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Abstract

In recent years, bean common bacterial blight (CBB) caused by Xanthomonas axonopodis pv. phaseoli (Xap) has
caused serious yield losses in several countries. CBB is considered mainly a foliar disease in which symptoms initially
appear as small water-soaked spots that then enlarge and become necrotic and usually bordered by a chlorotic
zone. Xap epiphytic population community has a critical role in the development of the disease and subsequent
epidemics. The epiphytic population of Xap in the field has two major parts; solitary cells (potentially planktonic)
and biofilms which are sources for providing and refreshing the solitary cell components. Irrigation type has a
significant effect on epiphytic population of Xap. The mean epiphytic population size in the field with an overhead
sprinkler irrigation system is significantly higher than populations under furrow irrigation. A significant positive
correlation between the epiphytic population size of Xap and disease severity has been reported in both the
overhead irrigated (r=0.64) and the furrow irrigated (r= 0.44) fields.
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Introduction
Pulse legumes are a very critical protein source in many
developing countries. Among them, common bean (Pha-
seolus vulgaris L.) is consumed worldwide as a main
source of protein, particularly in most Latin-American
and African countries (Reynoso-Camacho et al. 2006).
Several bacterial diseases infect common bean includ-

ing common bacterial blight (CBB), halo blight, and bac-
terial brown spot caused by Xanthomonas axonopodis
pv. phaseoli (Xap), Pseudomonas syringae pv. phaseoli-
cola and Pseudomonas syringae pv. syringae, respectively.
Although all three are destructive and economically im-
portant, CBB seems to be more widespread and causes
relatively more yield loss (Hall 1994). This disease can
cause up to 40% yield loss (Opio et al. 1996) and is still
considered a major constraint to dry bean production
in many countries and in particular Argentina, Brazil,
Columbia, Mexico, Uganda, Zambia, Zimbabwe, South
Africa, United States and recently Iran (Gilbertson and

Maxwell 1992; Fourie 2002; Lak et al. 2002; Harveson
2009; Zamani et al. 2011; Karavina et al. 2011). In Iran,
CBB now is one of the major bean diseases in three pro-
vinces in the central part of the country (Zamani et al.
2011). It was initially reported in 2002 from bean farms
with furrow irrigation system, but as a rare non-
destructive disease in Markazi province in the central
part of the country where 17339 hectares of pintos and
kidneys bean fields were located (Lak et al. 2002). In fol-
lowing years, due to lack of sufficient sources of water in
the province and overlooking Xap existence in the area,
farmers have been encouraged to stop applying furrow
irrigation and to employ overhead sprinkler irrigation
due to its higher efficacy in term of water use. Overhead
irrigation was widely accepted by farmers and many
bean growing fields replaced furrow irrigation with over-
head sprinkler. Up to 2007, large epidemics of the dis-
ease have frequently occurred in the province of
Markazi leading to huge yield losses (Osdaghi et al.
2010), and typically in large fields equipped with over-
head sprinkler irrigation (Figure 1).* Correspondence: akhavan@ualberta.ca
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Common bacterial blight symptoms
Although CBB is considered mainly a foliar disease, symp-
toms can also be observed on stems, pods and seeds, symp-
toms initially appear as small water-soaked spots (Figure 2),
which then enlarge and become necrotic and are usually
bordered by a yellow zone in case of leaf spots (Figure 3)
(Gilbertson and Maxwell 1992; Hall 1994; Harveson 2009).
Bacterial ooze exuding from infected bean leaves can easily
be observed using a compound microscope. Individual
lesions may grow together causing plants to look burned,
spots on pods are usually circular and brownish red, while
infected seeds develop yellow to brown spots and show
weak vigour and germination (Gilbertson and Maxwell
1992). Sometimes seeds have no visible symptoms and can
germinate vigorously while they support large symptomless
epiphytic communities of the pathogen (Figure 4) (Akhavan
et al. 2009a).

The causal agent of common bacterial blight
CBB is caused by Xanthomonas axonopodis pv. phaseoli
(also known as Xanthomonas campestris pv. phaseoli) and
it’s variant; Xanthomonas axonopodis pv. phaseoli var. fus-
cans about both, comprehensive taxonomical information
have been published in many studies including Vauterin
et al. (1995), Schaad et al. (2000), Vauterin et al. (2000) and
Schaad et al. (2005). These two variants are identical in term
of their epidemics and disease cycle but colonies of X. axo-
nopodis pv. phaseoli var. fuscans are distinguished by a dis-
tinct brown pigmentation in media containing tyrosine, 2 to
9 days after inoculation (Goodwin and Sopher 1994). Typ-
ically, 3–5 days old colonies of Xap on regular media
e.g. NBY (Nutrient broth 8gr, Yeast extract 0.7gr,
KH2PO4 2gr, K2HPO4 0.5gr, Glucose 1gr, 1 M
MgSO4 1 ml, Agar 20gr) are convex, yellow and
transparent (Figure 5), while individual cells are

Figure 1 High disease severity showing the consequences of bacterial dispersal by overhead sprinkler irrigation, central part of Iran.

Figure 2 Initial water soaked spots on bean pods.
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motile, aerobic, gram-negative, and rod-shaped with a
single polar flagellum (Vidaver 1967; Schaad 2001).

Plant penetration
Cells of Xap can enter bean plants through openings such
as stomata in leaves and other plant organs and through
hydathodes at leaf margins, wounding of plants, such as that
created by wind-blown soil particles can create pores for
bacteria entry (Rudolph 1993). Bacterial cells are also readily

transmitted mechanically, especially when plants are wet,
while arthropods may transmit the bacterium from plant to
plant (Kaiser and Vakili 1978; Lindemann and Upper 1985).
The bean stem can also be penetrated in three ways: i.e., via
the stomata, vascular system of the leaf and from infected
cotyledons (Kaiser and Vakili 1978). Bacterial cells can also
enter seeds via the vascular system or through the pedicel,
while infection of the young plant occurs when internally
infected seed germinates and the bacterium is transmitted

Figure 3 Enlarged necrotic lesions on bean leaves bordered by a chlorotic zone.

Figure 4 Infected symptomless (left) and symptomatic seeds (right).
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from the seed to seedling (Gilbertson and Maxwell 1992;
Saettler 1989a).

Favourable environmental conditions
In general, Xap causes very severe disease under
high rainfall and humidity and warm temperature condi-
tions (25-35°C) with maximum development occurring
around 28°C (Gilbertson and Maxwell 1992; Saettler
1989a). Dissemination in the field is facilitated by wind-
driven rain, while insects, people and contaminated equip-
ment can be considered vectors (Gilbertson and Maxwell
1992; Saettler 1989a). Overhead sprinkler irrigation like high
rainfall may provide a mean for bacterial dispersal, unlike
furrow irrigation (EPPO/CABI 1996; Harveson 2009).
Splashing water spreads the bacterial pathogen from dis-
eased plants to healthy plants (Lindemann and Upper
1985). However, increases in relative humidity may not fa-
cilitate CBB epidemics. For example, it has been shown that
a 20 percent difference in relative humidity (53% vs. 73%)
did not significantly affect the Xap epiphytic population size
and number of bacterial spots per plant in the greenhouse
under controlled conditions (Akhavan et al. 2009a).

Primary inoculum
CBB is carried both on (externally) and in (internally)
seed, in bean crop debris, and epiphytically on volun-
teer beans and perennial alternate host plants
(Gilbertson and Maxwell 1992). Among all means,
contaminated seed is probably the major source of
bacteria introduced into new bean fields (Gilbertson
and Maxwell 1992; Saettler 1989a). Xap remains vi-
able for years under the seed coat (Saettler 1989a;

EPPO/CABI 1996). Infected seed from a single crop
may contaminate a significant area when used as a
seed source; where one diseased plant in 10,000 is
sufficient to cause a severe epidemic (EPPO/CABI
1996). Therefore, using pathogen-free seed is an im-
portant factor in disease management. The capa-
bility of several detection methods including Indirect
ELISA, Direct PCR, Bio-PCR and Ic-PCR were com-
pared for monitoring Xap in bean seeds (Akhavan
et al. 2009b). The results indicated that sensitivity of
Indirect ELISA was low and at least 105 colony-
forming unit/ml (cfu/ml) were needed as a detection
threshold. In this study; the results for direct PCR
were not necessarily reproducible, while Ic-PCR was
found to be an expensive method. The Bio-PCR tech-
nique was considered as a reliable and specific method
which was able to detect as little as 1 cfu/ml in seed
extracts plated on a semi-selective medium called
modified NBY (Figure 6) (Nutrient broth 8 gr, Yeast
extract 0.7 gr, KH2PO4 2 gr, K2HPO4 0.5 gr, Glucose
1 gr, 1 M MgSO4 1 ml, Agar 20 gr, Cephalexin 25 mgr,
5-Fluorouracil 6 mgr, Cycloheximide 75 mgr and Nitro-
furantoin 2mgr) (Vidaver 1967; Akhavan et al. 2009b). It
has also been confirmed later by other researchers that
the Bio-PCR assay is suitable for sensitive and routine
testing of seed samples of beans for the presence of Xap
(Osdaghi et al. 2010).
Survival of the pathogen in soil or plant debris is influ-

enced by geographical area, climate, cultural practices, host
genotypes, and bacterial strains (Karavina et al. 2008). Xap
may survive in crop debris in the soil from season to season
(Arnaud-Santana and Pena-Matos 1991; Gilbertson et al.
1990). However, such survival might not be realistic in most

Figure 5 Bacterial colonies of Xap on Modified NBY; a new developed semi selective medium.
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major bean growing areas of the world where the non-
cropping period occurs under conditions where decompos-
ition of crop debris is rapid and almost complete. Significant
populations of Xap would not be expected to survive be-
yond six weeks under such conditions (Pernezny and Jones
2002) while in Zimbabwe, it was shown that Xap can over-
winter between crops in crop residues; therefore, residues
can be considered as sources of inocula for CBB in that
country (Karavina et al. 2008). Xap can also survive and
multiply as an epiphyte or resident on the shoot surfaces of
weed hosts, primarily members of the legume family with-
out showing symptoms (Pernezny and Jones 2002). In the
Dominican Republic, Xap has been detected on Euphorbia
heterophylla (L.), Acanthospermum hispidum (D.C.) and
Portulaca oleracea (L.) (Angeles-Ramos et al. 1991). In Tan-
zania and Uganda, Saettler reported the pathogen on Che-
nopodium album (L.), Solanum nigrum (L.), Echinochloa
crus-galli (L.), Beta vulgaris (L.) and Amaranthus retroflexus
(L.) (Saettler 1989b).

The secret life of Xanthomonas axonopodis pv. phaseoli as
a foliar bacterial pathogen on leaves (symptomless
colonization of leaves and biofilm formation)
A large number of foliar bacterial pathogens are able to
survive and multiply on aerial parts of plants without
any visible symptoms (Andrews and Harris 2000). It was
demonstrated previously that Xap could survive both
epiphytically and endophytically (Weller and Saettler
1980). The epiphytic population community has a very
critical major role in the development of the disease and
subsequent epidemics (Beattie and Lindow 1999). This
symptomless period can lead to such a huge bacterial
population that disease can develop later when more

favorable environmental conditions occur (Wilson et al.
1999).
Xap is a seed-borne pathogen with an epiphytic symp-

tomless population and is able to go through a long epi-
phytic phase on bean plants (Beattie and Lindow 1995).
In general, the epiphytic population of Xap in the field
has two major parts; solitary cells (potentially plank-
tonic) and biofilms. Using ERIC fingerprinting, it has
been shown for Xap that strains in the two fractions of
the population are genetically identical (Jacques et al.
2005). A similar result has been demonstrated for strains
of plant-associated Pseudomonas fluorescens (Boureau
et al. 2004). Biofilms which are present on the surfaces
of leaves are similar to those in aquatic ecosystems and
hospital environments and they include a large aggrega-
tion of bacterial cells embedded in polymeric materials
like extracellular polysaccharides. Comprehensive reviews
on biofilm formation by plant-associated bacteria were
published by Danhorn and Fuqua (2007) and Morris and
Monier (2003). Among the bacteria which can form bio-
films, one which is closest to Xap, is X. campestris pv.
campestris in which there is a cell to cell signalling pro-
cedure. This system is coded by rpf genes cluster, which
were previously known as an important cluster in the
pathogenicity of bacterium (Crossman and Dow 2004).
These genes have a role in production of diffusible fac-
tors like butyrolactones. The most well-known chemical
in biofilm formation in many bacteria is called Acyl
Homoserine Lactones (AHL), but it has not been found in
the genus Xanthomonas; even though this molecule has
an important role in biofilm formation of another bean
bacterial pathogen; Pseudomonas syringae pv. syringae
which has the same ecological cycle as the causal agent of
CBB (Cha et al. 1998; Crossman and Dow 2004; Dow

Figure 6 Comparison of NBY and Modified NBY efficiency in isolation of Xanthomonas axonopodis pv phaseoli from symptomless bean
leaves when leaves were washed and the same dilution cultured on both media at the same time. Saprophytes grew on common NBY
while, failed to grow on Modified NBY.
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et al. 2003). Instead of AHL, butyrolactones may act as
signal molecules in quorum-sensing-like systems in
Xanthomonas (von Bodman et al. 2003; Jacques et al.
2005). Regarding Xap, AHL has not been found in the
bacterium population; however, butyrolactones have been
confirmed to have a role in biofilm formation (Jacques
et al. 2005).

Cell viability within biofilms and its role in providing
inoculum
The microbial epiphytic community of Xap needs to reach
a threshold to be able to enter the leaves through natural
openings like stomata or wounds and establish an endo-
phytic population which leads to development of the dis-
ease (Beattie and Lindow 1999). In Michigan, this threshold
has been indicated to be 2.5*105 cfu per centimetre of bean
leaves for Xap (Weller and Saettler 1980). It has been
shown that the biofilm component looks stable following
an initial period of growth of the Xap microbial community
with population estimates of around 105 cfu per gram of
bean leaves, which is likely under the population threshold
needed for disease development (Jacques et al. 2005). In
contrast, it seems that solitary cell components of the
population are responsible for plant infection and these bio-
films are a reliable source to support the development of
solitary cells. Biofilms are not easily influenced by any anti-
microbial factors while solitary cells can be harmed by any
antimicrobial environmental factors. It is now clear that
populations of solitary cells under unfavorable conditions
are easily influenced by a number of abiotic and biotic fac-
tors (Monier and Lindow 2003). In general, solitary cells
are sensitive to a series of environmental factors such as
temperature and UV radiation and also antimicrobial che-
micals. Bacteria harbored in biofilms can easily resist any
copper based chemicals since the extracellular polysacchar-
ides of the biofilm can bind the chemicals while most soli-
tary cells are sensitive to these compounds (Costerton et al.
1995). In the same way, antibiotics may not be effective
tools against biofilms. Regarding UV radiation of different
wavelengths, bacteria in biofilms can be physically pro-
tected since the polysaccharides intercept the radiation and
thus the embedded cells are not exposed to UV radiation
(Davey and O’Toole 2000). In the case of Xap, it has been
demonstrated that desiccation stress had no significant ef-
fect on biofilm population size, while solitary cell popula-
tions are drastically decreased by desiccation, overall,
aggregation of bacterial cells in biofilms can protect them
against unfavourable environmental conditions (Jacques
et al. 2005; Amano 2010) while the same conditions can be
lethal for solitary cells. A similar trend has been demon-
strated for another destructive bean bacterium; P. syringae
pv. syringae (Monier and Lindow 2003). Cells of Xap aggre-
gated in biofilms constitute a more stable population than
do solitary cell populations. In Xap, biofilm population sizes

are always lower than solitary population sizes; in contrast,
it was shown that solitary cell populations which provide
the bacteria that enter the plant through potential pores
can multiply sharply when favorable conditions occur and
even right after unfavorable circumstances (Jacques et al.
2005). This scenario raises the hypothesis that biofilms are
sources for providing and refreshing the solitary cell com-
ponents of epiphytic communities of plant pathogenic bac-
teria (Boureau et al. 2004; Jacques et al. 2005). For instance,
it has been demonstrated that a reduction in hydric stress,
i.e. excessive moisture, allowed solitary bacterial popula-
tions to increase again and it was suggested that biofilms
were reservoirs for establishing solitary cell populations
(Jacques et al. 2005).

The effect of irrigation system on epiphytic population
size and disease severity
In the field, rainstorms can usually be related to rises in
bacterial population sizes to the threshold level with
subsequent rapid disease development. The effect of
rainstorms on Xap epidemics could be result of a sud-
den decrease of temperature or a rapid inflow of water
or raindrop occurrence (Hirano et al. 1996; Jacques et al.
2005). It has been shown that epiphytic population of
Xanthomonas campestris pv. vesicatoria, the cause of
pepper bacterial leaf spot increased drastically following
a 2-day wind-driven rain (Bernal and Berger 1996).
Overhead sprinkler irrigation seems to have similar
effects on bacterial population sizes as rainstorms. It has
been demonstrated that the type of irrigation had a sig-
nificant effect on epiphytic populations of Xap. Although
the bacterial populations were the same size at the be-
ginning, the mean epiphytic population size in the field
with an overhead sprinkler irrigation system was
1.04*106 colony forming unit per each squared centi-
meter of bean leaves (cfu/cm2) while for a furrow irriga-
tion system, population size was 4.89*104 cfu/cm2

(Akhavan et al. 2009a).
It seems that overhead irrigation systems favour

pathogen dissemination from colonized to healthy leaves
as the key factor in increasing the total field epiphytic
population size. In terms of multiplication, overhead
irrigation provides a layer of water on the host plant sur-
face, which results in an ideal multiplication site for the
microbial planktonic community on plant leaves. Studies
of other foliar bacterial pathogens have also confirmed
that epiphytic population size can increase when the
plant surfaces are wet (Beattie and Lindow 1995). The
presence of a film of water also helps to promote nutrient
release from plant leaves, which can enhance the availability
of nutrient sources for the epiphytic bacterial community
(Hirano and Upper 1983). Plant age by itself was found to
have no effect on epiphytic Xap populations (Karavina et al.
2011). For Xap, it was indicated in another study that 10
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percent of the total epiphytic population size particularly
the solitary cells can move easily by rain (Mabagala 1997).
In general, we can conclude that sprinkler irrigation has
effects similar to rain; it can lower leaf and canopy
temperature, increase relative humidity, and may prolong
dew periods; it can enhance splash dispersal drastically; and
it may remove cells from the atmosphere and deposit them
on susceptible plant surfaces. However, one also has to no-
tice the association of favourable weather conditions and
the frequency of irrigation. The use of furrow rather than
overhead irrigation systems in low rainfall areas has been
found to restrict the spread of splash-dispersed pathogens
(Baker 1980), and furrow irrigation is recommended in
these areas to restrict pathogen spread (Icishahayo et al.
2007). It has been demonstrated that with furrow irrigation,
the population of Xap on bean leaves only increased up to
just 10 days after the third trifoliate leaf unfolded (V4)
(Fernandez et al. 1986) following an initial inoculation at
the second trifoliate stage leading to the appearance of
symptoms on a few bean leaves. Infected bean leaves then
senesced and even fell off of the plants before the “begin-
ning bloom stage”, while the remaining plant leaves looked
almost normal. In contrast, with overhead sprinkler irriga-
tion; Xap populations increased up to 40 days, which coin-
cided with the “pod filling stage” (Figure 7), while
eventually destroying almost the whole bean crop (Akhavan
et al. 2009a).
It has been revealed that irrigation type significantly

influenced disease severity. Disease severity means were
5.8 and 2.8 in fields with overhead sprinkler irrigation
and furrow irrigation, respectively using the standard
system for the evaluation of bean germplasm with 1 as
“no visible disease symptoms” and 9 as “very severe dis-
ease symptoms”(Schoonhoven and Pastor-Corrales 1994;

Akhavan et al. 2009a). In addition to dispersing bacterial
cells and helping them to reach healthy plants as the key
factor, and promoting release of leaf nutrients to the mi-
crobial community, overhead sprinkler irrigation can
generate a film of water over the leaf surface including
stomata, providing the symptomless epiphytic popula-
tions with a bridge to enter the plant resulting in disease
symptoms development (Carvalho et al. 2011). Previ-
ously, it has also been shown that Asiatic citrus canker
was more severe when applying overhead irrigation sys-
tem which also increased the incidence of this disease
caused by Xanthomonas axonopodis pv. citri (Pruvost
et al. 1999). In contrast, Wheeler et al. (2007) showed
that overhead irrigation increased disease incidence of
cotton bacterial blight by Xanthomonas axonopodis pv.
malvacearum in a partially resistant cultivar; PM 2200
RR compared with drop hoses, while irrigation method
did not influence disease incidence for the susceptible
cultivar; PM 2326RR.
Akhavan et al. (2009a) showed that the interaction of irri-

gation system and time was significant for disease severity.
Within-furrow irrigation the CBB disease severity index
had not changed between the R6 (full flowering) to R8 (pod
filling) bean growth stages, but in contrast it had signifi-
cantly increased during the same period in the field using
an overhead sprinkler irrigation system (Figure 8).

Epiphytic population size, disease severity and yield
correlations: a brief conclusion
A significant (P<0.05) positive correlation between the
epiphytic population size of Xap and disease severity in
both the overhead irrigated field (r=0.64) and the furrow
irrigated field (r= 0.44) has been reported (Akhavan

Figure 7 In furrow irrigation, Xap population size (log cfu/cm2
leaf) increased up to just 10 days after the third trifoliate leaf
unfolded (V4) following an initial inoculation at the second
trifoliate stage while for overhead sprinkler irrigation, the
population size increased up to 40 days. Means with different
letters are significantly different. The experiments were conducted in
two different fields in the same research farm using a randomized
complete block design with eight replicates in Arak, Iran in 2005.

Figure 8 The interaction of irrigation system and time on CBB
disease severity. With furrow irrigation, the CBB severity index did
not change between the R6 (full flowering) and R8 (pod filling) bean
growth stages. In contrast, CBB severity significantly increased from
the R6 and R8 bean growth stages for the field using an overhead
sprinkler irrigation system. The experiments were conducted in two
different fields in the same research farm using a randomized
complete block design with eight replicates in Arak, Iran in 2005.
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et al. 2009a). The reason for the higher correlation coef-
ficient with the overhead sprinkler irrigation system can
be due to the effect of this type of irrigation on bacterial
penetration to interior leaf spaces and subsequent devel-
opment of disease. Similar results have been reported by
other studies on the effect of windblown rain fall
(Gilbertson and Maxwell 1992). Significant positive cor-
relations between bacterial populations and disease
severity have also been shown in other studies. For ex-
ample, the epiphytic population of X. campestris pv.
vesicatoria, the causal agent of tomato bacterial spot,
was positively correlated with plant defoliation as a re-
sult of disease development (McGuire et al. 1991). Previ-
ously, Lindemann et al. (1984) also showed that the
severity of brown spot of bean was correlated more con-
sistently with epiphytic Pseudomonas syringae pv.
syringae population sizes than with disease incidence. A
significant (P<0.05) negative correlation between disease
severity and seed yield per plant for both the furrow irri-
gated field (r=− 0.59) and the overhead sprinkler irri-
gated field (r=− 0.68) has also been reported (Akhavan
et al. 2009a). Furthermore, in both systems, there was a
significant (P<0.05) negative correlation between disease
severity and total seed yield, but the coefficient correl-
ation was higher under overhead sprinkler irrigation
(r=− 0.83) compared to furrow irrigation (r=−0.66). This
difference is likely due to more severe disease in the field
under overhead sprinkler irrigation system. Since the
only difference between the two fields was the type of
irrigation method, it can be interpreted that the over-
head sprinkler system provided several factors that
encouraged epiphytic populations to increase and to es-
tablish an endophytic population of Xap. Overhead irri-
gation can provide an ideal multiplication site, i.e. a thin
layer or film of water on the bean leaf surface, while also
disseminating the pathogen from diseased to healthy
plants. Overhead sprinkler irrigation may also help the
epiphytic population of Xap to establish an aggressive
endophytic population by facilitating the entry of
bacterial cells through leaf openings followed by symp-
tom development.
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