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Abstract

Within triple negative breast cancer, several molecular subtypes have been identified,

underlying the heterogeneity of such an aggressive disease. The basal-like subtype is char-

acterized by mutations in the TP53 gene, and is associated with a low pathologic complete

response rate following neoadjuvant chemotherapy. In a genome-scale short hairpin RNA

(shRNA) screen of breast cancer cells, polo-like kinase 1 (Plk1) was a frequent and strong

hit in the basal breast cancer cell lines indicating its importance for growth and survival of

these breast cancer cells. Plk1 regulates progression of cells through the G2-M phase of the

cell cycle. We assessed the activity of two ATP-competitive Plk1 inhibitors, GSK461364 and

onvansertib, alone and with a taxane in a set of triple negative breast cancer cell lines and in

vivo. GSK461364 showed synergism with docetaxel in SUM149 (Combination Index 0.70)

and SUM159 (CI, 0.62). GSK461364 in combination with docetaxel decreased the clono-

genic potential (interaction test for SUM149 and SUM159, p<0.001 and p = 0.01, respec-

tively) and the tumorsphere formation of SUM149 and SUM159 (interaction test, p = 0.01

and p< 0.001). In the SUM159 xenograft model, onvansertib plus paclitaxel significantly

decreased tumor volume compared to single agent paclitaxel (p<0.0001). Inhibition of Plk1

in combination with taxanes shows promising results in a subset of triple negative breast

cancer intrinsically resistant to chemotherapy. Onvansertib showed significant tumor vol-

ume shrinkage when combined with paclitaxel in vivo and should be considered in clinical tri-

als for the treatment of triple negative cancers.

Introduction

Triple-negative breast cancer (TNBC), defined histologically as estrogen receptor negative,

progesterone receptor negative and absence of HER2/neu amplification, represents 15–20% of
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all breast cancers and is characterized by an aggressive clinical course compared with other

subtypes. Within TNBC, several molecular subtypes have been identified, underlying the het-

erogeneity of such an aggressive disease [1]. The heterogeneous nature of TNBC suggests that

different TNBC subtypes may be associated with very different prognoses and, as described by

Masuda et al, a wide range of pathologic complete response (pCR) rates were observed after

neoadjuvant chemotherapy [2]. The basal-like 2 (BL2) subtype, identified for the first time by

Lehmann and colleagues, is characterized by overexpression of epidermal growth factor recep-

tor (EGFR), loss of PTEN, and mutations in the TP53 gene. In a retrospective analysis con-

ducted at the MD Anderson Cancer Center, patients with BL2 breast cancer had a 0% pCR

rate following neoadjuvant chemotherapy. Thus, BL2 breast cancers are intrinsically resistant

to chemotherapy and patients with this type of breast cancer have a poor overall survival rate.

At the moment, a targeted therapeutic approach for the treatment of basal-like breast cancer

patients does not exist, and patients receive standard chemotherapy with anthracycline, taxane

and/or platinum compounds [3].

In a recent genome-scale shRNA (short hairpin RNA) screen of the SUM series of human

breast cancer cell lines (www.sumlineknowledgebase.com), polo-like kinase 1 (Plk1) was a hit

in several TNBC cell lines, indicating its importance for growth and survival of these breast

cancer cells [4]. mRNA expression, reverse phase protein array and immunohistochemistry

showed a higher expression of Plk1 in TNBC compared with other subtypes of breast cancer

and healthy breast tissue [5, 6]. Plk1 regulates progression of cells through the G2 phase of the

cell cycle by phosphorylating FOXM1, which then regulates the expression of cyclins and

other genes necessary for cells to progress through the cell cycle [7–10]. Two papers provided

clues to a mechanistic basis for Plk1 drug sensitivity. In the early pre-clinical development of

Plk1 targeted drugs, it was observed that cancer cells with TP53 mutations were more respon-

sive and had lower IC50 than cell lines with wild type TP53 [11]. These observations are consis-

tent with the lack of checkpoint control and the genomic instability associated with TP53
mutations, which increases the importance of Plk1 function for progression through G2 and

M phases of the cell cycle. In addition, Tan et al [12] published data suggesting the importance

of a signaling axis involving 3-phosphoinositide–dependent protein kinase-1 (PDK1), Plk1,

and MYC in driving the expression of a set of genes associated with cancer stem cell (CSC)

self-renewal. Thus, it is possible that blocking Plk1 function can, in addition to affecting the

ability of cancer cells with unstable genomes to progress through mitosis, reduce the self-

renewal capacity of cancer stem cells and in that way, increase the overall sensitivity of the cells

to chemotherapy agents such as taxane and platinum derivatives.

A large number of anti-Plk1 agents have been developed and tested under various preclini-

cal and clinical settings, and some of them are currently in clinical trials, with varying degrees

of success [13–31]. One of the major problems associated with the currently available Plk1

ATP-competitive inhibitors is their low degree of selectivity against other kinases, and their

toxicity that could be partly due to their interference with other kinases [13]. A new generation

of anti-Plk1 agents that target the polo-box domain of Plks are currently being tested pre-clini-

cally and have demonstrated improved specificity towards Plk1 [32]. GSK461364 (GlaxoS-

mithKline, Brentford, UK) is a potent, selective, and reversible ATP-competitive Plk1

inhibitor with at least a 390-fold greater selectivity for Plk1 than for Plk2 and Plk3 and a

1,000-fold greater selectivity than for a panel of 48 other kinases [33]. Onvansertib (Trovagene,

San Diego, USA) is an orally available, highly selective Plk1 inhibitor currently under clinical

investigation in solid tumors [34–40].

Based on the role of Plk1 in the basal subtype, and given the potential mechanisms for syn-

ergy between Plk1 inhibition and chemotherapy, we tested GSK461364 and onvansertib across

a panel of TNBC cell lines alone and in combination with taxanes and cisplatin. Also, we tested
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the combination of onvansertib plus paclitaxel in a xenograft model of TNBC. Thus, we not

only elucidated the relative sensitivity of a panel of breast cancer cell lines to Plk1 targeted

drugs, but also attempted to determine if Plk1 inactivation sensitizes breast cancer cells to

taxanes.

Materials and methods

Cell cultures

SUM cell lines were developed by Dr. Stephen P. Ethier and have been previously described

[41]. We received these cell lines directly from Dr. Stephen P. Ethier’s laboratory, and the cells

were maintained as previously described [42, 43]. DU4475 breast carcinoma cell line was from

ATCC, maintained in standard media and used at low passages. MCF10A cells were a gift

from Dr. Herb Soule at the Michigan Cancer Foundation [44]. Short-tandem repeat profiling

of human cell lines is routinely performed in our laboratory (Genetica Cell Line Testing, Bur-

lington, NC, USA).

SUM149 and SUM159 cell line characteristics. SUM149 cells were derived from an Afri-

can American woman affected by locally advanced Inflammatory Breast Cancer, a type of

breast cancer carrying poor prognosis and survival. SUM149 cells have a TP53p.M237I muta-

tion, and as well has a mutation in BRCA1 that is not commonly associated with familial breast

cancer. In addition, they have complete loss of expression of PTEN mRNA and protein with-

out any changes in the coding sequence for the PTEN gene [45, 46]. SUM159 cells, derived by

TNBC primary tumor, have become most widely used for their ability to generate a high frac-

tion of breast cancer stem cells [47]. Expression profiling of SUM159 cells by Perou and others

have put this cell line in the claudin-low subset of basal breast cancers, and it clusters very

close to the MDA-MB-231 cell line, exhibiting mesenchymal features [48]. SUM159 cells

exhibit a highly focal amplification of 8q24 that involves only the MYC gene resulting in high

level amplification and over expression [45, 49, 50].

Growth and clonogenic assays

For the growth assay, cells were plated in 6-well plates at a density of 100,000 cells per well.

Cells were maintained in their normal growth medium for 24 hours before being treated in

triplicate with a wide range of drug concentrations or DMSO. After a 3-day exposure to drug,

cell number was determined by harvesting and counting nuclei with a Beckman Coulter Z1

Particle Counter. We performed this experiment with all cell lines using GSK461364, docetaxel

and cisplatin. IC50 and IC25 for each drug were determined using CompuSyn software. To

study synergy between drugs, cells were plated at the same density of the growth assay, and

treated with the combination of GSK461364 at IC25 and chemotherapy, docetaxel or cisplatin,

at IC50. For each drug combination and in each cell line, a total of six different concentrations

were tested as follows: IC25-GSK461364 + IC50-chemotherapy, double concentration of same combi-

nation, 1/2, 1/4, 1/8 of concentrations, and control. CompuSyn software was utilized to calcu-

late Combination Index (CI) for each combination and cell line [51–53].

For the colony-forming assay, cells were seeded in triplicate at clonal density in 6-well plates

and treated with drugs at 24 hours after plating. At 72 hours, cells were washed and cultured in

normal growth media for 7 to 14 days or until colony sizes reached over 50 cells. For staining,

colonies were stained with 1 mL/well 0.2% crystal violet solution containing 3.7% paraformal-

dehyde for 15 minutes at room temperature and then de-stained with dH2O and air dried.

Colony counts were determined using a GelCount™ colony counter (Oxford Optronix,

Oxfordshire, United Kingdom). The average number of colonies per dish was used to
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determine the colony forming ability at each drug concentration as a measure of clonogenic

potential of the cells.

Tumorsphere assay

For the tumorsphere assays, cultured cells were plated at a density of 20,000 cells per well in

ultra-low attachment 6 well plates (Corning1, USA) in serum-free medium. The serum-free

medium consisted of Ham’s F-12 medium supplemented with 2% B27 (Thermo Fisher Scien-

tific, USA), 25 μg/ml gentamicin (Gemini Bioproducts), 2.5 μg/ml fungizone (Thermo Fisher

Scientific), 20 ng/ml EGF (Sigma-Aldrich, USA), 20 ng/ml bFGF (Sigma-Aldrich), 4 μg/ml

heparin and 0.5 μg/ml hydrocortisone (Sigma-Aldrich, USA). During primary culture, cells

were treated after 24 hours with dimethyl sulfoxide (DMSO, control), docetaxel IC50,

GSK461364 IC50, or both in combination. After seven days, or when spheres diameter

was> 60 um, formed spheres were counted using a Celigo Imaging Cytometer (Nexcelom,

USA). The primary tumorspheres were harvested, dissociated with trypsin and collected. Five

hundred dissociated cells were then cultured in ultra-low attachment 96 well plates (Costar1,

USA) in serum-free medium for an additional seven days in the absence of drug. Secondary

passage tumorspheres were then counted as before.

Cell cycle, immunoblotting and DNA content analysis

For immunoblotting, apoptosis and DNA content analysis, cells were synchronized with dou-

ble thymidine block. For synchronization, SUM149 and SUM159, were treated with 2 mmol/L

thymidine, incubated for 24 hours, then washed with PBS before adding fresh media. After an

18-hour release, cells were again treated with thymidine for an additional 24 hours of incuba-

tion. Finally, cells were released for 2 hours in fresh media and treated with GSK461364,

GSK461364 + docetaxel at the IC50 concentrations and DMSO. Cells were washed with PBS

and lysed in RIPA buffer (Roche), Halt™ Protease Inhibitor Cocktail (100X) (Fisher) and Phos-

STOP Phosphatase Inhibitor Cocktail Tablets (Roche). The lysates were run on a 4–12% gel

(NuPage), transferred to a polyvinylidene difluoride membrane and sequentially probed with

antibodies to Cyclin B1, CDK1, Phosphorus-histone H3 (Ser10), b-actin (Sigma), FoxM1,

Cleaved Parp (Asp214), PLK1 (Cellsignaling), HRP-conjugated secondary antibodies (Bio

Rad). Analysis was repeated at 8, 24, and 48 hours. For DNA content analysis, cells were syn-

chronized and treated with drugs as same as immunoblotting. Cells were collected at 8, 24, and

48 hours and fixed in chilled 70% ethanol and stored at -20˚C. Cells were washed twice with

PBS, and then stained using 20 ug/ml propidium iodide, 0.2 mg/ml RNaseA, and 0.1% Triton

X-100 in PBS. Data were acquired on BD Fortessa X-20 Analytic Flow Cytometer and analyzed

with FlowJo software.

In vivo experiment

All animal procedures were approved by the MUSC Institutional Animal Care and Use Com-

mittee (IACUC) under protocol number 2018–00674 (S1 File). Five million SUM159 cells

were injected in the mammary fat pad of NOD-scid-IL2 receptor gamma null female mice

(Jackson Laboratory). When tumors reached a volume higher than 40 mm3, 35 mice were ran-

domized to receive onvansertib 120 mg/kg day 1–2 every week by oral gavage (P.O.), paclitaxel

10 mg/kg day 1 every week by intraperitoneal injection (I.P.), the combination of the two

drugs at the same dose of single agents, or control vehicles. In each arm, P.O. and I.P. vehicle

was given as per the control arm. Tumors were independently assessed by caliper by two

researchers (A.G. and Y.L.) twice per week and treatments continued for 21 days.

Plk1 inhibition in triple negative breast cancer
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Statistical analysis

Experiments resulting in count data, such as colony forming assays and tumorsphere assays,

were analyzed using poisson regression models. Interaction effects for drug combinations

were included in all models, and linear combinations of the resulting model coefficients were

used to estimate fold changes with 95% confidence intervals from the reference condition.

Two-sided α = 0.05 was used for determining statistical significance. Regression analysis was

performed using the R statistical software package [54]. The combined effects of different con-

centrations of GSK461364 with docetaxel and cisplatin were evaluated, and the CI values were

determined using CompuSyn software [51–53]. Three biological repeats were performed for

each in vitro experiment. For the animal experiments, a group sample size of eight per arm

was determined to attain power of 80% to detect a standardized effect size of 2.003 based on a

two-sample t-test with two-sided α = 0.05/6�0.008. The primary endpoint for the animal

experiments is tumor volume measured longitudinally. We fit a linear mixed effects (LME)

regression model with (log-transformed) tumor volume as the response variable, and fixed

effects for experimental condition, time, and their interaction. The logarithmic transformation

of relative tumor volume is required to satisfy assumptions of approximate normality. Models

will include mouse-specific random effects to account for the correlation among measures

obtained from the same animal over time.

Results

Effect of GSK461364, docetaxel and cisplatin on proliferation of triple-

negative breast cancer cells

The SUM lines showed a range of sensitivity to Plk1 knock-down in an shRNA screening

experiment previously completed (S1 Appendix Table 1) [4]. To study the effect of Plk1 inhibi-

tion in TNBC, we used the Plk1-selective inhibitor, GSK461364 [33]. We assessed the effects

of GSK461364 on proliferation of TNBC SUM149, SUM159, SUM229, SUM1315 and

DU4475 cells, and the non-tumorigenic human breast epithelial cell line MCF10A. DU4475 is

known to be resistant to a wide range of chemotherapies. In a 72-hour growth inhibition

assay, GSK461364 caused growth inhibition with IC50 values ranging from 6.1 nmol/L

(SUM229) to 56.5 nmol/L (DU4475) (Fig 1A). Complete inhibition of cell proliferation was

found in SUM229, SUM1315 and SUM149 cells treated with 25 nmol/L GSK461364. Single

agent docetaxel and cisplatin IC50s were obtained for the same cell lines. As expected, doce-

taxel was found to be highly active in vitro for all cell lines tested, with all cell lines having an

IC50 < 22 nmol/L (Fig 1B). DU4475 was resistant to cisplatin with IC50 = 13.8 μmol/L

(Fig 1C).

Based on the role of Plk1 in the basal subtype, and given the potential mechanisms for syn-

ergy between Plk1 inhibition and chemotherapy targeting the G2-M phase, we combined

GSK461364 at the IC25 dose with each chemotherapy drug at the IC50 concentration, and five

other concentrations as described in methods. In our combination growth assay, GSK461364

showed synergism with docetaxel in SUM149 (CI, 0.7; DRI, 4) and SUM159 (CI, 0.61; DRI,

5.3), and with cisplatin in SUM149 (CI, 0.58; DRI, 4.7), SUM159 (CI, 0.85; DRI 3.8), and

SUM229 (CI, 0.49; DRI, 3.5), respectively (Fig 2). Because of the synergistic combination of

docetaxel and cisplatin with GSK461364 we have observed in SUM149 and SUM159 cells, we

focused on these two cell lines in the next experiments. Based on Lehmann genomic classifica-

tion of TNBC, SUM149 and SUM159 clustered in BL2 and mesenchymal-stem like subtypes,

respectively [1]. The two latter subtypes of TNBC are known to have the lowest response to

chemotherapy (0% and 23% pCR, respectively) [2].

Plk1 inhibition in triple negative breast cancer
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Onvansertib and paclitaxel synergizes in SUM149 and SUM159 cell lines

To confirm synergy between Plk1 inhibition and taxanes, we performed a cell proliferation

assay with the Plk1 inhibitor onvansertib and paclitaxel in two cell lines, SUM149 and

SUM159. In a 72-hour growth inhibition assay, onvansertib caused growth inhibition with

IC50 of 48.5 nmol/L in SUM149 and 49.4 nmol/L in SUM159. Paclitaxel IC50 was 5.5 nmol/L

and 4.1 nmol/L in SUM149 and SUM159, respectively (Fig 3A). In our combination growth

assay, onvansertib showed synergism with paclitaxel in SUM149 (CI, 0.54) and SUM159 (CI,

0.54) (Fig 3B).

Suppression of clonogenic potential by Plk1 inhibition in SUM149 and

SUM159

To determine if GSK461364 resulted in irreversible growth inhibition on SUM149 and

SUM159 cells in addition to the cytostatic effects already demonstrated, clonogenic

survival assays were performed. Cells that had been exposed to the drugs either singly or in

combination were allowed to grow at clonal density for 7–14 days, which resulted in the for-

mation of colonies of equivalent size as those seen with control cells grown for the same

time. First, we determined the effect (EC50) of single agents GSK461364, docetaxel, and

cisplatin on clonogenic capacity of the cell lines (Fig 4A), and then used data from those

experiments to determine the effect of the drug combinations on clonogenic potential.

GSK461364 plus docetaxel interacted synergistically to decrease the clonogenic potential of

SUM149 and SUM159 (p < 0.001 and p < 0.001, respectively; Interaction Test, p = 0.001

and p = 0.03, respectively) (Fig 4B and 4C). There was a 13-fold difference in clonogenic

potential with Plk1 inhibition compared to docetaxel alone in SUM149, and a 3-fold differ-

ence with Plk1 inhibition and docetaxel compared to docetaxel alone in SUM159. The

results of the experiment performed in this way confirmed the results shown in Fig 2, indi-

cating that the effect of GSK461364 plus docetaxel on the clonogenic potential of SUM149

and SUM159 cells is a true effect on cell survival and not the result of the cytostatic proper-

ties of the drug.

Fig 1. TNBC cell lines have diverse sensitivity to Plk1 inhibition and chemotherapy. TNBC cell lines: SUM149, SUM159, SUM229, SUM1315 and DU4475 cells, and

the non-tumorigenic human breast epithelial cell line MCF10A. TNBC cell lines were treated for 72 hours in triplicates. Three replicate data were performed for each

concentration and the best dose–response model (r conformity closest to 1) was selected and graphed. After a 72 hours exposure to drug, cell number was determined by

harvesting and counting nuclei with a Beckman Coulter Z1 Particle Counter. IC50, IC25, and r conformity were determined using CompuSyn software. (A) Sensitivity to

GSK461364, Plk1 inhibitor, in TNBC cell lines; IC50, IC25, and r conformity were reported for GSK461364. (B) TNBC cell lines sensitivity with respective IC50 and r

conformity to docetaxel. (C) TNBC cell lines sensitivity with respective IC50 and r conformity to cisplatin.

https://doi.org/10.1371/journal.pone.0224420.g001
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When combined with docetaxel, GSK461364 reduced tumorsphere

formation of SUM149 and SUM159

There is evidence that breast cancer cells with a stem cell-like phenotype are metastasis-form-

ing cells in breast cancer [55]. Both SUM149 and SUM159 cells are able to generate

Fig 2. Plk1 inhibition synergizes with docetaxel and cisplatin in SUM149 and SUM159. (A), Combination index

(CI) curves for the 6 cell lines treated with GSK461364 plus docetaxel or cisplatin. TNBC cell lines: SUM149, SUM159,

SUM229, SUM1315 and DU4475 cells, and the non-tumorigenic human breast epithelial cell line MCF10A. TNBC cell

lines were treated with the Plk1 inhibitor GSK461364 (g) at the IC25 dose plus each chemotherapy drug (d, docetaxel; c,

cisplatin) at the IC50 concentration. (B), CI and DRI values for each combination of GSK461364 plus chemotherapy.

CI and the dose-reduction index (DRI) values were determined using CompuSyn software. CI<1 indicates a

synergism. DRI>1 indicates a favorable dose reduction.

https://doi.org/10.1371/journal.pone.0224420.g002
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tumorspheres in vitro [56]. To explore the synergistic effect of chemotherapy plus Plk1 inhibi-

tion on the stem cell activity and self-renewal potential of these cell lines, we analyzed the

tumorsphere formation in presence or absence of docetaxel, GSK461364, and the combina-

tion. At the IC50 concentration identified in the proliferation assay, docetaxel plus GSK461364

significantly reduced primary tumorsphere formation in both SUM149 and SUM159 (0.06

and 0.02-fold decrease of control levels, respectively; interaction test, p = 0.01 and p< 0.001,

respectively, as shown in S1 Appendix Table 2) (Fig 5A). During the secondary assay, cells

treated with single agent docetaxel demonstrated an increased proportion of tumorspheres, to

a 2.12-fold of control levels in SUM149 cells and to a 1.7-fold of control levels in SUM159

cells. After combination of docetaxel plus GSK461364, the number of tumorspheres decreased

to a 0.21-fold in SUM149 and a 0.2-fold in SUM159 of control levels (Fig 5B) (Table 1). In the

analysis of cancer stem cells marker, we found that the combination GSK461364 plus docetaxel

decreased the number of CD44+/CD24-/dim in SUM149 (from 26% in DMSO to 18% after

treatment, S1 Appendix Fig 1A) and SUM159 (from 89% in DMSO to 77% after treatment,

Fig 3. Onvansertib synergizes with paclitaxel in SUM149 and SUM159. SUM149 and SUM159 cells were treated for 72 hours in triplicates with

onvansertib and paclitaxel (A). After a 72 hours exposure to drug, cell number was determined by harvesting and counting nuclei with a Beckman

Coulter Z1 Particle Counter. IC50 was determined using CompuSyn software. SUM149 and SUM159 were treated with the Plk1 inhibitor onvansertib

(o) at the IC50 dose plus paclitaxel (p) at the IC50 concentration (B). Combination Index (CI) values for each combination of onvansertib plus paclitaxel

were determined using CompuSyn software. CI<1 indicates a synergism.

https://doi.org/10.1371/journal.pone.0224420.g003
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S1 Appendix Fig 1B) compared to control (DMSO). We demonstrated that Plk1 inhibition

plus docetaxel can reduce CSC formation of SUM149 and SUM159 cells and that Plk1 inhibi-

tion can sensitize otherwise resistant TNBC cells to chemotherapy.

Effect of GSK461364 on cell cycle, apoptosis and DNA content in SUM149

and SUM159 cells

The effect of Plk1 inhibition on the cell cycle has been well characterized, and it typically leads

to prometaphase arrest. Consistent with previous results [57], the biological effects of Plk1

inhibitor GSK461364A are highly dose, time, and cell line dependent. To investigate the effect

of GSK461364 plus docetaxel on cell cycle at different time points, SUM149 and SUM159

were synchronized by double thymidine block and after 2 hours release, treated with control

(DMSO), drugs alone or in combination. Protein lysates at different time points (8, 24 and 48

hours) after drug treatment were examined for expression levels of the cell cycle markers

PLK1, FOXM1, Cyclin B1, CDK1, and phosphorylated histone H3 (pH3), as well as apoptosis

by identification of cleaved PARP (89 KDa) (Fig 6A). GSK461364 alone, and with docetaxel,

Fig 4. Plk1 inhibition suppresses the clonogenic potential of SUM149 and SUM159. (A) TNBC cell lines (SUM149, SUM159, SUM229, SUM1315 and DU4475 cells,

and the non-tumorigenic human breast epithelial cell line MCF10A) were incubated with GSK461364, docetaxel, and cisplatin at the indicated concentrations for 24

hours; the medium was then changed to remove the drug, and colony formation was measured 7–14 days later. (B) EC50 was defined as 50% colony inhibition. Single

agents EC50 were reported for each TNBC cell line and drug. According to the synergistic combination of docetaxel and cisplatin with GSK461364 we have observed in

SUM149 and SUM159 cells, we focused on these two cell lines in the next experiments. (C), Colony forming assay photographs for single agents GSK461364, docetaxel,

and cisplatin, with the respective combinations, in SUM149 and SUM159. (D) Histograms show colony formation rates, normalized to DMSO colony number for each

cell line, for single drug and respective combinations; GSK461364 plus docetaxel interacted synergistically to decrease the clonogenic potential of SUM149 and SUM159

(p< 0.001 and p< 0.001, respectively; Interaction Test, p = 0.001� and p = 0.03+, respectively).

https://doi.org/10.1371/journal.pone.0224420.g004
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induced increased expression of PLK1. This phenomena could be consequent to attempted

override of drug-induced PLK1 inhibition through a positive feedback mechanism of the pro-

tein [35]. GSK461364 induced mitotic arrest (Cyclin B1 and PLK1 accumulation followed by

pH3 accumulation) earlier in SUM159 compared to SUM149. This difference could be

explained by the fast doubling time and earlier mitosis entry by SUM159 compared to

SUM149. Treatment with single PLK1 inhibitor induced apoptosis after 24 hours in both cell

lines (Fig 6A). In the DNA content analysis with propidium iodide, the percentage of aneu-

ploid SUM149 (Fig 6B) and SUM159 cells (Fig 6C) increased over time (24–48 hours) after

treatment with GSK461364, and even more considerably after combination of GDK461364

with docetaxel. Indeed, greater aberrant mitotic exit and apoptosis was observed when

Fig 5. GSK461364 plus docetaxel reduce tumorsphere formation of SUM149 and SUM159. (A, histograms and B, pictures) For the primary tumorsphere assay, we

analyzed the tumorsphere formation in presence or absence of docetaxel, GSK461364, and the combination at the IC50 concentrations identified in the proliferation

assay; SUM149 and SUM159 cells were plated at a density of 20,000 cells per well in ultra-low attachment 6 well plates and after 24 hours treated with DMSO (control),

docetaxel IC50, GSK461364 IC50, or both in combination. Formed spheres were counted using the Celigo Imaging Cytometer (Nexcelom, USA). GSK461364 plus

docetaxel decreased primary tumorsphere formation of SUM149 and SUM159 (Interaction Test, p = 0.01� and p< 0.001+, respectively). (C, histograms and D, pictures)

Dissociated tumorspheres (N = 500) were plated in ultra-low attachment 96 well plates (Costar1, USA) in serum-free medium for an additional seven days in the absence

of drug. Secondary passage tumorspheres were then counted as before. GSK461364 plus docetaxel decreased primary tumorsphere formation of SUM149 and SUM159

(Interaction Test, p< 0.001+ and p< 0.001+, respectively). Poisson regression model with drug interaction was used to assess statistical differences.

https://doi.org/10.1371/journal.pone.0224420.g005
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SUM149 and SUM159 cells were treated with the combination of Plk1 inhibitor plus docetaxel

(Fig 6D).

Onvansertib plus paclitaxel leads to decreased breast cancer tumor size in

vivo

We examined the effect of PLK1 inhibition via treatment with onvansertib, an oral available

PLK1 inhibitor, alone or in combination with paclitaxel on mouse xenograft models of the

mesenchymal breast cancer SUM159. We choose paclitaxel for its better myelotoxicity profile

in a weekly schedule in human [58]. A total of 35 mice were randomized to receive P.O. vehicle

plus I.P. vehicle (N = 8), P.O. onvansertib 120 mg/Kg on day 1 and 2 every week plus I.P. vehi-

cle (N = 9), I.P. paclitaxel 10 mg/Kg on day 1 every week plus P.O. vehicle (N = 8), P.O. onvan-

sertib 120 mg/Kg on day 1 and 2 every week plus I.P. paclitaxel 10 mg/Kg on day 1 every week

(N = 10) (Fig 7 and S1 Appendix Fig 2). The LME regression model provides all fixed effects

for experimental condition (onvansertib, paclitaxel, onvansertib plus paclitaxel and control),

time (3, 7, 10, 14, 18 and 21 days), and their interaction are significant (p-value < 0.0001 in all

effects) (S1 Appendix Table 3). Onvansertib and paclitaxel demonstrated similar tumor growth

inhibition when compared to controls (difference = -0.406 and -0.337 with p = 0.262 and

0.340, respectively, at 21 days). The combination onvansertib plus paclitaxel was significantly

superior to single agent treatment with difference of -1.346 compared to onvansertib alone

and -1.414 compared to paclitaxel alone (p<0.0001 and p<0.0001, respectively) (S1 Appendix

Table 3).

Discussion

In our study we showed that Plk1 inhibition synergizes with taxane and cisplatin in SUM149

(basal-like subtype), and in SUM159 cells (mesenchymal subtype), two subtypes of TNBC

known to have poor response to conventional chemotherapy [59]. The results of the growth

assay showed a favorable dose reduction of two Plk1 inhibitors, GSK461364 and onvansertib,

when combined with a taxane. Also, we found that GSK461364 plus docetaxel was able to sig-

nificantly reduce the clonogenic potential and the stem cell fraction of SUM149 and SUM159

cells. SUM149 and SUM159 are relatively sensitive to cisplatin and synergy with GSK461364

was not observed in our colony forming assay. The combination should be explored in

Table 1. Statistical analysis for secondary tumorsphere formation assay.

Condition Fold Change 95% C.I. p-value

SUM149

DSMO 1 (reference) NA

GSK461364 1.17 0.89–1.55 0.26

Docetaxel 2.12 1.65–2.71 <0.001

GSK461364+Docetaxel 0.21� 0.13–0.35 <0.001

�Interaction p-value < 0.001

SUM159

DSMO 1 (reference) NA

GSK461364 1.67 1.13–2.49 0.01

Docetaxel 1.70 1.14–2.52 0.01

GSK461364+Docetaxel 0.20� 0.09–0.43 <0.001

�Interaction p-value < 0.001

C.I., confidence intervals; NA, not applicable.

https://doi.org/10.1371/journal.pone.0224420.t001
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additional cell lines more resistant to cisplatin. Finally, onvansertib, an oral highly selective

Plk1 inhibitor, demonstrated in vivo activity in a xenograft model of TNBC, especially when in

combination with paclitaxel.

Based on the fact that Plk1 is required for mitotic entry during recovery from G2 arrest

induced by DNA damage [60], and based on our preliminary data in which Plk1 is a functional

key gene in the basal-like cell line SUM149, we demonstrated that Plk1 inhibition synergized

with chemotherapies such as taxane, specifically inhibiting the G2-M transition, inducing

aberrant mitotic exit, and apoptosis and the elimination of stem cell-like resistant tumor

clones. Taxanes bind β-tubulin and induce mitotic arrest and apoptosis in actively dividing

cells by inhibiting microtubule depolymerization [61]. As described in detail previously [13],

Fig 6. Cell cycle immunoblotting, apoptosis and DNA content analysis. For immunoblotting, apoptosis and DNA content analysis, cells were synchronized with

double thymidine block. Cells were released for 2 hours in fresh media and treated with GSK461364 (G), GSK461364 + docetaxel (G+D) at the IC50 concentrations, and

DMSO (control). (A) Immunoblotting of Plk1, FoxM1, Cyclin B1, CDK1, Phosphorus-histone H3 (Ser10), Cleaved PARP (89KDa), and β-actin were repeated at 8, 24,

and 48 hours. For DNA content analysis, SUM149 (B) and SUM159 (C) cells were collected at 8, 24, and 48 hours and stained with propidium iodide. Data were acquired

on BD Fortessa X-20 Analytic Flow Cytometer and analyzed with FlowJo. DNA copy content data showed in B and C were summarize in the histograms in D.

https://doi.org/10.1371/journal.pone.0224420.g006
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Plk1 contributes to paclitaxel resistance via its ability to regulate microtubule dynamics and

microtubule–kinetochore attachment. Overall, approximately 20%–40% of TNBC patients

achieve a pCR after standard anthracycline plus cyclophosphamide and taxane-based neoadju-

vant chemotherapy [62]. Basal-like and mesenchymal subtypes have been shown to have lower

rates of pCR (0–23%) compared to other subtypes of TNBC [2]. Based on the tumorsphere

control of GSK461364 plus docetaxel, we hypothesize that combination of a Plk1-targeted

drug plus a taxane will increase the pCR rate and thus survival of TNBC patients.

The sensitivity to Plk1 inhibition toward p53-deficient tumors compared with that of wild

type p53 tumors could potentially offer an opportunity to treat breast tumors that are refrac-

tory to standard chemotherapy such as basal-like TNBC. Several papers showed that Plk1

interacts with the tumor suppressor p53 and that Plk1 is a direct transcriptional target of p53

[63–65]. In agreement with our data, Tan et al. described in detail previously [12] that PLK1

inhibition in highly invasive breast cancer MDA-MB-231 cells resulted in depletion of CSC-

like CD44+/CD24−/low populations and accordingly significantly reduced tumorsphere forma-

tion. SUM149 and SUM159, like most TNBC cell lines [66], have TP53 mutations and were

demonstrated to be sensitive to Plk1 inhibition in combination with taxanes. Supported by

consistent results published in the literature [11, 63–65, 67], preclinical results warrant testing

TP53 status as hypothetical biomarker of response to Plk1 inhibitors in the clinical setting.

Because of the off-target toxicity encountered in the phase I trial of GSK461364 [33], we have

decided to not utilize this drug in vivo. After we confirmed synergy in vitro, we combined

onvansertib with paclitaxel for the treatment of xenograft models with SUM159 cells, known

to be particularly aggressive and resistant to taxanes [68]. Onvansertib was found to have simi-

lar activity than paclitaxel in vivo, however in combination, onvansertib plus paclitaxel signifi-

cantly reduced tumor volume compared to single agents.

To date, the majority of clinical trials with Plk1 inhibitors in solid tumors have been discon-

tinued because of the serious side effects and drug limiting toxicity experienced with these

drugs as monotherapy. GSK461364 has shown off-target effects and its clinical development

has been placed on hold, specifically, due to the high incidence (20%) of venous thromboem-

bolism observed in the phase I trial. Further clinical evaluation of GSK461364 should involve

administration of prophylactic anticoagulation [33]. Volasertib (Boehringer Ingelheim,

Fig 7. In vivo efficacy of onvansertib alone or in combination with paclitaxel against SUM159 xenografts. SUM159 cells were implanted

in the mammary fat pad of NOD-scid-IL2 receptor gamma null female mice, and treatments began 14–21 days later when tumors were well

established (tumor volume� 40 mm3). Onvansertib was given by oral gavage (PO) on two consecutive days every week; paclitaxel was

given intraperitoneally (IP) once per week; controls received PO vehicle on two consecutive days every week and IP vehicle once per week.

Tumor volume was assessed twice per week and mice treated for 3 weeks. Mean of tumor volume with standard errors of the mean were

plotted.

https://doi.org/10.1371/journal.pone.0224420.g007
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Ingelheim, Germany), an ATP-competitive kinase inhibitor with higher potency and selectiv-

ity, is the Plk1 inhibitor in the most advanced phase in clinical trials. Volasertib synergized

with microtubule-destabilizing drugs, such as taxanes and vinorelbine, in preclinical rhabdo-

myosarcoma and Ewing sarcoma models [39, 69]. However, based on several phase I-II clinical

trials [16–24], volasertib has been discontinued from clinical experimentation in solid tumors

due to hematologic toxicity and low response rate when utilized as single agent. Onvansertib is

the only Plk1 inhibitor currently under investigation in clinical trials for solid tumors, and its

safety profile was characterized in a Phase I dose escalation study in advanced and metastatic

solid tumors [40]. Onvansertib is being evaluated in combination with abiraterone and predni-

sone in adult patients with metastatic castration-resistant prostate cancer (NCT03414034),

and in combination with FOLFIRI and bevacizumab in metastatic colorectal cancer patients

with a Kras mutation (NCT03829410). Our preclinical results and the safety profile from the

Phase I trial by Weiss et al. support the investigation of Plk1 inhibition with onvansertib in

combination with taxane for the treatment of TNBC patients and TP53 mutations as bio-

marker of response.

Conclusions

Based on the dramatic synergy we found at a favorable dose reduction and the ability to reduce

CSCs of TNBC cells, the combination of a Plk1 inhibitor plus a taxane should be further inves-

tigated in a clinical trial for TNBC patients. Taken together, our results showed a substantial

synergy of Plk1 inhibition and chemotherapy in basal-like and mesenchymal TNBC and war-

rant development of a clinical trial with onvansertib in combination with paclitaxel in a subset

of breast cancer that currently carries a poor prognosis, and for which no targeted therapies

exist.
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