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A Kriging-Based Approach to 
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James A. Sethian1,4

Modern scientific instruments are acquiring data at ever-increasing rates, leading to an exponential 
increase in the size of data sets. Taking full advantage of these acquisition rates will require 
corresponding advancements in the speed and efficiency of data analytics and experimental control. A 
significant step forward would come from automatic decision-making methods that enable scientific 
instruments to autonomously explore scientific problems—that is, to intelligently explore parameter 
spaces without human intervention, selecting high-value measurements to perform based on the 
continually growing experimental data set. Here, we develop such an autonomous decision-making 
algorithm that is physics-agnostic, generalizable, and operates in an abstract multi-dimensional 
parameter space. Our approach relies on constructing a surrogate model that fits and interpolates the 
available experimental data, and is continuously refined as more data is gathered. The distribution and 
correlation of the data is used to generate a corresponding uncertainty across the surrogate model. 
By suggesting follow-up measurements in regions of greatest uncertainty, the algorithm maximally 
increases knowledge with each added measurement. this procedure is applied repeatedly, with the 
algorithm iteratively reducing model error and thus efficiently sampling the parameter space with each 
new measurement that it requests. We validate the method using synthetic data, demonstrating that it 
converges to faithful replica of test functions more rapidly than competing methods, and demonstrate 
the viability of the approach in an experimental context by using it to direct autonomous small-angle 
(SAXS) and grazing-incidence small-angle (GiSAXS) x-ray scattering experiments.

A core paradigm in experimental materials science is the iterative exploration of the multi-dimensional param-
eter spaces that underlie materials makeup, synthesis, and processing. In order to establish synthesis-structure 
relationships and structure-property relationships, scientists iteratively test different material compositions, pro-
cessing protocols, and environmental conditions. In each ‘loop’ of this process, the scientist analyzes the trends 
in the available data, and, exploiting their own domain knowledge, selects useful follow-up measurements. The 
traditional (manual) mode of data collection is costly in the sense that it consumes the attention of a human 
expert. Moreover, manual experimentation may be inefficient since there is no guarantee that the measurement 
selection is optimal, especially if the underlying parameter space is vast and high-dimensional. Finally, a purely 
manual approach lacks a quantitative metric for deciding when to terminate the investigation; it is left to human 
judgment whether ‘enough’ data has been collected.

This bottleneck is becoming increasingly troublesome, when measured against the rapid advances in instru-
mentation, data gathering, and analysis tools. Modern scientific instruments feature improved automation (e.g. 
robotic sample handling), faster data collection (e.g. improved detectors), and faster response (e.g. faster data 
workup), thereby enabling ever-greater data collection rates. This massive automation allows for more ambitious 
and complex scientific problems to be investigated, since larger parameter ranges can be studied, these can be 
sampled more densely, and because the data collection itself is more systematic and reproducible. However, the 
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enormous potential of improved acquisition rates underscore the need for corresponding improvements in the 
ability of machines to develop and update experimental measurement plans at a speed commensurate to that of 
the measurement. What is needed are generalizable decision-making algorithms that autonomously drive exper-
iments without human intervention.

In this work, we develop a general approach for autonomous experimentation that automatically selects meas-
urements from the parameter space that defines a given scientific problem. As a test bed setting, we consider the 
common experimental case where a class of materials is being studied in order to uncover a set of correlations 
between measurable properties and a set of controllable synthesis, processing, or environmental parameters (tem-
perature, pressure, etc.). The full landscape of possible materials can be thought of as a multi-dimensional space 
with a basis, in which each basis vector represents one of the control parameters, and a particular measurement of 
a particular material is a single point in this space. We refer to the control parameters as p (position in the param-
eter space), and the measurement outcomes as ρ p( ). The objective in an autonomous experiment is thus to obtain 
a maximal-quality reconstruction of the true ρ using a minimal number of measurements. As a concrete and 
illustrative example, we consider this methodology in the context of x-ray scattering experiments. X-ray scattering 
is a structural measurement technique that consists of shining a bright, collimated beam of x-rays through a mate-
rial of interest. The resulting far-field scattering pattern is collected on a two-dimensional detector. The features 
observed in the scattering image (peaks, rings, etc.) encode detailed information about the material’s structure at 
the molecular and nano-scale. Thus, x-ray scattering allows one to probe material structure or properties for a 
given sample associated with position p in the parameter space, where p includes parameters associated with 
sample fabrication (composition, annealing time, etc.), as well as those associated with the environmental condi-
tions concurrent with the measurement (temperature, pressure, ambient humidity, etc.) (see Fig. 1). The measure-
ment outcome is a real valued scalar or vector, for instance, the peak intensity of the scattering pattern.

Reconstructing a model for ρ p( ) can be thought of as solving an inverse problem in which a parameterized 
model is fit to experimental measurement data. The fit acts as a ‘surrogate model’ that interpolates between meas-
ured data points and provides a prediction of system behavior in unmeasured parts of the parameter space. A 
naive approach to selecting measurement points is to simply take measurements along a Cartesian grid in this 
high-dimensional space with an arbitrarily-selected initial spacing. In a one-dimensional example, one could, for 
example, perform measurements at ten equidistant, discrete temperatures ( = …T i, {0, 1, , 9}i ). Interpolation 
would then result in the function ρ T( ), which, one would then hope, reasonably matches the true mapping 
between temperature and structure for the system under study. However, as the number of parameters rises, this 
procedure becomes increasingly impractical. Searching across even just four parameters poses a major challenge, 
since, using a similar approach, 10,000 measurements would have to be performed. Another approach is to 
choose new parameter sets randomly or by intuition. These approaches will successfully sample the space, but can 
be quite inefficient1, since, as the number of performed measurements increases, the probability of choosing 
non-optimal parameters increases. These approaches can also suffer from experimental bias, and may miss per-
forming valuable but less obvious experiments.

When one seeks to optimize a specific characteristic of a material, a one-variable-at-a-time (OFAT/OVAT) 
approach2 is often employed. For non-convex models, this approach will most likely fail. In the study of modern 
functional materials, the underlying synthesis/processing parameter spaces tend to be high-dimensional, while 
material response to these parameters tends to be highly complex (non-monotonic, non-separable processing 
parameters, etc.). Thus, naive approaches do not fare well. The selection of experiments in high-dimensional 
spaces has been studied extensively in the context of design-of-experiment (DOE), which can be defined as the 
application of geometric principles to statistical sampling3. Traditionally in these approaches, an experimen-
tal plan is formulated at the outset by selecting a geometry that reasonably covers the parameter space. These 
approaches do not leverage the outcome of past experiments and thus do not provide a way to generate an adap-
tive measurement scheme. DOE methods can be combined with machine learning techniques to increase effi-
ciency and to deliver a meaningful measure of quality of the final model2.

In recent years, several methods have been proposed to enable some form of autonomous experimental 
decision-making. Most existing approaches are based on machine learning techniques4–8, since the main goal is 
always to find a surrogate model for an unknown, data-based operator, which maps from parameters into measure-
ment results. Scarborough, N. M. et al.5, for instance, used a supervised learning approach to find the most optimal 
locations to probe, in order to gain the most information per measurement and at the same time minimize the dose 
in diffraction-based protein crystal positioning. The machine learns by using a regression function that is com-
puted by an offline training process. Nikolaev, P. et al.9 employed a combination of the random forest method and 
a genetic algorithm to steer nano-tube growth. A related class of algorithms comes from the field of image recon-
struction, where the overall goal is to minimize the number of measurements needed to recreate an image6. These 
methods all approximate the real structure, behavior, or characteristics of a sample by a surrogate model (explicitly 
or implicitly), which can be directly or indirectly optimized in order to steer measurements. Lookman, T. et al.10,11  
motivated the collaboration of surrogate models and numerical function optimization for the search for new 
material properties. Machine-learning methods have also been used to enhance high-throughput characterization 
of metallic alloy systems based on x-ray diffraction (XRD)12,13. Kusne, A. G. et al.12 used a machine-learning algo-
rithm to implement rapid classification of XRD-derived structure in ternary composition space with enhanced 
accuracy, facilitating discovery of a novel magnetic phase12. Ren, F. et al.13 combined existing structural database 
and physicochemical theories with newly performed XRD experiments on combinatorial sample libraries, to iter-
atively retrain a machine-learning model for glass-forming regions in ternary composition space; this approach, 
in which the model was used to both improve theoretical parameters and provide basis for selecting combinato-
rial libraries to be prepared and measured in the next iteration, led to discovery of new metallic glasses13.

In this paper, we present a method, SMART (Surrogate Model Autonomous expeRimenT), that creates a sur-
rogate model using the Kriging method14, a kind of Gaussian process regression, to steer autonomous x-ray 
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scattering experiments. Kriging is a statistical technique, originating in the geosciences, that can be used to com-
pute a surrogate model that minimizes an estimated error measure between data points. In addition to the surro-
gate model, Kriging also naturally provides a variance for every input point p, which we refer to as error. The 
maxima of this error function are reasonable suggestions for where to localize subsequent measurements15, since 
measurements in high-error parts of the parameter space will necessarily decrease the overall surrogate model 
uncertainty the most, and are thus of high-value from an information-content point of view. For reasons that will 
become apparent later, we use a genetic algorithm to find the maximum of the error function. The method we 
present is agnostic to the underlying meaning of the parameters p: any synthesis, processing, or environmental 
parameter can be included and even combined. Thus, any experiment that can be formulated in terms of an 
abstract parameter space of possible measurements can be steered with the help of the proposed method, in 
which the underlying dependency will be captured by the surrogate model. In principle, Kriging can be used to 
model a parameter space with any dimensionality and for an arbitrary number of experimental data points. In 
practice, for Gaussian regression tools such as Kriging, the computation time scales with the number of data 
points and thus implicitly increases when one tackles higher-dimensional problems since one requires more 
points to meaningfully sample high-dimensional spaces. It is an active research challenge to increase the number 
of sampling points used in Gaussian regression methods16. Despite this problematic scaling, it is worth noting that 
for many experimental problems the computation time is not limiting. For instance, in x-ray scattering 

Figure 1. Schematic of an autonomous x-ray scattering experiment. When the measurement is performed, the 
data acquisition and processing occur automatically. From the processed data, the SMART algorithm selects 
the next measurement parameters. The graphs (bottom) show an example where a one-dimensional problem 
is studied. As the number of measurements (N) increases, the surrogate model (black) more and more closely 
matches the actual physical system behavior (dotted blue). Note here that ordinary Kriging does not put 
emphasis on the characteristic of the function (e.g., high gradients). For this, the surrogate model function has 
to be invoked explicitly as shown in the results section.
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experiments targeting 2–6 parameters, and collecting hundreds or even thousands of data points, the time 
required to recompute the Gaussian regression is similar to the time to conduct each measurement (seconds to 
minutes). We demonstrate autonomous experiments using x-ray scattering, while noting that the method is 
equally applicable to any other measurement technique. SMART is agnostic to the type of experiment since it 
generally does not use any raw data explicitly and therefore only depends implicitly on it. It instead utilizes spe-
cific quantities the analysis software of a given experiment outputs. As long as this output is a set of real numbers, 
the proposed algorithm can be deployed as described in the paper. The generality of the proposed approach sug-
gests that imaging, including bio-imaging and tomographic reconstruction, could benefit greatly from the pro-
posed method. To the knowledge of the authors, this is the first time that Kriging in potentially high-dimensional 
spaces has been combined with function optimization to steer x-ray scattering experiments.

The paper is organized as follows. First, we outline the basic theory. Second, the implementation of the method 
is described in detail. Third, we present validation experiments on synthetic test functions, followed by practical 
SAXS and GISAXS experiments performed at a synchrotron beamline, thereby demonstrating the power of this 
autonomous approach.

theory
preliminaries. The main goal of SMART is to find the function ρ x p( , ) as efficiently as possible. We define 
elements p of an n-dimensional vector space P, which is equipped with the L2 norm. The set of all elements of P is 
compact. We refer to P as the parameter space. The parameters p are the physical variables that define a particular 
material, such as composition, temperature, and pressure. We use ρ to refer to the corresponding measurement 
outcome; either the actual measured values at a given position in the parameter space, or the computed expecta-
tion throughout the space. Figure 1 shows a schematic of an autonomous experiment. We include explicit refer-
ence to sample location x, to emphasize that as far as the mathematical model ρ x p( , ) is concerned, the spatial 
coordinates x can be treated on equal footing to, or as a subset of, the parameters p. In cases where one is only 
considering the x subset of the parameter space, the algorithm is essentially generating an optimized scan-
ning-probe imaging procedure.

SMART: Kriging to obtain surrogate models and error functions. In SMART, Kriging, an instance of 
Gaussian process regression, is used to compute an interpolant that inherently minimizes the estimated variance 
between the data points and also returns a numerical value for the estimated error. Kriging constructs the surro-
gate model as a linear combination of weights w p( ) and data points ρ p( )i , where i is the index of the ith measured 
data point, not the ith component of the vector p. Here, we omit the dependency on x since it is included in p.  
The surrogate model is defined by

∑ρ ρ= wp p p( ) ( ) ( ),
(1)s

i

N

i i

where ρ p( )s  is the surrogate model that we have constructed, ρ p( )i  are the measured values of the true physical 
model ρ at point pi, obtained from the previous measurements.

The goal of Kriging is to minimize the mean squared prediction error14
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given by

σ = − −C w Cw w D2 , (3)T T2
00

where the matrices C and D are defined as

γ= − −C p p1 ( ), (4)ij i j 2

γ= − −D p p1 ( ), (5)i i0 2

where p0 refers to the position in P where the error is to be estimated and γ is the so-called variogram, which is a 
selectively chosen function that serves as a measure for the correlation of data points depending on the distance 
between them. In this work, the variogram is defined as

γ = − −e1 , (6)ah

where h is the euclidean distance between two points −p p1 2 2
. The variable a is chosen in a least squares man-

ner to fit the squared difference of the data. See Fig. 2 for a visualization and more explanation of variograms.
Using minimization of (2) via the Lagrange multiplier method14, and omitting the details, we arrive at an 

expression for the weights

λ= −−w C D 1( ), (7)1

where
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Inserting equations (7) and (8) in equation (3) yields the final expression for the error function or the so-called 
ordinary Kriging variance

σ λ= − −Cp w p D p p( ) ( ) ( ) ( ) (9)T2
00

Figure 2. Computed variograms for two different synthetic test functions and randomly chosen measurement 
locations. The dots represent the difference of data ρ ρ ρ∆ = −p p( ( ) ( ))ij i j

2. The graph represents the fitted 
variogram. The variogram encompasses information about correlation between function evaluations at points at 
different distances and is directly used by Kriging to compute adequate measuring steps. The two test function 
were chosen to highlight the different behavior of the variogram in different situations; one function, that 
changes smoothly and the step function with a sudden drop. It is important that the variogram translates the 
correlation of data correctly, since the true model is never previously known. The variogram is built by fitting a 
predefined function to the squared difference of existing data points in a least-squares manner and is updated 
after each performed measurement to account for the most recent data. The squared differences in the data are 
normalized to unity before the fitting. C and D in equations (4) and (5) are functions of the variogram only. The 
variogram is a function of the euclidean distance. A low-lying variogram means high correlation of data. A 
steeply rising variogram means statistical low correlation of data. (a) Test function portraying a mathematical 
model with correlations at many different length scales. (b) Variogram, γ, for the synthetic test function in (a). 
Model function values are strongly correlated locally, and also over large distances. The average behavior (red 
line) suggests that local information can be extrapolated to relatively far-away parts of the parameter space. (c) 
Test function portraying a mathematical model with small correlations over large distances. (d) Variogram, γ, for 
the synthetic test function in (c). While some model function values are highly correlated, there is a large set of 
pairwise comparisons where the correlation is very poor. The average behavior (red line) suggests that one needs 
to collect information over relatively short distances in order to confidently reconstruct the model function.
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It can be seen in equations (7) and (8) that the Kriging weights solely depend on the variogram and the posi-
tion of the new point p0. The matrix inversion of C only includes preexisting data points and not the model func-
tion value to be estimated at the new point ρ p( )0 . To make the method more sensitive to high gradients of the 
surrogate model, we can weight the error

σ σ ρ= + |∇ |cp p( ) (1 ( ) ), (10)g s
2 2 2

where the weight ∈ ∞c [0, ) is a user-defined real number controlling the impact of the gradient on the autono-
mous experiment. In this work we are choosing this weight ad-hoc. Future work will investigate how this coeffi-
cient can be determined autonomously.

Maximizing the error. Equation (9) defines an error function over the parameter space P. To implement an 
autonomous experiment, the SMART algorithm finds the largest error function value and directs the next meas-
urement to be performed at this point. The characteristics of the error function make an efficient optimization 
difficult. In Fig. 3, we can see that the error function includes a set of narrow ‘pits’ (minima)—which are precisely 
the locations where measurements have already been taken—with large plateaus and low-curvature ridges in 
between. The structure of this error function makes conventional steepest-descent/ascent or Newton based opti-
mization difficult. Furthermore, especially in the beginning of the autonomous experiment, the maxima will be 
located at the boundary of the domain, where optima will not satisfy the first optimality condition (i.e., zero first 
derivatives). Under these circumstances, a genetic algorithm, is a useful tool to search for the maxima, since it will 
not be deterred by optima that are on the boundary and do not satisfy =σ∂

∂
0p

p
( )2

, or by large areas of low curva-
ture in the domain. The greatest drawbacks of genetic algorithms are the inefficiency in high-dimensional spaces, 
and the uncertainty of finding the global optimum. In our case, these deficiencies are not strongly limiting, since 
the dimensionality of materials parameter spaces are modest (<30), and finding the global optimum is not strictly 
necessary, since even a local maximum represents a useful location to perform the next measurement.

implementation. The implementation of our decision-making method is divided into four main subrou-
tines or functions. The program execution starts with the Main function, which initializes the necessary arrays 
and calls a while loop which terminates when the surrogate model resembles the target. Resemblance is estimated 
based on the computed error function; when the error measure drops below a user-defined threshold ε1, the 
experiment is concluded.

Figure 3. Example of an error function used within the Kriging method. The error function drops to zero at 
locations where measurements have already been conducted. Measurement errors can be included in the 
Kriging error, but are commonly neglected for simplicity. If errors are included, the error function will not drop 
to zero but to the specified variance value of the particular measurement. Between the data points, the function 
exhibits low curvature ridges and plateaus. In the early stages of autonomous experiments, where there are few 
data points, maxima are mostly found along the boundary of the domain. These maxima do not generally satisfy 
the first necessary criterion for optima =σ∂

∂( )0
p

2
. In later stages of an autonomous experiment, maxima will be 

found inside the domain but curvatures will often be small, which makes derivative-based optimization 
methods inefficient. Global optimization, however, allows for an efficient optimization for this class of functions 
over bounded, low-dimensional (<30) sets. In the example shown here, the next measurement will take place at 
[20, 40] (marked).
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Within the while-loop in Algorithm 1, the variogram is computed and the optimization is executed, which 
returns the parameters for the next measurement. The returned parameters represent the point in the parameter 
space where the genetic optimization algorithm found the greatest estimated error. The computation of the vario-
gram (Algorithm 2) essentially amounts to comparing all existing data points and fitting the differences by a curve 
(see Fig. 2). The variogram serves as the measure of correlation between the data points.

The actual Kriging algorithm (Algorithm 4) is called within the ComputeFitness function which is called in 
Algorithm 3. Algorithm 4 computes the variance σ2 for every individual in a population. The variance serves as 
fitness in Algorithm 3. The Optimize function (Algorithm 3) uses the fitness of each individual to create offspring 
and eventually to find the maximum of the error function, whose position serves as new parameters for the next 
measurement in the next iteration.

Algorithm 1. Main Function of SMART.

Algorithm 2. Compute variogram given Data.

Algorithm 3. Optimization Function.

https://doi.org/10.1038/s41598-019-48114-3
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tests of the SMARt Methodology
In this section we execute two types of tests. First, we compare the SMART method to simpler data-taking strat-
egies: a random search, a uniform-grid-based experiment, and a largest-unexplored-region (LUR) autonomous 
experiment. To assess the relative quality of measurement strategies, we compare the total prediction error (mis-
match between current surrogate model and true ρ p( )) vs. number of measurements. Although any measurement 
strategy should converge to a perfect reconstruction (zero error) after a large number of measurements, better 
decision-making algorithms will converge to a given error level more rapidly (i.e. using a smaller number of 
measurements). Second, we challenge the SMART method in exploring several synthetic test functions, each of 
which presents a particular difficulty. For the results described herein, synthetic autonomous experiments begin 
with 10 randomly chosen measurements, which is necessary to seed the exploration algorithm. All subsequent 
parameters are predicted using the proposed method.

Comparison to grid-based, random-choice and LUR autonomous experiments. In order to com-
pare the performance of different methods, we define a set of synthetic test functions, which are constructed so 
as to contain both smooth and sharp variations, given that realistic parameter spaces in scientific experiments 
may contain both continuous variation of parameters, as well as discontinuous jumps (e.g. boundaries in phase 
diagrams). For simplicity we use a two-dimensional parameter space:

= ×P [0, 50] [0, 50] (11)

and the following test functions:

=











− | | + | | + ≥
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− | | + | |
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which are plotted in Fig. 4. The second function (13) intentionally includes large jumps in the function value, as a 
test of how the various methods handle large discontinuities in the target function value.

For the grid based approach, we divide the domain in a number of squared sub-domains. The measure-
ments in the grid-based approach are performed at the intersections of the sub-domain boundaries. As the 
name suggests, the random-choice-based method selects the new measurement parameter randomly. The 
largest-unexplored-region-based approach starts by placing measurements at the corners of the domain P. 
Subsequent measurements are placed in the center of the largest circle that can fit between the existing data 
points. The procedure continues until the desired number of measurements have been performed. We compare 
these methods for linear and cubic interpolation by looking at the error defined by

∫ ∫ ρ
=

| − |
.

f dp p p
error

( ) ( )

50 (14)
s0

50

0

50

2

Figure 4 shows the synthetic test functions and the errors as a function of the number of measurements per-
formed. As would be expected, the random-choice strategy performs very poorly. Such a method does not take 
advantage of the structure of the measured data, nor does it attempt to spread measurement points uniformly 
throughout the parameter space. The grid approach can be thought of as the most standard experimentalist 
approach. It intentionally spreads measurements uniformly throughout the parameter space, but does so without 
any regard to existing data. Surprisingly, this approach performs even worse than random sampling. Both LUR 
and Kriging peform better. These methods essentially proceed in a ‘coarse-to-fine’ mode, where they initially 
spread measurements over the entire parameter space (yielding a coarse-grained reconstruction), and then pro-
gressively place new measurements in unexplored areas, thereby filling in finer details (yielding a progressivley 
finer-grained reconstruction). The LUR method is conceptually and computationally simple, but also does not 

Algorithm 4. Compute Fitness for all Individuals in Population.
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take into account the structure of the measured data. The Kriging method, by contrast, measures (through the 
variogram) the length-scale over which the data tends to vary. By incorporating this additional information, 
Kriging is able in most cases to converge slightly faster than LUR.

Smooth synthetic test function. We consider a synthetic test function in two dimensions that is contin-
uous and also smooth. The function includes both large-scale variations (over the entire space) and more local 
oscillations and is defined by

Figure 4. The synthetic test functions defined in equation (12) and (13), and the corresponding error graphs 
depicting the agreement of the surrogate and mathematical model depending on the number of performed 
measurements for several different methods. Note that the two synthetic test functions are very similar, but 
comprise steps of different magnitudes. The difference in magnitude of these steps mainly accounts for the 
different results seen in the error graphs. A more prominent step will translate into a finer sampling of the space 
by Kriging. (a) The synthetic test functions defined in equation (12). Note the two steps. (b) The synthetic test 
functions defined in equation (13). Note the two large steps. (c) Graph depicting the error defined by equation 
(14) when approximating the synthetic test function (12), shown in (a). The data set is interpolated using linear 
interpolation. (d) Graph depicting the error defined by equation (14) when approximating the synthetic test 
function (13), shown in (b). The data set is interpolated using linear interpolation. (e) Graph depicting the 
error defined by equation (14) when approximating the synthetic test function (12), shown in (a). The data 
set is interpolated using cubic interpolation. (f) Graph depicting the error defined by equation (14) when 
approximating the synthetic test function (13), shown in (b). The data set is interpolated using cubic interpolation.
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The results of the progressive SMART-guided sampling of this space can be seen in Fig. 5. The surrogate model 
begins by yielding a coarse-grained reconstruction of ρ, which correctly depicts the overall trend throughout the 
space even with a small number of measurements (Fig. 5a). As the number of measurements increase, SMART 
adds data points to progressively reconstruct the more local features. The presence of these local features is quan-
titatively captured by the global variogram as new measurements probe progressively smaller size-scales. The final 
reconstruction (Fig. 5c) is a highly-faithful replica of the underlying true function (Fig. 5d).

Non-differentiable and discontinuous test function. The surrogate model, computed by Kriging using 
the exponential variogram, is by construction continuous and differentiable, except at point where measurements 
were performed, as long as the variogram is chosen to have these same characteristics. However, in experimental 
measurements, certain ρ values may be discontinuous, leading to a non-differentiable function over P. For 
instance, some experimental measures may essentially be binary classifications (e.g. whether the material forms a 
particular crystallographic structure), or may exhibit very rapid changes over very narrow ranges of p (e.g. near 
phase boundaries). It is thus important to investigate whether the proposed approach handles such cases properly. 
Therefore, we investigate a synthetic test function that is neither differentiable nor continuous:

ρ =
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Figure 5. The synthetic test function and the surrogate model. The surrogate model increasingly resembles 
the synthetic test function. Surrogate model after (a) 20 measurements, (b) 100 measurements and (c) 200 
measurements. (d) Synthetic test function defined in equation (15).
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The synthetic test function and the result of the autonomous experiment are shown in Fig. 6. Although the 
surrogate model is designed to be continuous, it is able to approximate high-gradient areas once data points in 
those areas are available. As can be seen (Fig. 6), the surrogate model begins to more and more closely match the 
discontinuous behavior as more measurement points are added. Thus discontinuities and non-differentiability do 
not by themselves pose a problem. Discontinuous changes in ρ over a space are easily detected by the significant 
change in measured values. SMART will react to this sudden change by globally using a smaller sampling size. It 
is worth noting, however, that highly localized discontinuous features in the space being explored—that is, fea-
tures which do not have any ‘extended footprint’—will be difficult to find using SMART (or any other searching 
method).

A three-dimensional physical test function. To demonstrate the functionality of the method in more 
than two dimensions, we show the results for a three-dimensional physical test function. The model to be approx-
imated is the diffusion coefficient =D D r T C( , , )m  for the Brownian motion of nanoparticles in a viscous liquid 
consisting of a binary mixture of water and glycerol:

πµ
=D k T

r6
,

(18)
B

where ∈r [1, 100] nm is the nanoparticle radius, kB is Bolzmann’s constant, ∈ °T [0, 100] C is the temperature 
and µ µ= T C( , )m  is the viscosity as given by Ref.17, where ∈ . .C [0 0, 100 0]%m  is the glycerol mass fraction. The 
diffusion coefficient of nanoparticles in complex fluids can be measured by x-ray photon correlation spectroscopy 
(XPCS), a coherent x-ray scattering method, which is available at modern x-ray light sources18,19. This example 
emphasizes the need for an autonomously steered experiment. We are putting ourselves in the situation of a 
beamline user who wishes to determine the behavior of the model that depends on three parameters. We are 
assuming that, because of time constraints, only a relatively limited number of measurements can be conducted 
(1000). The options are, either a grid-based method, the LUR method or SMART. For the grid based measure-
ments, each interval was divided into nine equal sub-divisions, bringing the total number of measurements to 
1000. The reconstructed model for different radii can be seen in Fig. 7. The error convergence can be seen in 
Fig. 8. The result shows that, moving towards higher dimensional spaces, the proposed method maintains and 
even increases its superiority.

experimental Validation
In order to validate the concept of autonomous experimentation—and our algorithmic implementation specif-
ically—we carried out a set of experiments at a synchrotron x-ray scattering beamline. Experiments were con-
ducted at the Complex Materials Scattering (CMS, 11-BM) beamline at the National Synchrotron Light Source II 
(NSLS-II), Brookhaven National Laboratory.

Experimental control was coordinated by having three separate Python-based software processes communi-
cating with each other using a network-shared file system. The beamline was controlled using the Bluesky software 
environment20, which enabled control of hardware components (sample positioners, sample exchanger, beam 
shutter, detector, etc.), triggering of data acquisition, and storage of experimental data and metadata. Data analy-
sis was performed using the SciAnalysis software package21, which was used to automatically load, reduce, pro-
cess, and fit experimental data, and thereby generate the experimental ρ signals that are fed into the 
decision-making algorithm. Experimental decision-making was implemented using our custom-written Python 

Figure 6. Test of using SMART on a non-differentiable and discontinuous synthetic test function. The 
surrogate model is able to approximate the underlying non-smooth function as more and more data points 
are collected. (a) Non-differentiable and discontinuous synthetic test functions. The slices, illustrated in 
(b) are indicated. (b) One-dimensional slices through the surrogate model showing the behaviour for non-
differentiable and discontinuous test functions. Note how the smooth surrogate model approaches the shape of 
the test function increasingly with increasing number of measurements.
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implementation of the SMART algorithm. The SMART code analyzes all available experimental data and issues a 
request for the next sample position to measure, which is then read and executed by the beamline control soft-
ware. These three software processes were launched in parallel and allowed to proceed without human interven-
tion for the duration of the experiment.

For the experiments discussed below, the x-ray beam was set to a wavelength of 0.918 Å (13.5 keV x-ray 
energy) using a multilayer monochromator, and small-angle x-ray scattering (SAXS) patterns were recorded on 
a photon-counting area detector (DECTRIS Pilatus 2M) located downstream of the sample. For the experiments 
on block-copolymer thin films, grazing-incidence SAXS (GISAXS) measurements were carried out with a beam 
size of 0.2 mm wide × 0.05 mm high, an incident angle of 0.12°, and a sample-to-detector distance of 5 m. For the 
experiments on a nanoparticle coating, transmission SAXS measurements were performed with a beam size of 
0.2 mm × 0.2 mm and a sample-to-detector distance of 3 m.

Exploration of multi-dimensional material assembly. For this experiment, GISAXS measurements 
were carried out to probe the morphology of nanostructures formed by block-copolymer thin films on silicon 
substrates. Block-copolymers are a class of self-assembling polymeric materials–that is, they spontaneously form 
well-defined nanostructures when the material is heated22. The structure that forms can be measured using SAXS, 
and depends on both material properties (composition, additives, substrate type, etc.) and annealing protocol 
(temperature, time, etc.). For instance, ordered domain size can be quantified by the inverse of the SAXS peak 

Figure 7. The reconstruction of the physical test function defined in equation (18) after a growing number 
of steered measurements (N). The resemblance becomes more pronounced with an increasing number of 
measurements.

Figure 8. The mean absolute percentage error for the grid-based method, the LUR method and SMART when 
approximating the physical test function (18). We can see that the SMART method increases its lead as the 
dimensions of the parameter space increase.
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width23. Recent studies have demonstrated how one can control the ordering in these materials by blending; 
in particular, by mixing block-copolymer materials together with short-chain polymer additives. This notice-
ably improves the quality of ordering24,25, but the resulting materials science problem is multi-dimensional 
(ternary blend composition, film thickness, substrate surface energy, annealing temperature, annealing time) 
and thus challenging to study. Here, we demonstrate how autonomous measurements can assist in exploring 
the underlying multi-dimensional parameter space. For the results presented here, a set of thin film samples of 
polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) were fabricated varying three parameters. Firstly, 
the blend composition (mass fraction of homopolymer PS and PMMA additives), which was varied from 0% 
(pure block-copolymer) to 80% (heavily plasticized). Secondly, the composition of the brush applied to the sub-
strate (denoted by the percentage of PS relative to PMMA), which controls substrate surface chemistry, was varied 
from 60% (roughly equal interactions with PS and PMMA) to 80% (preferential to PS). Finally, the film annealing 
temperature (T) was varied from 230 °C to 280 °C. From the x-ray scattering patterns, we computed the ‘fraction 
vertical’ (amount of nanostructures oriented vertically vs. horizontally) by analyzing the relative intensity of two 
distinct scattering peaks. Samples were placed into a queue at the beamline, and a sample-exchange robot was 
used to load a target sample into the measurement position, as directed by the SMART algorithm. An important 
implementation detail is that the available samples do not continuously cover the underlying parameter space; 

Figure 9. The reconstruction of the model function after 20 (left) and 96 (right) steps for all combinations of 
the parameters. SMART can provide a decent notion of the model very early on in the experimental process, 
while, for instance, a grid-based approach will deliver an incomplete picture if not finished. Therefore, the 
experiment can be conducted using fewer samples.
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instead, the available samples represent a discrete set of points within the space. This common experimental con-
straint would seem–at first glance–to be incompatible with the SMART algorithm, since it naturally operates on 
continuous multi-dimensional spaces. Nevertheless, we found that SMART can easily be adapted to these kinds 
of experimental problems by simply ‘snapping’ the measurement suggestions of the algorithm onto the nearest 
available sample. Snapping works by projecting the actual suggestion to closest allowed location. As can be seen 
in Fig. 9, application of SMART to this experimental problem allows the general structure of the parameter space 
to be reconstructed using a modest number of measurements. Overall, this experimental example demonstrates 
that SMART can be relatively easily applied to handle problems of experimental interest. In particular, it can be 
used to explore multi-dimensional parameter spaces defined by materials parameters, and can be used in cases 
where exploring of parameters must be limited to discrete values.

two-dimensional SAXS imaging of a nanoparticle coating. In this experimental test, we used 
SMART to efficiently map out the two-dimensional structure of a material, as shown in Fig. 10, without any 
human intervention. The sample consisted of nanoparticle coating on a microscope cover glass created by evapo-
rating a droplet of a toluene solution of 12 nm diameter iron oxide nanoparticles. The drying front creates a char-
acteristic “coffee-ring” pattern—a succession of rings of dense nanoparticle deposition. The sample was probed 
in a scanning-imaging mode, where at each sample position a transmission SAXS image was collected at normal 
incidence. The darker regions in the optical image (Fig. 10) are those with high nanoparticle concentration, 
which leads to nanoparticles self-organizing into superlattices; SAXS measurements at these locations gave rise 
to strong structure-factor peaks due to the particle packing distance, with the six-fold packing symmetry being 
frequently apparent (Fig. 1). Regions with little or no nanoparticle coverage exhibited no such peaks and only 
diffuse background scattering. We quantified the amount of nanoparticle signal within a given SAXS image by 
generating the one-dimensional (circular average) scattering pattern, and fitting the first-order peak to obtain a 
measure of scattering intensity.

During the experiment, the SMART algorithm sequentially selects the next point x y( , ) for SAXS measure-
ment, so as to image the coffee-ring pattern as efficiently as possible. For comparison purposes, we perform the 
experiment also using a simple grid approach, as well as the largest-unexplored-region method. To increase sen-
sitivity of the SMART method to edges in the image (i.e., large local gradients), we also test a variant of SMART 
wherein the error function was weighted by the gradient of the surrogate model. To differentiate these methods, 
we refer to the fundamental Kriging method as kSMART, and the gradient-enhanced version as gSMART. 
kSMART needs only a definition of the parameter space limits in order to run successfully and autonomously. 
gSMART requires the selection of a weighting factor which controls the relative contribution of the Kriging error 
signal and the surrogage model gradient signal. The role of this weighting factor, as well as how it can be selected 
autonomously, will be discussed in future work.

For this two-dimensional imaging experiment, the parameter space corresponded to spatial coordinates 
∈ = − . . × − . .x y P( , ) [ 8 5, 8 5] [ 8 5, 8 5] mm. The intensity of the first-order scattering peak (obtained via 

Figure 10. The SMART decision-making algorithm was used to drive an autonomous imaging experiment, 
wherein a nanoparticle coating was measured by scanning an x-ray beam over the sample surface. (a) Optical 
image of the sample used for the autonomous imaging experiment. The sample consists of a “coffee-ring” 
pattern that arises from evaporation of a nanoparticle-containing solution. The dark stripes are regions of 
significant nanoparticle deposition. In these regions, nanoparticles are locally (at the nanoscale) packed into 
arrays. This optical image can be compared to the reconstruction shown in Fig. 11. (b) The final reconstruction 
(surrogate model) obtained by using all the SAXS peak intensity data acquired during the experiment, taken at 
more than 4,000 distinct x y( , ) positions. The x-ray beam illumination area for each individual measurement 
was . × .0 2 mm 0 2 mm in size.
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Gaussian fit with a linear background) served as the experimental ρ value. Ten random measurements were per-
formed to ‘seed’ the algorithm—that is, to provide it with an initial set of measurements from which the surrogate 
and error functions can be computed. The results for the different decision-making approaches are shown in 
Figs. 11 and 12. The grid approach is simple but not satisfactory. The grid spacing was selected arbitrarily by the 
human experimenter and is thus certainly not optimal. This measurement strategy also provides only a partial 
view of the data (at a fixed resolution) until the scan is complete. The LUR algorithm improves upon this by 
instead providing an incremental reconstruction—that is, it begins with a coarse-grained image of the space and 
progressively increases resolution by adding points between existing measurements. However, this approach does 
not take advantage of any features in the measured data and thus misses the opportunity to adapt the data-taking 
strategy to the structure of the data. The kSMART algorithm also proceeds in a coarse-to-fine mode, generating 
progressively refined reconstructions as data-taking proceeds. In this case, however, the measurements are dis-
tributed so as to most rapidly reduce the error of the surrogate model. As can be seen in Fig. 11, this leads to both 
complete coverage of the parameter space, but also a slightly non-uniform distribution of the data-taking. That is, 
SMART has localized measurements where they will add higher value. The gradient-enhanced version (gSMART) 
emphasizes placing new measurements at the location where there is high variation in ρ (high gradient). This has 
the effect of localizing data around edges in the image, and thus gSMART achieves high-resolution reconstruction 
of edges more rapidly than any of the other methods. Overall, SMART thus outperforms the simpler algorithms, 
both by selecting measurement points in a more rigorous and valuable manner, as well as providing auxiliary 
information to the experimenter in the form of the surrogate model and the error function.

Figure 11. Reconstructed images (surrogate model) from autonomous x-ray scattering imaging experiments. 
Different decision-making methods were considered: a naive grid scan, selecting the largest unexplored region, 
the proposed SMART algorithm which measures wherever uncertainty is highest, and a gradient-enhanced 
variant that localizes measurements near edges in the image. The last row presents a plot of the data density. The 
error function for gSMART was weighted by σ σ ρ= + |∇ |p(1 20 ( ) )g s

2
0
2 2  (see equation (10)). The exact locations 

of the measurements are indicated as points. Note, that the density of measurements is very high around high-
gradient regions for the gSMART method. The LUR measurement density is not uniform but unrelated to the 
underlying model function.
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Discussion and conclusion
In this paper, a method to guide autonomous experiments, called SMART (Surrogate Model Autonomous expeR-
imenT) was presented. SMART exploits the Kriging methodology to construct a surrogate model and an error 
function, based on the available experimental data. A genetic algorithm is then used to explore the error function, 
seeking the location with the maximum error. By suggesting this location for the next measurement, the SMART 
algorithm guides the experiment to maximally reduce uncertainty with each new measurement. Naturally, this 
leads to a more rapid decrease in the mismatch between the surrogate approximant and the true structure of 
the data, as compared to more naive data-taking strategies. Through a series of tests on synthetic data as well as 
during real-world use in an autonomous experiment, we find that the SMART methodology is indeed able to rap-
idly converge to a faithful replica of the true structure of the data. Moreover, the surrogate and error models are 
themselves useful to experimenters. The surrogate model acts as a robust fit and interpolation of the experimental 
data. Kriging yields a non-linear interpolation and extrapolation of existing data, where the shape of the model is 
determined by computing the average variability in data across length-scales (via the variogram). The surrogate 
model thus gives the experimenter a useful view of existing data and prediction for the overall trend across the 
parameter space P. The corresponding error function is useful to the experimenter to understand the limitations 
of the surrogate model, and to assess where further data collection would be valuable. The variogram provides the 
experimenter with another way to assess their data, by explicitly monitoring variance as a function of distance in 
the parameter space.

Despite the robustness of the SMART method, there are several trade-offs that should be considered. Our tests 
have shown that the kSMART (based on Kriging only) method yields a more accurate model approximation than 
competing methods, at a given number of performed measurements. However, the largest-unexplored-region 
(LUR) method can sometimes achieve similar performance (see Fig. 4). Kriging uses a variogram, which encom-
passes two sets of information, the distance between data points and the global variance of data values at those 
points. From this variogram, Kriging can determine an ‘appropriate’ distance between measurements; that is, one 
can use the variogram to estimate how closely data-points need to be spaced to robustly sample the space. The 
LUR method, by contrast, ignores the structure of the data, and instead continually decreases the average distance 
between measurements as data taking proceeds. This offers no well-defined termination condition. Kriging can 
be used not only to sample the parameter space in a meaningful manner, but also as a way to terminate data col-
lection (and move on to another task) when a given quality has been reached. The method keeps track of the max-
imum estimated error across the domain, as a byproduct of the optimization step, which can directly be used to 
decide whether an experiment can be terminated. In the context of autonomous experimentation, the additional 
information provided by the variogram and error function can be very valuable in guiding data-taking intelli-
gently. Both methods will eventually achieve a similar average distance between measurements and the accuracy 
of the model will then be similar as well. Looking at Fig. 12, one could ask why the differences in error are not 
more severe. The superiority of SMART depends on the characteristics of the model function and the space P. If 
the space P is large and high-dimensional, randomly chosen points will show only slightly worse error conver-
gence because a newly chosen point has a high probability of being far away from any other point. As more points 
are collected, random choice will perform worse since unnecessary, overlapping information is collected. The 
LUR method will also perform comparably well except that the step length does not depend on the model func-
tion which creates slight inefficiencies. In general, one has to keep in mind that all existing methods are sampling 
methods which need large amount of points to accurately approximate a function. SMART determines a sampling 
distance based on the global variation of the data. While this ensures correctness, it does not guarantee significant 

Figure 12. The dependency of the error, defined by ∫ ρ ρ= −e N N dp( ) ( ( ) )
P s s

0 2 , with respect to the ground 
truth, ρs

0, created by using all available data for the sample, on the number of measurements N for different 
methods. The error for the grid method drops suddenly when the grid-scan has finished sampling the coffee-
ring pattern; thus the location of this drop is particular to the exact sample measured. LUR reduces the error 
more quickly with a small number of measurements, but thereafter plateaus since it does not take advantage of 
the structure of the data. The SMART methods perform best, as they first provide a coarse image (rapid initial 
drop in error) and the progressively refined this image by localizing measurements where they can have the 
most impact (progressive decrease in error). The figure also contains the result of 100 synthetic experiments, 
run with the data obtained at the beamline, to show that the proposed method is consistently outperforming the 
traditional methods. The dashed line shows the mean and the grey area shows the 95% confidence interval.
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gains compared to the LUR or random method, depending on the unknown model function and the total num-
ber of measurements. By simulating the experiment 100 times, we have shown, however, that SMART performs 
consistently better than the competition (Fig. 12). Other experiments showed a larger difference in error (Fig. 8).

The SMART methodology is also easily adapted to other tasks. For instance, we demonstrated how one can 
very simply make the data-taking more ‘edge-seeking’ by adding a gradient term to the error function. More 
generally, the error estimate in Kriging can be augmented with any auxiliary signal in order to enforce different 
measurement tasks appropriate for different kinds of scientific exploration.

Although the Kriging surrogate model is, by definition of our variogram, continuous and differentiable 
(except at points where measurements have been performed), the proposed SMART method can be applied to 
problems where the measurement values change non-smoothly or even discontinuously. The surrogate model is 
able to approximate such regions in the parameter space using high-gradients. Overall this interpolation can be 
arbitrarily close to the measurement reality and is more than sufficient for robust guidance in terms of selecting 
follow-up experiments. Moreover, we note that in practice experimental error and instrumental resolution mean 
that even a strictly discontinuous change in a value will frequently be recorded as a continuous change. While in 
this work the measurement error was assumed to be zero and therefore excluded, it will be explicitly included in 
future work and versions of the code. In case of measurement errors, the interpolant changes from exact to inex-
act, meaning that the surrogate model does not have to pass though the data exactly. The measurement error in 
this experiment was negligible compared to the return value, justifying its approximation as zero.

We have demonstrated the use of the SMART algorithm to automatically control real-world x-ray scatter-
ing experiments at a synchrotron beamline in two and three dimensions. SMART was able to efficiently image 
the real-space structure or model function of the sample being probed, by objectively mapping the entire avail-
able space (sample area) based on the geometry of the data and the estimated global information content of 
the predicted surrogate model. Compared to the most commonly used experimental mapping strategy—the 
uniform-grid-based method—SMART obtained a similar model accuracy about six times faster. However, this 
real-world test also uncovered several shortcomings. Kriging, as an instance of Gaussian process regression, in its 
original and ordinary form, is, unable to use any local information to search the parameter space more efficiently. 
It uses a variogram, which, by construction, is a global average that does not keep track of any local informa-
tion. It is merely a statistical tool to generally express how data points at given distances apart are correlated. 
This traditional form of Kriging does not put emphasis on local structures that are discovered. However, as we 
demonstrated in the case of gSMART, Kriging can be adapted to take advantage of additional information. Indeed 
the addition of gradient information already yields some local information about the structure of the data. The 
density plots in Fig. 11 clearly show how the gradient-weighted Kriging is more sensitive to interfaces or inter-
nal boundaries in the data. This variant of Kriging necessarily includes an additional parameter that controls 
the relative weight of this gradient term compared to the conventional error term. Determining how to set this 
weight to achieve optimal results of course depends on the experimental problem, and can leverage the user’s 
prior knowledge. In future work, we will investigate ways to compute this weight without user input, yielding a 
fully-autonomous algorithm that considers both global and local variation of the data.

Another weakness of Kriging is the sensitivity to different scales of the parameters, since a simple euclidean 
norm is used as distance measurement. When the different axes (p components) are equivalent (e.g. different 
spatial directions), the euclidean norm is a fair distance measure. However, when the different axes represent 
wildly different physical parameters (e.g. temperature and pressure), then this distance measure is not physically 
meaningful. This problem can be somewhat addressed by normalizing distances along the different axes by the 
corresponding domain size (of P); i.e. scaling the overall parameter space to unity in all directions. However, such 
a re-scaling is dangerous because naturally different scales will be ignored. The best way to avoid the issue is to 
choose units so that the parameter limits are of the same order of magnitude. In future work, the issue will be 
avoided by using anisotropic variograms, which will have different length scales in different directions.

In this work, we used a genetic algorithm to find the maximum of the error function. Although this optimiza-
tion method performs reasonably well for the kinds of parameter spaces we are considering, a genetic algorithm is 
not necessarily the ideal choice. In particular, this method loses efficiency as the dimensionality of the parameter 
space increases. As the data acquisition rate and the dimensionality of the parameter space increase, a genetic 
algorithm will not keep up with the demands of delivering an optimum in time for the next measurement. With 
some care and restrictions on potential error functions, other optimization methods could be tested, with some 
likely exceeding the performance of the genetic algorithm.

In future work, different types of variograms could also be tested. In this work, we used an exponential var-
iogram, which allows for non-differentiability at the data point, is simple and generally applicable. Other vari-
ograms, for example the squared exponential kernel or the Matérn variogram class can lead to slightly different 
results, not impacting the core functionality of the proposed method. In future work, the user will be able to chose 
from a variety of different kinds of variograms. See Ref.26 for an overview of commonly used variograms.

One valuable approach to study may be a meta-model approach in which the algorithm learns based on 
the greatest error found by Kriging when, and how strongly, to weight the local errors using the gradient of the 
surrogate model. One great strength of Kriging is the error estimation, which could be used to gradually give 
the gradient of the surrogate model (or its values themselves, or its curvature) more weight as the Kriging error 
declines. More generally, there is ample opportunity to refine the SMART methodology by simply adjusting the 
error model so as to direct the experimentation in a desired manner.

In conclusion, the presented Kriging-based SMART algorithm is a powerful method for selecting candidate 
measurement points in an experimental context, and thus as a decision-making module in an autonomous exper-
iment context. SMART is able to quickly obtain a grasp of the general shape of the parameter space being probed, 
in particular when very little is known, a priori, about it. As information is gathered, the shape of the, now partly 
known, data model can be used to make the search more sensitive to certain features, and thus more efficient.
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