequence of using steady state AP waveform dependence on PCL as GA

input data is that output model AP should be steady state as well. The direct approach to the

problem is to pace every organism for a long time during a GA run. However, this solution is

computationally very expensive: successful GA convergence requires at least 100 organisms

and 100 generations [2,4]. On the other hand, arbitrary initial state of the model requires at

least 100 s to stabilize intracellular ionic concentrations. Moreover, given different initial state,

intracellular concentrations converge to different values [32], although this issue is very often

neglected in cardiac electrophysiology studies. Fig 2A–2D exemplifies the case. O’Hara-Rudy

model was paced as 1000 ms PCL from the following initial states:

1st state: [K+]i = 145 mmol, [Na+]i = 5 mmol, [Ca2+]NSR = 0.5 mmol

2nd state: [K+]i = 120 mmol, [Na+]i = 8 mmol, [Ca2+]NSR = 4 mmol.

Fig 2B shows that these differences may have significant effects on the steady state AP wave-

form: resting membrane potential (RMP) difference is 4.8 mV, AP duration difference is 15

ms.

Instead of the direct approach, we have evaluated the fitness function after a short run (9

stimulations at each PCL). The final state variables at each PCL are saved and reused as initial

state at the next generation (Fig 1A). However, given that the set of parameters minimizing

RMSE is itself a function of intracellular concentrations, this approach results in an optimizer

solving essentially a new problem every generation. Moreover, as shown above (Fig 2B–2D)

“fixed” initial state for the organisms should result in a “fixed” steady state that might be differ-

ent from input data. The solution that we propose in this study is to perform a simultaneous

search in the parametric and slow variables space, i.e. the initial values of slow variables were

added to parameters vector making them susceptible to mutation and crossover operators.

Why would this technique eventually result in concentrations converging to a steady state?

The rationale is the following: if given parameters vector results in an acceptable AP waveform

(i.e. close to the input AP), but far from steady state, then this solution is going to be discarded

eventually, since waveform is going to change after few beats. For example, if AP of particular

organism on generation N minimizes RMSE, but corresponds to one of the dotted lines in Fig

2B, then RMSE is going to be large for this particular organism on generation N+1 (i.e. after 9

beats, one of the dashed lines).

In order to test if this technique indeed results in a steady state we have run 9 GA simula-

tions. After that, the output models on generation 700 were paced for 1000 seconds. The

observed difference between GA output state and steady state is depicted in Fig 2E and 2F. The

output [Na+]i was 0.016±0.012 mM from steady state, the [Ca2+]NSR was 0.08±0.07 mM from

steady state. S5 Fig demonstrates additional GA tests with different numbers of beats prior to

fitness function. While using 5 or less beats increased output model distance to steady state,

the increased number of beats resulted in minor improvement of the output model.

As we demonstrate below, this simultaneous optimization still might halt algorithm conver-

gence after a number of generations; below we discuss several modifications to mutation oper-

ator and elitism strategy that improve optimizer performance.
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Mutation operator

The usual GA approach is to treat parameters separately by mutation operator, i.e. there is a

fixed probability to mutate each parameter [18]. As demonstrated in Fig 3B this approach

(“point mutation”) results in a low probability to modify several parameters at the same time.

RMSE dependence on generation number averaged on 9 GA runs (Fig 3C) demonstrate that

slow convergence similar to coordinate descent algorithm [33] resulting from “point mutation”
halts algorithm convergence after 100 generations. Therefore, in our GA implementation ran-

dom direction in parameter space is chosen by mutation operation and the whole set of

parameters is modified at the same time (“vector mutation”, Fig 3A) resulting in better conver-

gence (Fig 3C). Fig 3D shows that after 700 generations vector mutation estimates parameters

much better than point mutation: for example, the error is 3±3% vs 7±8% for IK1, 1.6±1.6% vs

5±5% for IKr, 4±3% vs 11±8% for INa.

Cauchy distribution is a “pathological” distribution with infinite variance and expected

value. As was noted previously [17] Cauchy mutation tends to generate offspring far away

from its parent. Consequently, it prohibits algorithm stagnation in local minima and generally

results in better convergence for multimodal functions. Fig 5A compares two sample runs of

GA with polynomial and Cauchy mutation. In case of polynomial mutation by generation 300

the whole population converged to a vicinity of a single solution that is different from input

model set of parameters (red line). We observed slow convergence on subsequent generations

simultaneous with slow intracellular concentration changes (compare to S6 Fig plotting corre-

sponding intracellular concentration changes of the best organism). In the case of Cauchy

mutation, every parameter except INaK converged to some vicinity of input model value by

generation 300. At the same time, we did not observe algorithm stagnation: note, for example,

the wide variation of IK1 and RyR parameters on generation 500. Consequently, we observed

more robust algorithm convergence in case of Cauchy mutation for model fitting to synthetic

AP data (Fig 5B). For example, the error of model parameters was 14±24% vs 17±75% for IKs,

11±25% vs 45 ±23% for Ito, 6±6% vs 13 ±15% for ICaL in GA runs with Cauchy and polynomial

mutation correspondingly. These results might imply that wider polynomial mutation would

result in better convergence as well. In order to test this assumption, we ran a number of GA

tests with different distribution parameters. As shown by RMSE dependence on distribution

parameters shown in S3 Fig, wider polynomial mutation did not improve the algorithm

convergence.

Elitism strategy

Genetic operators tend to spoil a “good” solution; therefore, best organisms are passed to the

next generation without any modifications [3,4]. We have found that given the wide paramet-

ric variation by Cauchy mutation in our GA implementation a large number of elite organisms

is required for fast GA convergence. While wide exploration of parametric space is required at

the initial stage of algorithm convergence, it is more effective to exploit the global minimum

once it was localized (see [34] for discussion on exploration and exploitation). This could be

achieved by a large number of elite organisms passing their parameters via crossover operator

to siblings after clustering around the same minimum.

Principal component analysis (PCA) comparison of sample GA runs (Fig 4A–4D) shows

that in case of higher proportion of elite organisms (6.6%) solution tends to cluster around the

precise solution at generation 100, while a GA run with 3.3% of elite organisms requires at

least twice the number of generations to converge the population to the same cluster size. As

further explained in S2 Fig high proportion (6.6% or 3.3%) of elite organisms results in the fast

reduction of the cluster size (Standard Distance of the population, S2C Fig). This reduction, in
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turn, allows to exploit the solution by the algorithm: mean cluster error (MCE) has a clear

trend after the reduction of the cluster size (S2B Fig), while MCE for the low proportion of

elite organisms (0% or 0.3%) follows random fluctuations. In other words, large number of

elite organisms result in two-stage optimization: initially the whole parametric space is

explored, but eventually a number of elite organisms converge to the same minimum attract-

ing the whole population to its vicinity and resulting in effective local optimization. Although

PCA plots did not account for intracellular concentrations (see Methods section) it could be

seen from comparison of S6 Fig (Cauchy mutation) and S2 Fig (6.6% elite) that actually con-

vergence to global parametric minimum (MCE and SDist reduction) is simultaneous with con-

centration changes to some vicinity of input model steady state value.

The requirement of a high number of elite organisms indicates that interbreeding via cross-
over operator does not necessarily result in improved results. In order to test whether crossover
operator is indeed essential to algorithm convergence we have ran 7 GA runs without the cross-
over. Indeed, as seen in S7 Fig, leaving out the crossover still results in decent convergence,

however some output parameters are much less precise, in particular the error is 100±50% vs

19±23% for IKs, 93±54% vs 32±25% for SERCA, 200±140% vs 26±14% for RyR.

Fig 5. Cauchy mutation. (A) Radar plots illustrating algorithm convergence in case of Cauchy (black) vs Polynomial (grey) mutations. Synthetic AP

with parameter values shown by red line was used as input data. Axes show parameters ratio to corresponding O’Hara-Rudy model [12] values. (B)

Objective parameters distribution for 9 GA runs with Polynomial mutation (red boxes) and Cauchy mutation (blue boxes). Dashed line corresponds to

the input model parameter values. All values shown correspond to the best organism on generation 700.

https://doi.org/10.1371/journal.pone.0231695.g005
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The RMSE dependence on the proportion of elite organisms to the whole population (S8

Fig). We observed slower algorithm convergence, when the number of elite organisms was

below 4% of the whole population. On the other hand, the increase of the proportion of elite

organisms above 10% typically resulted in algorithm stagnation after generation 100. Due to

random nature of the algorithm convergence, the convergence speed is susceptible to fluctua-

tions, but optimal proportion of elite organisms could be estimated as 6–10% of the whole pop-

ulation from S8 Fig.

Final algorithm

In order to test if the new algorithm narrowed down the solution range, we have compared

our algorithm with the original one [3] (Fig 6). We have re-implemented the original algo-

rithm by Bot et.al. using Sastry toolbox [35] with the following modifications to it. Firstly, each

organism was paced for 50 stimulations at every PCL, i.e. quasi-steady-state was used because

Fig 6. Comparison of presented algorithm precision to Bot et al. (A) Parameter scaling by the presented algorithm (blue boxes) as compared to

implementation of [3] (red boxes) after a long evolutionary run for 700 generations. Dashed line corresponds to input model parameter value. (B,C)

Output intracellular concentrations comparison between 2 algorithms.

https://doi.org/10.1371/journal.pone.0231695.g006
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it was computationally very expensive to reach actual steady state. Secondly, the normalized

AP waveform at 7 PCLs was used as input data. Finally, the least squares technique was used to

renormalize input data prior to fitness function evaluation as described in the Methods section.

As shown in Fig 6 our algorithm determined IK1 conductivity with 3±3% precision, IKr− 1.6

±1.6%, INa− 4±4%, ICaL—8±6% (vs. 17±17%, 11±10%, 16±15%, 86±94% error, respectively,

compared to the original algorithm). Membrane currents that did not have profound effects

on the AP waveform were less precise (IKs, Ito, INCX, INaK− 24±24%, 21±23%, 25±31%, 18±19%

error, respectively), however, precision was still better then original algorithm (56±69%, 46

±55%, 36±46%, 92±9%, respectively). Model parameters that did not affect AP waveform

directly (RyR, SERCA and CAMKII) were also determined with an error less than 69%: 25

±13% vs 25±32% for RyR, 25±22% vs 46±55% for SERCA, 14±16% vs 68±77% for CAMKII.

As shown in Fig 6B the modified algorithm output intracellular concentration are also close to

the input model precise values: for [Na+]i the difference was 0.2±0.6 mmol/l, while for [Ca2

+]NSR the difference was 0.3±0.2 mmol/l.

Input data requirements: Restitution information

In the results described above, input data was APs simulated at 7 different PCLs (see Meth-

ods section). However, in real experimental setting it is preferable to reduce the recording

time including the number of PCLs at which steady state AP waveforms are recorded. We

have tested GA performance, when input AP was simulated at limited number of pacing

frequencies. Particular PCLs we used to compare algorithm performance are listed in Fig

7A. We observed that for some parameters (Ito, SERCA: S9E and S9J Fig) single AP wave-

form recorded at 1000 ms was sufficient (i.e. algorithm precision did not increase when

more detailed restitution properties were used). Two extreme points on the restitution curve

(217 ms and 2000 ms) were required to determine IKr conductivity with 1.6±1.6% precision

(S9B Fig). The parameters most sensitive to the AP restitution are shown in Fig 7B–7F. It is

preferable to use full restitution curve (7 PCLs) for IKs, INa and ICaL. However, 4 points on

restitution curve still result in acceptable accuracy for all other parameters. While using con-

siderably different target parameter values would affect the results shown in this section, it

provides an estimate of the amount of restitution information required to determine identi-

fiable parameters. Consequently, we have recorded the AP waveform at 4 PCLs in the experi-

ments described below.

Input data requirements: Signal-to-noise ratio

The other inherent problem of experimental data that might spoil algorithm performance is

noise. To test how noisy data would affect the algorithm precision we have added Gaussian

noise to the input simulated AP. Sample AP waveforms with different signal to noise ratio

(SNR) are depicted on Fig 8E and 8F and S10 Fig. As expected, noise amplitude heavily

affected precision of the output parameters. As seen on Fig 8A–8D and S11 Fig 20 dB SNR

completely breaks down algorithm: for example, error is up to 100% for IKr and up to 227%

for IKs conductivities. 28 dB SNR, achievable in experimental setting gives better results: the

observed error is 1±2% for IKr, 6±3% for INa, 17±9% for ICaL, 23±11% for INaK. As also demon-

strated by histogram and probability plot on S12 Fig experimental noise in the optical mapping

setting is indeed close to Gaussian (see corresponding section of S1 Text for details).

Experimental data

GA was also tested with optical APs as input data (see Fig 1B and “Methods” section). We

observed some degree of APD heterogeneity in the most of human wedge preparations that we
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have optically mapped for this study. In particular, the Patient 1 APD80 was 314±63 ms (APD

map is shown on S13 Fig). One possible explanation of this heterogeneity is uneven perfusion

of the sample resulting in mild ischemia that shortens AP duration because of activation of the

ATP-dependent potassium channels IK,ATP. Since ATP-dependent potassium current was not

accounted for by the model, we have chosen an AP with the longest APD as and input to GA.

Fig 9A compares GA output model with input data. The Patient 1model faithfully reproduced

AP waveform dependence on the PCL, however, we observed some deviations between model

and experiment. The deviations between input data and the output model are listed in Table 1.

While RMSE is close to the noise level, and APD80 error did not exceed 14 ms, the difference

in the depolarization phase is very pronounced: (dV/dt)MAX was approximately 20 V/s for

input data, while for the output model it ranged from 55 to 80 V/s. This effect might be due to

photon scattering in optical mapping recordings [14, 15]. Photons emitted by fluorescent dye

undergo multiple scattering events and thus the recorded signal from a given pixel is actually

an averaged signal from thousands of myocytes. This effect is known to distort AP waveform

during depolarization when differences of membrane potential across the tissue are significant

due to propagation of wavefront of excitation. Thus, in order to reduce the effect of this experi-

mental artifact on the model, initial depolarization phase (below -20 mV) was removed from

compared AP prior to fitness function calculation (see also Methods section).

As described above in the Methods section, in order to verify output parameter values the

Patient 1model parameters were rescaled proportional to the ratio of mRNA expression levels

between Patient 2 and Patient 1. The technique is based on the assumption that ionic channels

Fig 7. Solution sensitivity to the number of input baselines. (A) Input model AP was recorded at several PCLs listed in the table. Larger number of

input baselines results in better algorithm performance. (B-F) Box-and-whiskers plots depict the parameters most sensitive to the changes in the

number of input baselines (IK1, IKs, INa, ICaL, INaK) at generation 700 of 8 GA runs. Dashed line corresponds to the input model parameter value.

https://doi.org/10.1371/journal.pone.0231695.g007
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conductivities are proportional to the mRNA counts (and, consequently, to the amount of pro-

tein being expressed) as measured by CAGE. If GA output parameters are close to actual con-

ductivities in ex vivo tissue sample, then a model with parameters rescaled proportionally to

the ratio of mRNA levels is going to reproduce another patients AP waveform. Thus, we have

compared rescaled Patient 2model to the optical mapping data recorded from the correspond-

ing heart. As shown on Fig 9B and Table 2 Patient 2model still faithfully reproduced AP wave-

form at every PCL, however, AP waveform error was more pronounced. Particular spots of AP

recordings for Patient 1 and Patient 2 are shown in S13 Fig.

Using a similar technique, we have reconstructed personalized models for other 5 patients,

AP waveform and restitution curves are depicted in Fig 9C and 9D. As noted above, functional

data was not available for these particular patients, but the variability between the models is

within physiological range [36]. Patient 5 and Patient 7 APD was too short (below 200 ms),

which is explained by the fact that mRNA levels of expression had the most extreme deviations

from median value in these patients. Patient 5 was an outlier in terms of ATP1A1, ATP2A2,

ATP1B3, ATP2C1, KCNJ5, KCNK3 genes. Patient 7 was an outlier in terms of ATP1A1,

ATP1B1, ATP1B4, CACNA1C, CACNA2D1, CACNA2D3, CACCB1, CACNB2, CALM1,

CALM3, KCNH2, KCNJ11, KCNJ3, KCNK1, KCNK3, CAMK2B, CAMK2D genes (see also S4

Fig). These deviations might indicate problems with heart preservation prior to tissue collec-

tion or undiagnosed heart diseases.

To further study the precision and limitations of mRNA-based rescaling, we have tested

this technique on a number of RV preparations. We have to note here, that while apical RV

Fig 8. Solution sensitivity to the input baselines signal-to-noise ratio (SNR). The input model AP waveform was distorted by Gaussian noise. (A)

Parameters dependence on the SNR is illustrated at generation 700 of 9 GA runs. Dashed line depicts the input model parameter value. (B) Sample AP

waveform at 28 dB and 20 dB SNR.

https://doi.org/10.1371/journal.pone.0231695.g008
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region was used for tissue collection and consequent transcriptome analysis, RVOT prepara-

tion was used for optical mapping studies. As seen on APD maps on Fig 10 in general we

observed shorter APD close to the pulmonary artery (upper half of the preparation). Given the

heterogeneity of the sample, we supposed the longer AP to represent typical RV tissue. Particu-

lar spot used for GA input is shown by red cross in Fig 10. As shown in Fig 11 and Table 3 the

GA output model reproduced the AP waveform and restitution.

Similarly to the case described above, we have rescaled GA-optimized RV model parame-

ters proportionally to mRNA expression ratios as measured via RNA-seq technique. Resulting

Fig 9. Algorithm verification. (A) Patient 2 (see text for details) model APs (red line) fitted by GA as compared to the optical APs (blue) recorded at

CL of 2000 ms, 1000 ms, 500 ms and 300 ms. (B) Patient 1 model was rescaled using mRNA expression data and compared to experimental APs (see Fig

1B). Personalized models based on mRNA expression data from 7 donor hearts ventricles demonstrate different AP waveform (C) and restitution

properties (D).

https://doi.org/10.1371/journal.pone.0231695.g009

Table 1. Patient 1 GA-optimized model error.

CL = 300 ms CL = 500 ms CL = 1000 ms CL = 2000 ms

Δ(dV/dt)MAX 38 V/s 53 V/s 34 V/s 58 V/s

RMSE 6.3 mV 4.0 mV 5.8 mV 3.8 mV

ΔAPD80 14 ms 3 ms 8 ms 3 ms

https://doi.org/10.1371/journal.pone.0231695.t001
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models did reproduce the experimental AP waveform and restitution. The comparison of

resulting Patients 9–11 AP waveforms with experimental recordings are given in Fig 10 and

Table 4.

As demonstrated by violin plots in Fig 11 the sample was very heterogeneous, thus mRNA-

based model reproduced an experimental recording from a particular spot of the preparation

(the particular pixel that was used for AP comparison is shown on APD maps in Fig 10). Violin

plots demonstrate that in the cases of Patients 8, 10 and 11 the distribution was bi-modal,

while mRNA-based model AP represents the longer mode of distribution. Since the apical RV

region was used for tissue collection, we hypothesize that the longer mode of the distribution

represents typical RV tissue, while the shorter mode represents RVOT-specific tissue.

On the other hand, as shown in Fig 10 (red AP) the rescaled models failed to reproduce the

experimental AP waveform for Patients 12–14. In the cases of Patients 12 and 13, the sample

was most probably ischemic, since APD was below 300 ms. In the case of Patient 14 the lower

half of the sample, that we hypothesize to represent typical RV tissue, was mostly very noisy.

Thus, the longer mode of the APD distribution might be obscured in this particular case.

Fig 10 also demonstrates GA-optimized models of Patients 9 (blue line) and 11 (green line)

as rescaled to all other RV preparations. Although GA-output models were relatively close to

input AP waveform (RMSE was below 7.4 mV for every AP waveform), the mRNA-based

rescaling failed to reproduce the other patients AP waveform. Table 5 lists the parameter values

for three variants of Patient 9model: GA-output model, and two transcription profile-based

models. It should be noted that in the case of GA-output Patient 11model the sodium current

is particularly low, resulting in subthreshold depolarizations of corresponding mRNA-based

Patients 9 and 10models. As mentioned above, this artifact is caused by slow depolarization

phase of optical signal, which resulted in low INa scaling parameter in this particular GA run.

It is also interesting that, as seen on Fig 10, AP for two models of Patient 9 are relatively close:

Patient 9GA-output model (blue line) and Patient 8 based model after parameters rescaling

(red line). However, parameter sets shown in Table 5 are very different, in particular INCX,

INaK and SERCA conductivities are 1.5–3.5 times higher in the latter case, while INa is 2.5 times

lower. Surprisingly, in this case, the GA-output model actually performed worse than the

mRNA-based model, the difference is most prominent at 250 ms PCL: in the former case

(Patient 9-based model) APD80 error was 26 ms, in the latter (Patient 8-based model) APD80

error was 3 ms. On the other hand, this difference resulted only in slight RMSE250ms difference:

5.7 vs 5.0 mV correspondingly. This implies high sensitivity of GA to AP perturbations that

was shown above by noise sensitivity analysis: GA-output model should follow experimental

AP waveform closely and minor experimental artefacts might cause major change in parame-

ter values. Patient 8 based models reproduced AP waveforms for 4 hearts, which indicates

model precision for this particular case. This is also in line with the fact that GA-output model

total RMSE was lower for Patient 8 than for Patient 9: 15.6 mV against 24.5 mV. It is also inter-

esting that despite major differences in parameters, models behavior was surprisingly similar

not only in the case of Patient 9, but also in a number of other cases. At least partially, this

could be explained by similarities in expression profiles: for example, differences between

Table 2. Patient 2 CAGE-based model error.

CL = 300 ms CL = 500 ms CL = 1000 ms CL = 2000 ms

Δ(dV/dt) MAX 69 V/s 64 V/s 47 V/s 36 V/s

RMSE 8 mV 12 mV 11 mV 16 mV

ΔAPD80 7 ms 4 ms 10 ms 9 ms

https://doi.org/10.1371/journal.pone.0231695.t002
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Fig 10. RVOT experimental recordings. Gray lines depict AP waveforms recorded from the wedge preparations. Experimental

waveforms are aligned to match the time corresponding to (dV/dt)MAX. Red lines correspond to Patient 8GA-output model with

parameters rescaled according to Patients 9–14mRNA profiles. Similarly, blue and green lines correspond to Patient 9 and 11 based

models correspondingly. The pixels of AP waveform recording that was used as input to GA is labeled by “+” symbols on APD maps.

The pixel of the recording that was used on Fig 11 to compare Patient 8 based models with experimental AP is marked by red x on

the APD maps.

https://doi.org/10.1371/journal.pone.0231695.g010
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Patient 11 and Patient 13 genes expression corresponding to IKr, IKs, Ito, ICaL, RyR and CaMKII

were less than 9% (see Table B in S1 Text).

Discussion

In this study, firstly, we have introduced a novel GA modification allowing one to personalize

cardiac electrophysiology models using steady-state AP recordings dependence on PCL as

input data. The algorithm modification is based on the idea that parametric optimization and

slow variables steady state search should be performed simultaneously for effective conver-

gence. Secondly, we have tested the modifications we introduced on synthetic action potentials

proving our modifications to be advantageous for overall algorithm performance. Finally, we

have tested the algorithm performance against cardiac optical mapping experimental data and

mRNA expression profile. The output parameters precision was confirmed by the observation

Fig 11. Patient 8 GA output model. Patient 8GA-output model (top left corner) comparison with experimental AP recordings. Red, green yellow and

blue lines correspond to AP recorded at 2000, 1000, 500 and 250 ms PCL correspondingly. The pixel of recording is shown on APD maps in Fig 10.

Model restitution curve (black line) is superimposed on violin plots depicting APD60 distribution in the wedge preparation. Other panels use the same

convention to compare Patient 8model rescaled according to RNA-seq data to Patients 10–12 AP recordings.

https://doi.org/10.1371/journal.pone.0231695.g011

Table 3. Patient 8 GA-optimized model error.

CL = 250 ms CL = 500 ms CL = 1000 ms CL = 2000 ms

RMSE 3.9 mV 3.2 mV 3.6 mV 5.0 mV

ΔAPD80 10 ms 1 ms 7 ms 7 ms

https://doi.org/10.1371/journal.pone.0231695.t003
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that mRNA-based models predict patients AP waveform and restitution. Essentially, a combi-

nation of GA with the mRNA expression measurements provides a novel technique for model

personalization.

The algorithm modification

Many different combinations of model parameters result in the same AP waveform. However,

these solutions are mostly non-steady state: AP waveform diverges from experimental in the

long run. Implicit steady state requirement allowed us to substantially narrow down the

parameters range. As shown above (Fig 7, S9 Fig), using AP waveform dependence on PCL as

input data further increased algorithm precision.

Reaching steady state for every organism is computationally very expensive. To solve the

problem, parameter search and steady state search are performed at the same time. Model gets

closer to steady state after a short simulation, after that final model state is saved, the fitness

function is evaluated, and parameters are modified by genetic operators. Next generation sim-

ulations start from new initial state bringing the model closer to steady state. If given solutions

Table 4. Patient 9–11 RNA-seq based models error.

CL = 250 ms CL = 300 ms CL = 500 ms CL = 1000 ms CL = 2000 ms

Patient 9
RMSE 4.9 mV 5.2 mV 3.7 mV 5.3 mV

ΔAPD80 3 ms 17 ms 5 ms 4 ms

Patient 10
RMSE 5.9 mV 5.4 mV 6.4 mV 5.7 mV

ΔAPD80 19 ms 4 ms 30 ms 13 ms

Patient 11
RMSE 4.9 mV 4.5 mV 4.3 mV 5.5 mV

ΔAPD80 4 ms 8 ms 9 ms 13 ms

https://doi.org/10.1371/journal.pone.0231695.t004

Table 5. Parameter values (relative to baseline O’Hara-Rudy model [12]) of Patient 9 models derived via GA or

via comparison of mRNA levels to reference patient.

Reference
patient

Patient 8 (mRNA-rescaled

model)

Patient 9 (GA-optimized

model)

Patient 10 (mRNA-rescaled

model)

IK1 0.457 0.283 0.618

IKr 1.226 1.002 0.806

IKs 0.149 0.143 0.306

INa 0.989 2.542 0.550

Ito 8.218 9.743 4.227

ICaL 0.606 0.830 0.405

INCX 2.991 1.772 1.459

INaK 4.136 1.220 3.353

IpCa 1.066 0.170 0.307

SERCA 4.690 2.227 3.436

CaM 10.112 3.762 1.739

RyR 0.825 0.690 0.470

CaMKII 0.163 0.211 0.902

https://doi.org/10.1371/journal.pone.0231695.t005
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of the optimization problem do not reproduce input data in steady state, then RMSE starts to

increase as the algorithm goes and these solutions are going to be discarded by the algorithm

eventually. Without further modifications this approach has two limitations: firstly, as demon-

strated in Fig 2A–2D steady state is dependent on initial state, thus single steady state for the

algorithm would fail to explore all the possibilities; secondly, the slowest variables still require

very long run (many generations) to approach steady state. In order to address these issues,

two slow variables: intracellular sodium concentration and sarcoplasmic reticulum calcium

load are treated as model parameters by the algorithm, i.e. mutation and crossover operator

are applied to these variables as well. As shown above beneficial byproduct of this approach is

that intracellular ionic concentrations are determined by the algorithm with relatively high

precision: for [Na+]i the error in the test runs was 0.2±0.6 mmol/l, while for [Ca2+]NSR the

error was 0.3±0.2 mmol/l. We have to note here, that several groups of researchers did observe

restitution hysteresis as well as alternans hysteresis [37, 38, 39]. Thus, we can hypothesize that

multiple steady states is an inherent feature of a myocyte that might be personalized by the

GA. On the other hand, living cardiomyocyte is a complicated dynamic system and ionic

channel conductivities themselves could change over the time [40].

Albeit premature convergence to local minimum of RMSE hinders the solution of the

optimization problem, it is preferable to exploit the vicinity of previously visited points once

global minimum is localized. This is accomplished in this study by a large number of elite

organisms. When elite organisms fall in some vicinity of RMSE minimum two scenarios

are possible. If given solution is far from steady state they are going to be either discarded

because of major variation of AP waveform in few generations (since these organisms are

not susceptible to modification bymutation). If slow variables are close to steady state, elite
organisms start to attract the population to the same vicinity. In the latter case, the whole

population is going to exploit the vicinity of the optimization problem solution, thus work-

ing as a local optimizer. As seen from the comparison between S6C and S6D and S2B and

S2C Figs intracellular concentrations and parametric convergence share similar dynamics

when ratio of elite organisms is high. On the other hand, it might be more effective to use

either classic gradient-based methods or Covariance Matrix Adaptation Evolution Strategy

[41] once global minimum is localized (i.e. when a number of elite organisms converged to

the same vicinity).

The convergence speed of the algorithm was improved by further modifications in the

mutation operator. We found that mutating each parameter with a fixed probability (referred

to as “point mutation” above) resulted in a single parameter being modified by mutation oper-

ator (Fig 3B). This kind of descent is very slow in 27-dimensional parameter space (parameters

include intracellular concentrations at each PCL) and usually stopped convergence after about

100 generations (Fig 3C). Instead, we chose random direction in multidimensional parameter

space and mutated parameter in this direction using Cauchy distribution, resulting in better

algorithm performance (Figs 3 and 5).

It is worth noting that all these modifications to GA essentially make the algorithm similar

to particle-based algorithms. For example, multivariate jumps are used by Particle Swarm [42],

Covariance Matrix Adaptation Evolution Strategy [41] and Cuckoo Flight [43] algorithms.

The last one uses “pathological” distribution similar to Cauchy mutation for Levy-flight walk.

Although it would be very interesting to compare these algorithms performance with GA

modification proposed in this study, some custom modifications to the aforementioned algo-

rithms are still required: as was noted above same AP waveform could be reproduced by differ-

ent parameter sets [8]. In order to narrow down the output parameters range, not steady state

solutions should be somehow automatically discarded by the algorithm. This kind of extensive

benchmarking is beyond the scope of the current study.
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The algorithm verification against synthetic data

Test runs indicate that resulting algorithm evaluates the most important model parameters

(IK1, IKr, INa and ICaL) with high precision (Fig 6). However, low amplitude ionic currents and

parameters affecting calcium transients were much less precise. We further tested the algo-

rithm sensitivity to noise to find that 20 dB SNR breaks the algorithm, while SNR above 28 dB

has minor effects on algorithm performance (Fig 8). Another point should be discussed in

this regard: while the algorithm is relatively stable, SNR requirements are quite strict. It was

possible to achieve 28 dB level noise in ex vivo optical mapping experiment; however, it still

required some post-processing: hum removal and ensemble averaging in particular. These

strict requirements might hinder algorithm application to clinical recordings prone to artifacts

distorting the signal. As discussed below a combination of GA with mRNA expression profile

could help to solve the problem of model personalization using clinically-measurable data.

The algorithm verification against experimental data

We did not measure ionic channels conductivities in this study, thus we could not directly ver-

ify algorithm output parameters precision against experimental data. Instead, we used an indi-

rect approach based on the following strong assumptions. Firstly, we assumed that given ionic

channel conductivity should be proportional to corresponding proteins mRNA expression

level. One thing to note here is that actual ionic channel is assembled from several proteins.

For example, cardiac sodium channel is assembled from pore-forming subunit encoded by

SCN5A gene and auxiliary subunits encoded by SCN1B and SCN2B genes [44]. The situation

is more complicated in the case of IK1, which is most likely a heterotetrameric complex assem-

bled from proteins encoded by KCNJ2, KCNJ4 and KCNJ12 genes in any combination [45].

Thus, our second assumption was that a single pore-forming subunit level of expression could

predict ionic channel conductivity. If these assumptions hold and if GA output parameters

correspond to actual ionic channels conductivities in one patient, then model of another

patient model could be reproduced by simple rescaling of the conductivities.

Indeed, two-patient comparison of LV preparations have shown that mRNA-rescaled

model reproduced Patient 2 AP waveform at every PCL (Figs 1B and 10). We have undertaken

more extensive study on RV preparations that demonstrated that Patient 8GA output model

reproduced AP waveform and restitution in three cases (Patients 9–11) after parameters rescal-

ing (Fig 11), however it failed to reproduce the AP waveform for 3 other patients (Patient 12–
14) (Fig 10). One possible reason standing behind this fact is poor perfusion of the wedge prep-

aration resulting in the activation of ATP-dependent potassium current. Indeed APD80 was

below 300 ms for Patients 12 and 13. Another possible reason is the heterogeneity within the

right ventricle that we observed in all RVOT preparations (Fig 10). Since different regions of

the ventricle were used for tissue collection and optical mapping, expression profile might not

correspond to optically mapped RVOT region. This heterogeneity also explains why models

shown in Fig 10 tend to overestimate the APD. In order to exclude possible effect of ATP-

dependent shortening of AP, we have manually chosen the recording with the longest AP as

GA-input. On the other hand, probable local tissue damage at the site of recording might result

in an opposite effect, i.e. downregulation of K-channels [46] prolonging the APD.

In the Fig 10 and Table 5 we also demonstrate that minor changes in AP waveform may

result in major changes of parameters values. Despite the differences in Patients 9-11-based

models, in some cases the AP waveforms and restitution were very similar. Consequently, this

imposes a limitation on the GA-output model: it has to follow experimental data very closely

and perturbations of experimental AP waveform are likely to spoil algorithm performance. In
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our opinion, this fact also implies that the modifications we introduced to GA were crucial to

the successful gene expression-based prediction of AP waveform.

As was noted previously [47] modern cardiac models coalesce multiple studies performed

on different species, using different experimental conditions. Moreover, given the complex-

ity of modern models, it is possible to describe particular dataset using different parameters

[8–10] (see also Table 5 and Fig 10). These facts leave us with questions: even if the model

describes the particular dataset underlying it, what is the predictive capability of computer

simulations? Is it possible to extrapolate model predictions to different clinical or experi-

mental conditions? For example, it is possible that the model description of a particular

ionic current is imprecise, but other model components are instead tuned to counterbalance

this imprecision. In this case, the model components rescaling would most probably upset

the balance and result in model failure to predict AP waveform. In this study, we have

shown that it is possible to use computational model to map expression profile to cardiac

function and predict actual AP waveform (Figs 9–11). This fact makes a point not only in

favor of particular GA-output parameters set, but also indicates the underlying computa-

tional model precision.

Our results also indicate that it might be possible to reconstruct the personalized model of

in situ heart using a similar technique, i.e. transcription profile in combination with GA. In

some cases (for example, post heart transplant patients) ventricular biopsy could be justified,

and tissue samples might be obtained from the patient’s heart. In these cases model parameters

could be recovered from an ex vivo heart experiment via GA, then another in situ personalized

model could be rescaled using measured mRNA levels. Another possible implication of the

provided technique is drug effects investigation. For example, ionic channel blockers often

affect several ionic currents. Using GA to measure the effects of a drug provides a cheaper

way to recover several ionic currents dose-response curve simultaneously then the patch-

clamp technique.

Limitations

The output conductivities of high-amplitude ionic currents were very precise; however, algo-

rithm performance was much less accurate for important model parameters affecting calcium

transients, RyR and SERCA in particular. Using multiparametric optical mapping [48] as

input data could probably further increase algorithm precision, however, this question is

beyond the scope of the current study.

We have observed a large number of factors that affect GA output values: strict SNR

requirements, possible ischemia or heterogeneity of the preparation. Thus, additional mea-

surements are still required to control the GA output parameters precision. Patient 11-model

appears to underestimate the sodium current and consequently Patient 11-based models failed

to depolarize in half of the cases. Patient 9-based model seem to overestimate APD and, conse-

quently, in half of the cases it was impossible to pace the model at the fastest frequency (Fig

10). This implies the imprecision of Patients 9 and 11 GA-output parameter values.

We used a rough approach for mRNA-based personalized models: ionic channel conductiv-

ity was taken proportional to a single gene level of expression. Mostly we used the pore-form-

ing protein for this purpose. More precise approach would require one to account for auxiliary

subunits affecting ionic channels voltage-dependence.

Supporting information

S1 Fig. Tissue effects. (A) Comparison of a single cell AP waveform (red line) and AP wave-

forms recorded from a central cell of a 1D string of cells, tissue size was varied, CV was�27
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cm/s in tissue simulations. (B) Comparison of AP waveforms recorded from a central cell of a

100-cells long (1 cm) string of cells with variable gap junctions conductivity.

(TIFF)

S2 Fig. Clusters characteristics: Mean Cluster Error (MCE) and Standard Distance (SDist).

(A) Mean cluster error (distance between the center of each cluster and reference value) and

Standard Distance (plotted as a radius of dashed circle, measures the size of a distribution).

Cluster mean centers are shown by numbers I (corresponding to 0% of elite organism, red

points), II (0.3% of elite organism, blue points), III (3.3% of elite organisms, green points), IV

(6.6% of elite organisms, purple points). (B) MCE dependence on generation number for each

cluster. Purple and green clusters rapidly shift to the exact solution neighborhood and remain

there until the GA termination, while red and blue clusters don’t converge to the reference

value. (C) SDist dependence on generation number for each cluster. Purple cluster size

decreased approximately 8 times after a hundred of generations. Red and blue clusters size

decreased 2.6 times after 500 generations.

(TIFF)

S3 Fig. Polynomial and Cauchy mutations with different distribution parameters. (A) Best

organism RMSE dependence on the γ parameter of the Cauchy distribution on generation 700.

(B) Cauchy distribution probability density function dependence on the γ parameter. (C) Best

organism RMSE dependence on the η parameter of the polynomial distribution on generation

700. (D) Polynomial distribution probability density function dependence on the η parameter.

(TIFF)

S4 Fig. CAGE measured mRNA-expression profiles for Patients 1–7. The mRNA expression

level measured in 7 donor hearts. Only genes used for rescaling model parameters are shown.

Outliers were determined by IQR method. Colors correspond to APs and restitution curves

shown in Fig 9.

(TIFF)

S5 Fig. [Na+]i and [Ca2+]nsr distance from steady state values dependence on number of

beats per generation.

(TIFF)

S6 Fig. Dynamics of [Na+]i and [Ca2+]nsr concentration. (A, B) Best organism intracellular

[Na+]i and [Ca2+]nsr concentrations averaged over 9 GA runs plotted against generation num-

ber. Dashed line in both panels corresponds to input model concentration values. (C, D) Intra-

cellular [Na+]i and [Ca2+]nsr concentrations taken from one of the GA runs.

(TIFF)

S7 Fig. Convergence without crossover. Best organism parameter values on generation 700 of

GA runs with (blue boxes, n = 6) and without (red boxes, n = 6) crossover operator.

(TIFF)

S8 Fig. RMSE dependence on the number of elite organisms.

(TIFF)

S9 Fig. Solution sensitivity to the number of input baselines. (A-M) Box-and-whiskers plots

depict the model parameters sensitivity to the number of input AP baselines. Input AP was

simulated at several PCLs listed in the Fig 7A. Dashed line corresponds to the input model

parameter value.

(TIFF)
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S10 Fig. Input baselines signal-to-noise ratio. (A-E) APs waveforms (blue curves) for the dif-

ferent SNR values: 35 dB, 31 dB, 28 dB, 24 dB, 20 dB. Red dashed lines correspond to precise

signal with CL = 1000 ms.

(TIFF)

S11 Fig. Parameters dependence on the SNR. (A-M) Optimized model parameters distribu-

tion depending on the SNR of input APs. Dashed line depicts input model parameter value.

(TIFF)

S12 Fig. Gaussian noise. (A) Experimental noise is reproduced the normal distribution with

mean = 0.264 mV, and standard deviation = 6.039 mV. (B) Corresponding probability plot:

quantiles of experimental noise amplitude distribution (blue) are plotted against quantiles of a

theoretical normal distribution (red line).

(TIFF)

S13 Fig. Heterogeneity of APD for Patient 1 and Patient 2. Grey lines depict AP waveforms

recorded from the wedge preparations. Experimental waveforms are aligned to match the time

corresponding to (dV/dt)MAX. Red lines correspond to Patient 1 GA-output model (top row)

and Patient 2 mRNA-based model (bottom row). The pixels of AP waveform recording that

was used as input to GA is marked by the “x” symbol on the top APD map. The pixel of the

recording that was used on Fig 9 to compare Patient 2 model with experimental AP is marked

by the “+” symbol on the bottom APD maps.

(TIFF)

S1 Text. Supplemental results.

(PDF)
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