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Background: Buffalo meat is increasingly widely accepted for consumption as it shares

several quality attributes with cattle meat (beef). Hence, there is a huge opportunity for

growth in the buffalomeat industry. However, buffalomeat has relatively low intramuscular

fat (IMF) content, affecting its flavor, tenderness and juiciness. As there is a dearth of

information on factors that control fat deposition, this study was undertaken to provide

new candidate factor associated with buffalo fat deposition. Circular RNA (circRNA) is a

novel class of non-coding RNA with a closed-loop structure, and play an important role

in fat deposition.

Methods: In this study, weighted gene co-expression network analysis (WGCNA) was

used to construct a circRNA co-expression network and revealed a candidate circRNA

that may affect the IMF deposition of buffalo as determined by RT-qPCR, semiquantitative

PCR and gain-of-function experiments.

Results: Herein, WGCNA determined that one module (turquoise module) is significantly

associated with the growth and development stages of buffalo. Further analysis revealed

a total of 191 overlapping circRNAs among differentially expressed (DE) circRNAs and

the co-expression module. A candidate circRNA was found, 21:6969877|69753491

(circRNA_ID), with a reported involvement in lipid metabolism. This circRNA is stably

expressed and originates from the MARK3 gene, hence the name circMARK3.

circMARK3 is highly expressed in adipose tissue and mature adipocytes and is located in

the cytoplasm. Gain-of-function experiments demonstrated that circMARK3 promoted

adipogenic differentiation of buffalo adipocytes and 3T3-L1 cells by up-regulating the

expression levels of adipogenic marker genes PPARG, C/EBPα and FABP4.

Conclusion: These results indicate that circMARK3 is a potential factor that promotes

fat deposition by regulating adipocyte differentiation and adipogenesis in buffalo.

Keywords: buffalo, circRNA, WGCNA, adipocytes, adipogenesis

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2022.946447
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2022.946447&domain=pdf&date_stamp=2022-07-07
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mayun_666@126.com
https://doi.org/10.3389/fvets.2022.946447
https://www.frontiersin.org/articles/10.3389/fvets.2022.946447/full


Feng et al. CircMARK3 Affects Buffalo Fat Deposition

INTRODUCTION

Beef (cattle meat) is the third most widely consumed meat
worldwide. It is a consumer favorite because of its “flavor,”
“tenderness,” “juiciness,” and “rich in nutrition” properties (1).
Buffalo meat has the same nutritional values as beef (2), but
it is not widely accepted by consumers because of its low
intramuscular fat (IMF) content which negatively affects its
flavor, tenderness, and juiciness (3). Since China is the most
populous country in the world, beef is often in short supply.
Therefore, enhancing IMF deposition in buffalomeat has become
one of the major goals in current buffalo breeding activity.

Adipogenesis is a well-orchestrated multistep process that
involves the action of a large number of transcription factors
(4–6), and in particular the PPAR (PPARγ, PPARα) (4, 7–10)
and C/EBP family (C/EBPα, C/EBPβ, and C/EBPδ) (4, 9, 11) are
enriched for adipogenesis regulated transcription factors inmany
animals species. Among them, PPARG (PPARγ) and C/EBPα,
as key transcription factors in adipogenesis, are involved in a
single pathway of adipocyte development with PPARγ being the
proximal effector of adipogenesis (12). The master regulatory
factors affecting adipogenesis have been widely studied, but it is
far from enough to analyze the molecular regulatory mechanism
of fat deposition only by transcription factors. Currently, several
new factors are being proposed as regulators or influencers of
adipogenesis. For example, sterol regulatory element binding
protein (SREBP) transcription factor (13), phosphoenolpyruvate
carboxykinase1 (PCK1) (3, 14), and fatty acid binding protein
(FABP4) (9). In addition, non-coding RNAs (miRNAs, lncRNAs,
and circRNAs) also play an important role in regulating the
economic traits of livestock and poultry, and they interact with
coding RNAs to form a regulatory network to jointly regulate fat
deposition (15).

circRNAs, a type of endogenous non-coding RNA with
covalently closed loop structure (16, 17), have become a
research hotspot in recent years. They have been recently
reported to be involved in multiple biological processes, such as
cancer (18–20), ontogenesis (21, 22) and adipogenesis (23, 24).
RNA sequencing technology has been instrumental to show
that circRNAs modulate fat deposition in livestock animals
(25–27). In pig, the potential lncRNAs/circRNAs-miRNAs-
mRNAs regulatory networks shared MYOD1, PPARD, miR-
423-5p and miR-874, which were associated with skeletal
muscle muscular proliferation, differentiation/regeneration, and
adipogenesis (28). In chicken, several reference circRNAs, such
as circLCLAT1, circFNDC3AL, circCLEC19A, and circARMH1,
potentially affect adipogenesis by regulating miRNAs via PPAR

Abbreviations: WGCNA, Weighted gene co-expression network analysis; DE,

Differentially expressed; MARK3, microtubule affinity regulating kinase 3;

PPARγ or PPARG, peroxisome proliferator activated receptor gamma; C/EBPα,

CCAAT/enhancer-binding protein α; FABP4, fatty acid binding protein 4;

IMF, intramuscular fat; SREBP1, sterol regulatory element binding protein;

THRSP, thyroid hormone responsive; PRDM16, PR/SET domain 16; PCK1,

phosphoenolpyruvate carboxykinase 1; MYOD1, Myogenic Differentiation 1; PBS,

phosphate buffer saline; GAPDH, Glyceraldehyde-3-phosphate dehydrogenase;

SD, Standard Deviation; MAD, median absolute deviation; ceRNA, endogenous

RNA; SE, standard error.

and fatty acid metabolism-related pathways (26). Recent studies
have shown that circINSR inhibits preadipocyte adipogenesis
in bovine by alleviating inhibition of miR-15/16 against
target genes (29, 30). In this study, a candidate circRNA
21:6969877|69753491(circMARK3) was found through weighted
gene co-expression network analysis (WGCNA), and further
gain-of-function experiments demonstrated that circMARK3
promoted the adipogenic differentiation of buffalo adipocytes
by up-regulating the adipogenesis relative gene. In summary,
we propose a potential circRNA that plays an important role in
buffalo fat deposition, which provides a molecular basis for beef
quality improvement.

MATERIALS AND METHODS

Animal Ethics
Six Chinese swamp buffaloes were bred for commercial use,
rather than for experimental reasons, and they were slaughtered
according to the food industry-approved halal food quality
certified protocol by a Muslim cleric according to the law of
Islam. Thus, no ethics approval was required by a specific
committee (31).

Animals and Tissue Samples
Six Chinese swamp buffaloes were raised at the Xinyang buffalo
farm (Xinyang, Henan, China) with equivalent forage and
feeding management conditions. Animals were weaned at 6
months of age and slaughtered at 30 months of age. Tissues, i.e.,
heart, liver, spleen, lung, kidney, longissimus dorsi muscle, and
back subcutaneous fat, were sampled immediately after slaughter
and were frozen in liquid nitrogen for RT-qPCR experiments.
For primary adipocyte isolation, fresh back subcutaneous fat
tissue was sampled, kept in phosphate buffer saline (PBS) with
1% streptomycin and penicillin, and taken back to the lab for
isolation and culture of adipose tissue-derived mesenchymal
stem cells.

CircRNA Bioinformatics Analysis
The circRNAs expression matrix and DE circRNAs obtained
from RNA-seq analysis have been reported previously (31).
The WGCNA package in R4.1.0 provides a comprehensive
set of functions for performing weighted correlation network
analysis (32), and phenotypic information used in WGCNA is
shown in Supplementary Table S1. The overlapping circRNAs
among DE circRNAs and co-expression modules were analyzed
using VENNY 2.1(https://bioinfogp.cnb.csic.es/tools/venny/
index.html).

Weighted Gene Co-expression Network
Analysis
The co-expression network of the circRNAs was constructed
base-on-base using the circRNAs expression matrix (33) and
traits characteristic data (Supplementary Table S1). To allow
direct comparison between sample, circRNAs in each sample
were normalized as the number of back-spliced reads per
million mapped reads (RPM) (31, 34, 35). The soft threshold
for co-expression network construction was determined and
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the adjacency matrix was defined. The adjacency matrix was
subsequently converted to a topological overlap matrix (TOM)
and the corresponding dissimilarity TOM (dissTOM) was
calculated. For modules with high TOM, the adaptive dynamic
pruning algorithm was used to merge the modules. The soft-
free network was constructed using the module function, after
which module partition analysis was performed to identify the
gene co-expression modules. Gene significance (GS) and module
membership (MM) values were calculated. MM is the correlation
coefficient between a gene and the genes for trait characteristics
within the module and can be used to screen for important
genes in the module. When GS and MM values of a gene
in a module show significant correlation, it suggests that the
gene may be a hub gene that is highly correlated with the
target trait.

RNA Isolation and cDNA Synthesis
Total RNA was isolated by TRIzol (Invitrogen, Carlsbad, CA,
United States) according to the manufacturer’s instructions.
RNA quality was measured with NanoDrop 2000 (Nanodrop,
Wilmington, DE, USA) and 1.5% agarose gels. RNA with 1.8 <

260/280 value < 2.0 was used for further analysis. Elimination of
linear RNA was performed by Lucigen RNR07250 Ribonuclease
R kit (RNase R, Lucigen-Simplifying Genomics). RNase R
reaction system according to the manufacturer’s instructions.
Isolation of nuclear and cytoplasmic RNA was performed using
the PARIS kit (Life Technologies, Carlsbad, CA, United States)
according to the manufacturer’s instructions. The total RNA was
transcribed into cDNA using the PrimeScriptTM RT Master Mix
(Takara, Dalian, China).

RT-qPCR Analysis
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-
actin were used as reference genes. Furthermore, β-actin
was used as a cytoplasmic marker in both nucleus and
cytoplasm for cell localization. RT-qPCRwas performed using TB
GreenTM Premix Ex TaqTM II (Dalian, China, Takara Bio) and
LightCycler R© 96 (Switzerland, Roche) with two-step reactions
according to the manufacturer’s recommended protocol. The
211Ct method was used to calculate the relative expression
level of circRNA. Three replicates were run per sample and
the RT-qPCR experiment was performed three times. Among
them, primers were designed using the “pick primers” function
from NCBI (https://www.ncbi.nlm.nih.gov/tools/primer-blast/)
and Primer 5.0 (Supplementary Table S2).

Vector Construction and Adenovirus
Packaging
For 3T3-L1 cells, mouse-circMARK3 (mouse-source sequence)
overexpression was achieved by using pCD2.1-ciR vector.
Mouse pCD2.1-circRNA was amplified from cDNA of
mouse adipose tissue. The sequence of mouse circRNA
(Supplementary Text S1) was cloned into the KpnI and
BamHI restriction sites of the pCD2.1-ciR vector. However,
due to the fact that buffalo primary adipocytes are difficult to
efficiently transfect, the overexpression of buffalo-circMARK3
(buffalo-source sequence) was achieved by adenovirus packaging

experiments (36). Adenovirus packaging was performed at
Hanbio Biotechnology Co., Ltd. (Shanghai, China). Briefly,
full length buffalo-circRNAs (Supplementary Text S1) were
synthesized and ligated to the AdMax system to obtain Ad-
circRNA. EGFP was used as an indicator for transduction
efficiency and Ad-EGFP was used as a negative control.

Cell Transfection, Adenovirus
Transduction, Oil Red O Staining and
Quantification
For 3T3-L1 preadipocytes, transfection with mouse pCD2.1-
circRNA was performed using Lipofectamine 3000 (Invitrogen,
Carlsbad, CA, United States) when cells reached 80% confluence,
following the manufacturer’s protocol. Forty-eight hours after
transfection, 3T3-L1 primary adipocytes were treated for 2
days with inducing medium containing 1µM dexamethasone
(Sigma, USA), 0.5mM IBMX, 10µg/mL insulin and 1µM
rosiglitazone (Sigma, Milwaukee, WI, USA). Then, 3T3-L1
cells were treated with a maintenance medium containing
10µg/mL insulin and 1µM rosiglitazone. The maintenance
medium was replaced every 2 days for a total of 6 days,
until induction of differentiation. Similar to cell transfection,
adenovirus transfection buffalo Ad-circRNA was performed
when buffalo adipocytes reached 80% confluence according to
the adenovirus transduction manufacturer’s protocol. Two days
after transfection, buffalo adipose-derived mesenchymal stem
cells were treated with inducing medium for 2 days. For a further
4 days, they were treated with maintenance medium, which was
changed every 2 days. After inducing with adipogenic agents for
6 days, Oil Red O staining and quantification were performed as
described (36).

Statistical Analysis
Comparisons were analyzed using SPSS software. P-value < 0.05
was considered to indicate statistical significance. Results are
represented as themean± SD (n= 3) and plotted with GraphPad
Prism7 software.

RESULTS

Weighted Gene Co-expression Network
Analysis
WGCNA analyzed 5,141 circRNAs obtained from RNA-seq (31)
and was used to construct 21 co-expressionmodules (Figure 1A).
Among them, the soft-thresholding power we chose was 9 as
the correlation coefficient threshold, and 30 was chosen as the
minimum number of circRNA in modules. To merge possible
similar modules, we defined 0.25 as the threshold for cut height.
The modules comprising most genes were turquoise, followed by
blue, brown, and yellow (Supplementary Table S3). Moreover,
the dissTOM obtained was subjected to hierarchical clustering,
resulting in a hierarchical clustering tree (5,000 circRNAs), and
these modules were independent of other modules (Figure 1B).
Module-trait correlation analysis showed that the turquoise
module was related to month and weight (Figure 1C). The
significance of these circRNAs in the turquoise module is
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FIGURE 1 | Screened-out circRNAs significantly associated to buffalo fat deposition. (A–D) CircRNA co-expression network of adipose tissue in the Xinyang buffalo

revealed by WGCNA; (A) Hierarchical cluster tree of co-expression modules, where every leaf on a tree is a circRNA and main branches are made up of 21

color-coded modules; (B) Construction of co-expression modules by WGCNA. Progressively more saturated red colors indicate higher overlap among these

functional modules and blocks of lighter color along the diagonal are the gene modules. Module assignment gene and dendrograms are at the top and left,

respectively; (C) Association analysis of gene co-expression network modules with trait, where each row corresponds to a module (name displayed on the left) and

each column corresponds to a particular trait. Colors of the row/column intersection cells indicate the correlation coefficient between module and trait (positive-green

and negative-red); (D) Scatterplot of Gene Significance (GS) For Traits vs. Module Membership (MM) in the turquoise module, with a highly significant correlation

between GS and MM (one dot represents one gene in the turquoise module); (E) Overlapping circRNAs between DE circRNAs and co-expression turquoise module;

(F) CircRNA 21:6969877|69753491 GS and MM values.

shown in Figure 1D and Supplementary Table S4. We found
191 overlapping circRNAs between the DE circRNAs list (31)
and the turquoise module (Supplementary Table S5; Figure 1E).

Among these, circRNA 21:6969877|69753491 has been shown to
be involved in lipid metabolism in a previous study, therefore it
likely affects fat deposition. Gene significance (GS>0.8) (37, 38)
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FIGURE 2 | Characteristic analysis of circMARK3. (A) Basic information of circMARK3 composition structure (bases C and T labeled red were mutated into T and C in

the sequence); (B) Semiquantitative PCR results of circMARK3 and MARK3 before and after RNase R treatment; (C) RT-qPCR results of circMARK3 and MARK3

before and after RNase R treatment; (D) Cell localization of circMARK3 by semiquantitative PCR; (E) Cell localization of circMARK3 by RT-qPCR; (F) Sequence

alignment results of circMARK3 in mouse and buffalo; (G) CircMARK3 conservation in adipose tissues of different species by semiquantitative PCR detection; (H)

Expression profile of circMARK3 in heart, liver, spleen, lung, kidney, muscle and adipose tissues of mouse. In panels B-E, bovine-β-actin was used to normalize the

expression level of the reference gene. In panel H, mouse-β-actin was used to normalize the expression level of the reference gene. Data are presented as the mean

± SD, n = 3, **P < 0.01, ***P < 0.001. (B–D) The samples derive from the same experiment and gels were processed in parallel.

and module membership (MM>0.8) (37–39) values showed a
high correlation between circRNA 21:6969877|69753491 and two
traits (month and weight) of buffalo Figure 1F.

Characteristic Analysis of CircMARK3
Since circRNA 21:6969877|69753491 (432 nt) is formed by
splicing and circularizing exons 2–6 of the microtubule affinity
regulating kinase 3 (MARK3) gene (Figure 2A), we have named
it circMARK3. Semiquantitative PCR results show the latter still
exists in primary adipocytes by the RNase R digestion linear RNA
(Figure 2B). The RT-qPCR results show that circMARK3 is still
highly expressed in cells treated by the RNase R (Figure 2C).
These results show that circMARK3 is stably expressed as
circRNA (Figures 2B,C). Also, semiquantitative PCR and RT-
qPCR results of isolated nuclear and cytoplasm of adipocytes
show that circMARK3 is mainly expressed in the cytoplasm

(Figures 2D,E). Conservation in different species was assessed
by semiquantitative PCR and RT-qPCR detection: circMAK3 is
conserved in buffalo, cattle, yak, mouse and pig (Figure 2G), and
is ubiquitously expressed in different tissues of mice (Figure 2H).
Sequence alignment shows that circMARK3 in mouse and
buffalo are partially conserved, and the homology was 93.51%
(Figure 2F).

The Expression Pattern of CircMARK3
circMARK3 is mainly expressed in adipose tissue of buffalo
(Figure 3A, p < 0.001). Primary adipocytes cultured in vitro
are ideal cell models for studying the molecular regulatory
mechanism of adipogenesis. Therefore, buffalo adipocytes
were successfully isolated and cultured (Figures 3B–D). By
inducing the culture medium, they successfully differentiated
to produce lipid droplets (Figure 3E). During adipogenic
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FIGURE 3 | Expression pattern of circMARK3 in tissues and adipocytes of buffalo. (A) Expression profile of circMARK3 in heart, liver, spleen, lung, kidney, muscle and

adipose tissues of buffalo; (B–D) expression pattern during buffalo adipocyte differentiation of PPARG (after 0, 2, 6, and 10 days) (B), C/EBPα (C) and FABP4 (D); (E)

Oil Red O staining for detection of buffalo adipocyte lipid deposition (differentiation day 10); (F) Expression pattern of circMARK3 during buffalo adipocyte

differentiation. In (A–D) and (F), bovine-GAPDH was used to normalize the expression level of the reference gene. In panel (A), data was normalized to the heart. In

panels (B–D) and (F), all data were normalized to day 0. Data are presented as the mean ± SD, n = 3, #:no significance, *P < 0.05, **P < 0.01, ***P < 0.001.

differentiation, circMARK3 was up-regulated in the mature
adipocytes (Figure 3F).

CircMARK3 Promotes the Adipogenic
Differentiation of 3T3-L1 Cells
The sequences of mouse and buffalo circMARK3 show high
homology (Figures 2F,H). Therefore, the role of circMARK3 in
fat deposition was investigated by performing gain-of-function
experiments for mouse-circMARK3 in 3T3-L1 cells. The strategy
of transfection, adipogenic differentiation, RT-qPCR and Oil Red
O staining is shown in Figure 4A. Consistent with a higher lipid
accumulation in the mouse pCD2.1-circMARK3 group than in
the pCD2.1-ciR group (Figures 4B,C, P < 0.01), the former
group showed much higher circMARK3 mRNA expression
(Figure 4D, P < 0.001) and significant higher up-regulation of
PPARG, C/EBPα, and FABP4 (Figures 4E–G, P < 0.001).

CircMARK3 Promotes the Adipogenic
Differentiation of Buffalo Adipocytes
To evaluate the effect of circMARK3 on fat deposition in buffalo,
full length buffalo-circMARK3 was packaged into an adenovirus
system for overexpression (Ad_circMARK3), following the same
scheme shown in Figure 4A. The indicator GFP was highly

expressed 2 days after adenoviral transduction (Figure 5A).
Expression of circMARK3 in Ad_circMARK3 was significantly
higher than in the Ad_EGFP group on day 2 of cell transfection
(Figure 5D, P<0.001). At the same time, lipid accumulation
in Ad_circMARK3 was significantly enhanced (Figures 5B,C,
P<0.01), whereas mRNA expression of PPARG, C/EBPα, and
FABP4 was slightly up-regulated on day 2 after transfection
(Figures 5E–G, P < 0.01).

DISCUSSION

Fat deposition is closely related to growth and development
(40, 41), and IMF is a key factor affecting beef quality (42).
Compared to beef, however, the IMF content in buffalo meat
is significantly lower (3). Since buffalo is abundant in China,
it would be desirable to increase its IMF content. It is known
that the IMF correlates with maturity (43) and percentage (44)
of back subcutaneous fat, which therefore may be used as IMF
indicator. Therefore, determining the related factors affecting
subcutaneous fat deposition can provide theoretical basis for
improving meat quality.

WGCNA is an efficient and accurate method based on RNA-
seq used for biological data mining (45, 46). This method is
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FIGURE 4 | Overexpression of mouse circMARK3 promotes adipogenic differentiation of 3T3-L1 adipocytes. (A) Strategy for mouse circMARK3 overexpression,

adipogenic differentiation, RT-qPCR and Oil Red O staining in 3T3-L1 cells; (B) Oil Red O staining in 3T3-L1 cells transfected with pCD2.1-ciR and mouse

pCD2.1-circMARK3 on day 6 after adipogenic differentiation. (C) Histogram corresponding to the quantification of Oil Red O staining by spectrophotometry; (D–G)

RNA expression 48 h after transfection of circMARK3 (D), PPARG (E), C/EBPα (F) and FABP4 (G). In panels (D–G), mouse-β-actin was used to normalize the

expression level of the reference gene in 3T3-L1 cells. Control means the pCD2.1-ciR group, circMARK3 means the mouse pCD2.1-circMARK3 group. NC means

negative control. Data are presented as the mean ± SD, n = 3, **P < 0.01, ***P < 0.001.

increasingly used to discover genes and phenotype relationships
(46, 47) and to provide insights into signaling networks
linked to phenotypic traits of interest (46, 48). From the
circRNAs obtained by RNA-seq, the top 5,000 with median
absolute deviation (MAD) were used to construct the network
for WGCNA, resulting in 21 modules. When the scale-free
topology index was 0.9, the resulting network was closer to a
power law distribution (46), but the appropriate soft threshold
was not found (Supplementary Figures S1A,B). This may be
caused by differences between samples, but they are caused
by meaningful biological changes. Here, we used experience
soft threshold for analysis. We found that the blue and
turquoise modules were positively and negatively correlated
with traits, respectively. However, since the blue module had
no biological significance (P > 0.05), the turquoise module,
containing 996 circRNAs, was the main one involved in
traits of buffalo (month and weight). Taking the intersection
between DE circRNAs and the turquoise modules (49), circRNA

21:6969877|69753491 was taken as a candidate factor affecting
fat deposition.

The activities in living organisms are mediated by the
genome (50), and gene expression is regulated by many factors.
Adipocytes may include white adipocytes that store energy
and brown or beige adipocytes that dissipate energy (51, 52).
Transcription factor PRDM16 is a beige/brown marker (53)
associated with circRNA 21:6969877|69753491 by RNA-seq
analysis (31). In addition, knockout mice (MARK3−/−) were
protected against high-fat diet induced obesity and displayed
attenuated weight gain (54). Both WGCNA and RNA-seq
analysis indicate that circRNA 21:6969877|69753491 produced by
MARK3 gene are likely involved in fat deposition. By digestion
linear RNA experiments detecting the expression of the circRNA
and host genes, the expression of host genes was significantly
down-regulated. Although expression of circRNA was too
reduced, it was still detected. circMARK3 was highly and stably
expressed in buffalo adipocytes, it may be a candidate gene for
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FIGURE 5 | Overexpression of buffalo circMARK3 promotes adipogenic differentiation of buffalo adipocytes. (A) Micrographs of GFP-positive cells in the Ad_GFP and

Ad_circMARK3 groups on day 2 after cell transfection; (B) Oil Red O staining of buffalo adipocytes transfected with Ad_GFP and Ad_circMARK3 group on day 6 after

adipogenic differentiation. (C) Histogram corresponding to the quantification of Oil Red O staining by spectrophotometry; (D–G) RNA expression two days after

transfection of circMARK3 (D), PPARG (E), C/EBPα (F), and FABP4 (G). Bovine-GAPDH was used to normalize the expression level of the reference gene in buffalo

adipocytes. NC means negative control. Data are presented as the mean ± SD, n = 3, **P < 0.01, ***P < 0.001.

influencing fat deposition in Buffalo. The function of circRNAs
is determined by location (55–58), which therefore must be
determined: in the nucleus, it usually participates in regulating
expression of host genes (55, 56), whereas in the cytoplasm, it
mainly acts as competitive endogenous RNA (ceRNA) (57, 58).
Since we found that circMARK3 is mainly expressed in the
cytoplasm, it may function as ceRNA. Localization is useful for
future exploration of its molecular regulatory mechanism of
adipose tissue development.

Since the expression patterns showed that circMARK3
is mainly expressed in adipose tissue, we speculated that
it plays an important role in buffalo adipogenesis. To
explore its function, we obtained buffalo adipocytes and
detected circMARK3 expression during the different phases
of differentiation. Adipocytes were isolated from buffalo
back subcutaneous adipose tissue (36, 59) and induction
of differentiation was followed by staining with Oil Red O
solution. The results showed that there was a significant

increase in intracellular lipid droplets after induction, which
indicated that the primary adipocytes had strong differentiation
activity (4). Expression of marker genes PPARG, C/EBPα,
and FABP4 increased during adipocyte differentiation,
reaching its highest level at day 10, consistent with previous
studies (60, 61). These results suggested the establishment
of a differentiation induction system for buffalo primary
adipocytes. Adipocytes were active and could be used in
subsequent experiments. During adipogenic differentiation,
the expression of circMARK3 was up-regulated in the
mature adipocytes of buffalo, suggesting its involvement in
adipocyte differentiation.

The host gene MARK3 has been linked to lipid metabolism
in mice (54), and we have shown that circMAK3 is conserved
in mice. To confirm the effect of circMARK3 on fat deposition
in mice and buffalo, overexpression of this circRNA in 3T3-
L1 cells was performed using a pCD2.1-ciR overexpression
vector. In buffalo adipocytes, overexpression was performed by

Frontiers in Veterinary Science | www.frontiersin.org 8 July 2022 | Volume 9 | Article 946447

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Feng et al. CircMARK3 Affects Buffalo Fat Deposition

FIGURE 6 | Schematic illustration of the experimental procedure and main results. RNA-seq analysis is from a previous study (31).
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an efficient adenovirus system. pCD-ciR is a more commonly
used circRNAs expression vector. The linear sequence of the
target circRNAs was amplified by PCR and cloned into the
pCD-ciR vector, which contains the circRNAs circular expression
framework. After the recombinant vector is transfected into
the cells, the RNA can be sheared to form circRNAs molecules
with high efficiency and stability to achieve high expression in
cells. As expected, circRNAs not only significantly enhanced
adipogenic differentiation of 3T3-L1, but also the accumulation
of lipid droplets in buffalo adipocytes. In both systems,
the expression of adipogenic marker genes PPARG, C/EBPα

and FABP4 positively correlated with the degree of the
differentiation of adipocytes (4, 62) was up-regulated. These
results suggest that circMARK3 promotes adipogenesis by
enhancing the expression of adipogenic marker genes, but
the regulatory mechanism involved in enhancing adipogenic
differentiation in 3T3-L1 and buffalo adipocytes requires
additional investigation.

CONCLUSIONS

The central idea and results of this research are illustrated in
Figure 6. This study demonstrates that: (1) A candidate circRNA
circMARK3 related to lipid metabolism was found by WGCNA,
(2) circMARK3 is highly expressed in adipose tissue and mature
adipocytes and is located in the cytoplasm, (3) circMARK3
promoted adipogenic differentiation of buffalo adipocytes and
3T3-L1 cells by up-regulating the expression levels of adipogenic
marker genes PPARG, C/EBPα and FABP4. All in all, the study
suggests that circMARK3 is a potential regulatory factor affects
buffalo fat deposition, but the regulatory mechanism involved in
fat production needs further exploration.
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