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Abstract: Tissue engineering (TE) is the approach to combine cells with scaffold materials and appro-
priate growth factors to regenerate or replace damaged or degenerated tissue or organs. The scaffold
material as a template for tissue formation plays the most important role in TE. Among scaffold
materials, silk fibroin (SF), a natural protein with outstanding mechanical properties, biodegrad-
ability, biocompatibility, and bioresorbability has attracted significant attention for TE applications.
SF is commonly dissolved into an aqueous solution and can be easily reconstructed into different
material formats, including films, mats, hydrogels, and sponges via various fabrication techniques.
These include spin coating, electrospinning, freeze drying, physical, and chemical crosslinking tech-
niques. Furthermore, to facilitate fabrication of more complex SF-based scaffolds with high precision
techniques including micro-patterning and bio-printing have recently been explored. This review
introduces the physicochemical and mechanical properties of SF and looks into a range of SF-based
scaffolds that have been recently developed. The typical TE applications of SF-based scaffolds
including bone, cartilage, ligament, tendon, skin, wound healing, and tympanic membrane, will be
highlighted and discussed, followed by future prospects and challenges needing to be addressed.

Keywords: silk fibroin; biomaterial; scaffold; tissue engineering

1. Introduction

Damaged and degenerated tissue, as well as failed organs, are some of the most serious
issues in human healthcare, generating many challenges in modern medicine. For example,
musculoskeletal tissue (bone, tendons, and cartilage), as well as the peripheral nervous
system, are easily impaired by trauma and degenerative diseases such as osteoarthritis.
This affects millions of people worldwide, severely affecting the quality of life and resulting
in extreme pressure on healthcare systems worldwide [1,2]. Typically, autografts and
allografts are the common clinical techniques to replace damaged tissues, but restricted
by various factors, such as lack of tissue that can be removed from the patient in healthy
areas, as well as a shortage of suitable donors [3]. Success rates of allografts can be low
as tissue from others may have an immune response. In the case of extensive damage,
large surface areas of defects, it is hard to source suitable material in time leading to
low success rates [3–5]. It is for these reasons that tissue engineering (TE) has attracted
increasing attention as the alternative method to produce patient-specific tissues for repair
and replacement applications.

TE combines several principles and methods to regenerate damaged tissues or organs
by restoring, maintaining or improving tissue functions. Furthermore, TE relies extensively
on the use of biocompatible scaffolds which are typically seeded with cells and contains
supportive moieties such as growth factors [6,7]. Regardless of the tissue types, there are
several key factors that should be considered when designing a scaffold. These include
biocompatibility, biodegradability, mechanical properties, structure, and fabrication meth-
ods [7,8]. The extracellular matrix (ECM) secreted from tissues or organs is an excellent
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natural option as a scaffold material for TE, and exists in a state of “dynamic reciprocity”
with resident cells [9]. Therefore, ECM components such as collagen [10], fibronectin [11],
laminin [12], elastin [13], and glycosaminoglycan [14] have been widely used as natural
scaffold materials to support tissue regeneration applications. In addition, other natural
polymers such as alginate, [15] cellulose [16], and chitosan [17] have also been used in TE.
Although the natural polymers discussed above have demonstrated promising results,
these materials also have many drawbacks including high cost, poor mechanical prop-
erties, and large batch to batch variation, making them difficult to be applied to clinical
applications [18]. On the other hand, synthesized polymers, such as polylactic acid (PLA),
polyurethane (PU), poly(lactide-co-glycolide) (PLGA), and polycaprolactones (PCL), have
been widely used in TE due to their good mechanical properties and degradation rates [19].
However, many degradation products of these polymers comprise of acidic compounds
that are harmful to the body and can cause undesired immune responses. As most of the
natural and synthesized polymeric scaffolds possess their inherent limitations, finding a
biomaterial that combines the goodness of both natural and synthesized polymeric materi-
als have become the aspirations of researchers in the last decades [20]. Recent studies have
explored the possibilities of silkworm silk as an excellent biomaterial for TE scaffolds.

Silkworm silk has been commercialized in the traditional textile industry for more
than 4000 years, due to its outstanding physical properties, such as lustre, lightweight,
flexibility, and strong mechanical strength [21]. Moreover, silk has been approved by the
Food and Drug Administration (FDA) for use in sutures and has been applied to biomedical
applications for the last 2 decades [22,23]. Silk fibroin (SF), extracted from silkworm silk, is
a unique natural protein that has been used as a potential biopolymer for TE, due to many
desired physiochemical properties such as excellent biocompatibility, biodegradability,
bioresorbability, low immunogenicity, and tuneable mechanical properties [24–27]. SF
also can be combined synergistically with other polymers to form SF-based composite
scaffolds, that can further promote cellular behaviour (e.g., differentiation, proliferation,
and attachment) [28–30]. Further to this it is possible to fabricate SF-based biomaterials into
various material formats, such as films [31], hydrogels [32], sponges [33], 3D structures [34],
and nanoparticles [35]. In this review, we introduce the sources, material properties,
fabrication techniques and applications of silk scaffolds with an emphasis on bone, cartilage,
ligament, tendon, skin and wound tissue regeneration.

2. Sources of Silk and Silk Fibroin

Silks are proteins which are produced within glands after biosynthesis in epithelial
cells. There are over 200,000 different silk-producing arthropods that exist in nature [35].
Out of these, there are many different taxonomic silk-producing families such as silkworms,
spiders, lacewing, glowworm, and mites, some of which can spin silk into fibers during
their metamorphosis (cocoon generation) [36,37]. Recently, Yoshioka et al. [38] discovered
that the Psychidae family, also known as bagworm moths, are thought to produce the
toughest form of moth silk currently known. Silks originating from silkworms and spiders
are the most commonly used for biological applications [39–41]. However, in the case of
spider silk once it is spun and contacts air it hardens, which restricts mass production of
spider silks. Compared to spiders, the yield of fibers obtained from one silkworm cocoon is
around 10 fold that of the ampullate gland of a spider [36,42]. Although researchers have
used a biomimetic spinning process to replicate spider silks, producing spider silk-like
fibers with mechanical properties similar to natural spider silk fibers is challenging [43].
Andersson et al. [44] designed a chimeric recombinant spider silk protein that can produce
large quantities artificial spider silks via a bacterial shake-flask culture. The mechanical
properties of these artificial spider silks are highly reproducible. However, the reported
ultimate tensile strength and toughness are still lower than the of native spider silk fibers.

Bombycidae and Saturniidae are known to play the most important roles in silkworm
silk research, which feed on either the mulberry tree (Bombycidae) or other food sources,
the latter being regarded as non-mulberry (Saturniidae) silks. The most common silk
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originates from Bombyx mori (B. mori), a mulberry feeding silkworm that produces higher
quality fibers than most Saturniidae [45,46]. Additionally, unlike other silk moths, over the
last 5000 years, B. mori was domesticated from an ancestral species in China and has since
then been extensively reared worldwide to obtain its silk [47]. B. mori silkworm cocoons
consist of 75–83.3% SF and 16.7–25% of sericin [48]. SF is a semi-crystalline structured
protein, functioning mainly for its load-bearing capacity. Sericin on the other hand is an
amorphous protein-polymer functioning as a gumming agent [49]. It has been found that
sericin-free fibroin fibers show better mechanical properties than sericin encased fibroin,
where a 50% increase in tensile strength, a modulus of up to 15–17 GPa and strain at
breakage reaching 19% has been observed [50]. Furthermore, sericin-free fibroin fibers also
show better biocompatibility in-vitro and in-vivo according to previous reports [51]. In
addition, sericin has been shown to cause inflammation [52]. Therefore, sericin proteins are
often removed from SF to ensure biocompatibility in TE applications.

Sericin is removed from the SF fibers by a degumming process, which is normally
carried out under boiling alkaline conditions [53]. Researchers continuously work on
improving the degumming process which typically requires reagents and organic solvents
to obtain higher quality of pure SF. The sodium carbonate (Na2CO3) degumming method
has, at present replaced the standard Marseilles soap method, and is now the most used
method due to being rapid (~30 min) and low cost [54,55]. It is worth noting that, after
degumming, the average diameter of silks fibers was reduced to 10 to 25 µm [56].

3. Properties of Silk Fibroin
3.1. Structure of SF

SF consists of two main chains, a heavy (H-) chain (390 kDa) and a light (L-) chain (26 KDa),
which are linked via disulphide bonds to form a H-L complex (Figure 1A) [39,40,57,58]. P25
(25 KDa) is a glycoprotein includes Asn-linked oligosaccharide chains, which is hydrophobically
linked to H-L complex [59]. The H-chain, L-chain, and P25 are the three polypeptides that
form the cocoon of B. mori and are found at a molar ratio of 6:6:1, respectively [60]. The amino
acid sequence of the H-chain consists of Glycine (45.9%), Alanine (30.3%), Serine (5.3%), Valine
(1.8%), as well as 4.5% of 15 other amino acid types. The Gly-X (GX) dipeptide motif repeats
account for 60–75% of the H-chain. The hydrophobic residues of the dipeptide repeats can form
stable antiparallel β-sheet crystallites. The two hexapeptides occupy 70% of the GX dipeptide
motif region, for which the peptide sequences are known to be Gly-Ala-Gly-Ala-Gly-Ser and
Gly-Ala-Gly-Ala-Gly-Tyr [61–64]. Silk I and silk II are the dominant crystalline structures of
SF (Figure 1B), where silk I is a metastable crystalline structure that includes bound water
molecules and silk II is the most stable state due to strong hydrogen bonding between adjacent
peptide blocks, resulting in increased mechanical properties including rigidity and tensile
strength [39,65,66].

The secondary structure obtained from regenerated silk fibroin (RSF) solutions con-
tains crystalline and amorphous structures, which will be discussed below. In a crystalline
structure, silk includes β-turns (silk I) and insoluble structures formed by folded β-sheets
(silk II), while in an amorphous state silk consists of α-helices, turns and random coil
structures [67]. Methanol or potassium chloride can easily convert silk I to silk II, a process
which is widely used for biomaterial engineering applications [34]. Silk III is the unstable
crystal structure of SF, which exists at the air–water interface of RSF solutions [68].

3.2. Mechanical Properties

SF fibers have demonstrated outstanding mechanical properties [56,69,70]. These
include a large break strain (4–26%), ultimate strength (300–740 MPa) and toughness
(70–78 MJ m−3) [70]. In addition, the reported toughness of SF fibers is higher than many
synthetic fibers such as Kevlar (50 MJ m−3), carbon fiber (25 MJ m−3), and some collagens
such as tendon collagen (7.5 MJ m−3) [43,71]. In addition, SF fibers exhibit the highest
strength among common natural materials such as wool, resilin, elastin, byssus, and
cotton, as well as some synthetic fibers such as synthetic rubber and viscose rayon [43].
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Considering these strong mechanical properties of SF, many researchers have used SF as a
scaffold material for load-bearing TE applications, especially in musculoskeletal TE [1]. It is,
however, important to note that SF scaffolds in biomaterial engineering are normally made
from RSF solutions and the produced scaffolds are brittle and weak. This is because RSF
lacks hierarchical and secondary structures compared to unprocessed raw SF fibers [72]. In
order to ensure RSF has good mechanical properties, many different strategies have been
trialed. For example, the breaking stress of RSF fibers, made via a dry-spinning technique,
was 252 MPa, 28.6% less than raw SF fibers (353 MPa), whereas, the breaking stress of
RSF and graphene oxide composite silk fibers (dry-spun from a mixed dope of RSF and
graphene oxide at mass ratio 1000/1) was 435 MPa [24]. Amongst others crosslinking, [32]
porogens [73] and 3D bioprinting [34] technologies can be used to improve mechanical
properties of RSF produced silk scaffolds. The resulting SF-based scaffolds are therefore
sufficiently strong to allow handling during surgical procedures needed for implantation
and have mechanical properties closely resembling the native tissue being repaired thus
allowing for optimal repair conditions of the area in question.

Figure 1. Schematic diagram of the silk structure. (A) heavy chain (i.e., N-terminus, β-sheets, Amorphous and C-terminus)
and light chain which linked via disulphide bonds. Reproduced with permission from [40] (B) silkworm thread, fibril
overall structure and silk fibroin polypeptide chains. reproduced with permission from [39].

3.3. Biocompatibility

Biocompatibility is a key factor for the implementation of successful scaffolds, which
enables cells to adhere to scaffold surfaces and migrate into the scaffold undergoing
proliferation and differentiation within the scaffold. In addition, it is important for the
scaffold to cause no or a negligible immune reaction after implantation [6]. SF is known
to be a biologically inert and therefore biocompatible natural polymer [26]. Since 1989,
SF has been shown to have blood compatibility in in-vivo experiments [74]. In 1993, SF
was approved by the FDA as a biomaterial for use in as a suture material [26]. In 1995,
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Minoura et al. [75] conducted pioneering research and successfully grew fibroblast cells
on SF coated films. SF has more recently been used as an alternative to collagen in cell
culture to guide bone regeneration in rat calvarial defects, for example, demonstrating that
SF membranes can replace the collagen membranes [76]. In vitro studies showed that there
is no significant macrophage response to SF films [77] or fibers [23]. In addition, the in vivo
inflammatory reaction to SF films is similar to that of collagen [78].

3.4. Biodegradability and Bioresorbability

Biodegradability and bioresorbability are important features to successful scaffold ma-
terials, as the scaffolds should gradually be replaced with the patients’ own cells and ECM
over the course of recovery [79]. Therefore, it is important that by-products of biodegra-
dation are non-toxic and do not interfere with other tissue, organs, and functions when
being metabolized in the body. SF is an enzymatically degradable polymer and has been
shown not to cause an immunogenic response [80]. The degradation process starts when
enzymes are adsorbed onto the surface of the SF scaffold via surface-bonding domains.
The enzymes then digest SF via hydrolysis of ester bonds [19,80,81]. The mechanism of
SF degradation is shown in Figure 2A [82]. Non-crystalline SF structures (hydrophilic
blocks) were degraded in an enzyme solution resulting in hydrophobic crystal structures
and then further dissolved in enzyme solutions. SF can be proteolytic degraded through
enzymes, such as α-chymotrypsin, protease XIV and collagenase IA [80,83,84]. Protease
XIV, obtained from Streptomyces griseus, has shown a higher SF degradation activity in
comparison to α-chymotrypsin and collagenase IA. This therefore meant that protease XIV
degraded SF achieved the lowest average molecular weight of SF residues [83]. It is for
this reason that protease XIV is the most commonly used enzyme for silk degradation. The
preparation methods of SF also affect the degradation process, which can lead to different
morphology of SF particles that dissolved in enzymes (Figure 2B) [82]. As the degrada-
tion products of SF are amino acids and peptides, they are easily absorbed in-vivo [80].
In vivo studies undertaken on SF porous scaffolds implanted in Lewis rats showed that
the scaffolds decomposed within 8 weeks. After 1 year, the implanted scaffolds were fully
degraded, due to macrophage degradation [85]. This proves that SF scaffold are not only
biodegradable, but also is bioresorbable.

The degradation of native silk fibers is much slower compared to that of RSF silk
scaffolds. This is due to the fact that native silk fibers have a higher content of β-sheet
secondary structure than RSF structures have [86]. The degradation rate of SF is therefore
highly dependent on the amount of β-sheet secondary structures present. For example, RSF
films obtained by methanol treatment, converting water-soluble silk I to water insoluble silk
II structures, resulted in a higher amount of β-sheet structures [87] in contrast, RSF films
obtained via a slow air-drying process possess a lower content of β-sheet structures [88].
The latter therefore resulted in faster degradation rates. γ-radiation also has been shown to
promote SF fiber degradation, due to the conversion of silk II to silk I [89].
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Figure 2. (A) Schematic illustrating the SF degradation process mechanism. (B) Representative AFM
images of (a) pure protease XIV solution and differently fabricated SF films: (b) slow drying process,
(c) water annealing treatment, and (d) stretching treatment, after 12 h of exposure to protease XIV
solution. The degraded SF particles that dissolved in protease XIV can be seen in (b), (c), and (d).
Reproduced with permission from [82].

4. Silk Fibroin Dissolution Techniques

Proper dissolution of SF is an essential step before processing SF into different struc-
tures for various TE applications [90]. Therefore, a robust protocol for the complete and
correct dissolution of silk cocoons to produce RSF is required. SF is insoluble in organic
solvents and water, because of its tightly packed structure which has a high content of
β-sheet structures [87,91]. To obtain an aqueous SF solution, it must undergo a water-based
dissolution process [92]. As RSF solutions are used for biological applications, strong
and toxic solvents and solutions should be avoided during the dissolution process. Typi-
cally, concentrated salt solutions with various concentrations of salt ions (Ca2+; Sr2+; Li2+;
Zn2+) [93] in combination with anions (Cl−; Br−; SCN−) [94] were employed to dissolve SF
fibers. These include the very well-known 9.3 M lithium bromide (LiBr) solution method
(Figure 3), [21,92] as well as 9 M lithium thiocyanates (LiSCN) methods [95]. Another com-
mon method uses Ajisawa reagent [93], which consists of a ternary (CaCl2/EtOH/water)
solvent (1:2:8 molar ratio) solution to dissolve SF. However, all these aqueous methods
require a final dialysis step against pure DI− water or appropriate buffers to remove salt
ions from the RSF solutions. Recently, Ajisawa’s reagent has increasingly been applied in
SF dissolution, due to its cost efficacy. However, compared to the LiBr method, Ajisawa’s
reagent appears to lead to a complete unfolding of the silk polymers, which are therefore
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more prone to form β-sheet structures and aggregate during dialysis [96]. Zheng et al. [96]
adapted this method dissolving degummed silk fibers in Ajisawa’s reagent at 80 ◦C for
2 h and then dialyzing against urea solution with a stepwise decrease in concentration.
When the SF solution was dialyzed against water and urea (4 M constant concentration)
solutions for 30 h (referred to as Silk-TS-0), the hydrodynamic radius of RSF ranged from
100 to 1000 nm. However, when the SF solution was dialyzed against 4 M urea for 3 h,
then in 2 M urea for 3 h, followed by 1 M urea for 3 h and then water for 30 h (referred
to as Silk-TS-4210), the hydrodynamic radius range of RSF solution reduced to 5–11 nm.
In addition, Silk-TS-4210 had small aggregates (<10 nm), and a low content of β-sheets
(≈15%) compared to Silk-TS-0, an outcome similar to RSF via the LiBr method [96].

Figure 3. A schematical representation of the LiBr dissolution process to obtain RSF solution. The degummed silk is
dissolved in 9.3 M LiBr solution at 60 ◦C for 4 h. The obtained solutions are dialyzed against ultrapure water to remove salt.
Until a conductivity of < 5 µS is reached, RSF solutions are centrifuged twice and stored at 4 ◦C. Reprinted with permission
from [21].

5. Morphological Diversity of Silk Fibroin Scaffolds

RSF solutions have been used to fabricate SF-based scaffolds with different structures
(Figure 4), including films, mats, artificial fibers, hydrogels [97–100], and sponges [33].
Different techniques used for micro-patterning and 3D structures fabrication are described
in the following sections [101,102].

5.1. Films

Spin coating and vertical deposition are the main techniques used to fabricate RSF
films. In the case of spin coating, RSF solution and ethanol are alternately coated onto
substrates. As previously described ethanol is able to convert the structure of RSF from high
content α helices (Silk I) into beta sheet conformation (Silk II). The ethanol concentration
used can affect the surface properties of RSF film. If the concentration of ethanol is less
than 80%, the outermost surface of the treated film will have a hydrogel structure [103].
However, when using 90% w/v ethanol, the silk films surface become rigid, and cells show
better adhesion [103]. Vertical deposition is another method used to prepare RSF films that
is typically achieved by dipping a clean glass surface into an RSF solution, and then drying
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it in an oven at 50 ◦C. This method, however, generates non-homogeneous structures,
which show the presence of “valleys and ridges”. Recent studies have indicated that a
poor cell attachment was achieved when using this deposition method of RSF films [104].
Temperature Controlled Water Vapor Annealing (TCWVA) is a physical method that can
change the structure of RSF films to the insoluble Silk II state [97]. In this method, RSF films
are casted into flat molds and placed in a constant temperature and humidity chamber at
65 ◦C with a relative humidity of 90% for 100 min. RSF films obtained via this method
(Figure 4A) were successfully applied in skin TE applications, [97] which are described in
more details below.

Figure 4. SF-based scaffolds with different representative structures: (A) Film; (B) Mat; (C) artificial
fiber; (D) Hydrogel; (E) Sponge; (F) 3D structure design and printed scaffold; (G) Inkjet-printed silk
pattern. Reprinted with permission from [33,97–102].

5.2. Mats and Artificial Fibers

Fiber spinning techniques, including electro-spinning, wet-spinning and dry-spinning,
and are the most commonly used to make RSF mats or artificial silk fibers. The electro-
spinning technique can be employed to make polymeric nanofibrous scaffolds, which
can mimic properties of fibrous ECM components. RSF can be fabricated in a large scale
and porous structure though electro-spinning, which is of great benefit for cell seeding
in TE [105,106]. RSF mats, produced by electro-spinning, usually involve spinning sol-
vents (e.g., polyethylene oxide (PEO)), which can adversely affect biocompatibility [39].
Jin et al. [107] reported RSF–PEO electro-spun mats were immersed in water for two days
to remove the PEO solvent, and in return, the number of human marrow stromal (BMSC)
cells attached on their surface increased. Additionally, electro-spinning allows for modified
RSF mats to be produced by adding different moieties for extra functions. For example, the
addition of cellulose ‘nanowhiskers’ (CNWs) [108] and polycaprolactone (PCL) [109] can
strengthen the young’s modulus and tensile strength of RSF mats, whereas the addition of
silver (Ag) [110] or titanium dioxide (TiO2) [111] nanoparticles confer enhanced antimicro-
bial properties to RSF mats. Recently, Yin et al. [98] developed a finite element model that
expressed the mechanical response of RSF–PCL mats under biaxial tension. This model
could be used to guide the design of RSF–PCL mats for TE applications. Wet-spinning
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also can be used to fabricate RSF fibers, but on the micrometer scale (fiber diameter) in
contrast to nanofibers from electrospinning. Wet-spinning allows the tuning of fiber mor-
phologies and properties, and allows the combination with other biomolecules whilst
fabricating [36,112]. For example, Jacobsen et al. [99] reported RSF and fibronectin (Fn)
silk fibers obtained from RSF solutions and fibronectin proteins via wet-spinning, which
demonstrated better cell attachment to those made of pure silk fibers via wet-spinning. In
contrast to the former methods, dry-spinning does not require the use of organic solvents
or coagulation baths, which is environmentally friendly. In this context Zhang et al. [24]
reported the fabrication of RSF–graphene oxide (GO) hybrid silk fibers obtained from
aqueous RSF blends with graphene oxide via the dry-spinning technique. Compared with
silk fibers, RSF–GO composite silk fibers showed good biocompatibility and enhanced
mechanical properties that have great potential for TE applications. In addition, a newly
developed approach uses centrifugal electrospinning (CES) and was shown to spin RSF
nanofibers with better structural stabilities and thermostabilities than those obtained from
electrospinning [113]. Moreover, compared to electrospinning, this method allowed for a
higher production rate at lower cost and was able to quickly produce highly interconnected
nanofiber nonwoven meshes [114,115].

5.3. Hydrogels

Hydrogels are water-swollen 3D polymer networks, which can be cross-linked via
physical or chemical methods, and are excellent for the implementation of cell seeding and
encapsulation in the development of tissue engineering applications [116]. To date, RSF
hydrogels have been used with increasing popularity alongside other RSF morphologies,
which is mirrored by the ever-increasing silk-based publication records [32]. Table 1
illustrates to date the developed fabrication techniques of RSF hydrogels.

Research shows that RSF hydrogel gelation kinetics can be modified from minutes
to hours by adjusting pH, temperature, protein concentration, as well as the addition of
precipitating agents. In general, during sol-gel transition of RSF solutions, the SF structural
conformation changes from a random coil structure (Silk I) to a β-sheet conformation
(Silk II) [117]. However, it is worthy to note that electro-gelation hold an exception to
this, where the random coil conformation changes to α-helixes rather than β-sheet and
the transition process is reversible by reversing the polarity of applied potential [118,119].
Cells can be encapsulated into RSF hydrogels that can be consequently used as a delivery
system [120]. For example, Wang et al. [121] encapsulated human mesenchymal stem cells
(HMSC) into sonication-induced RSF hydrogels, and reported proliferation and viability in
static cultures after a week of in vitro cultivation.
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Table 1. Key silk fibroin hydrogel fabrication techniques.

Methods Fabrication Techniques Comments

Chemically induced gelation

Salts Salts can promote protein-protein association for example the addition of Ca2+ ions reduce the gelation time of RSF
solution [122,123].

Polymer agents Polymer agents, such as polyethylene glycols and PEO, have been shown to promote protein-protein associations,
and protein aggregation through volume exclusion and movement of water by osmosis [122,123].

Organic solvents Alcohols are the most common used among organic solvents, which can induce structural conformation changes of
RSF from α-helix to β-sheet structures [124].

Surface active agents
Surface active agents readily bind with proteins leading to protein unfolding and aggregation [125]. For example,
adding the anionic surfactant sodium dodecyl sulfate (SDS) into RSF solutions and incubating at 60 ◦C can induce

stable hydrogels with good mechanical properties [100].

Small neutral additives
Small neutral additives through their ionic strength and/or specific interactions with proteins can influence
protein aggregation.125 For example, the addition of glycerol (30%; v/v) can reduce the gelation time of RSF

solution and has been applied in biomedical applications [126,127].

pH
As the pH of RSF solution is adjusted near the isoelectric point (PI = 3.8–3.9), stable hydrogels can be formed as

well as reduced gelation time of RSF scaffolds [128]. This is because the pH of protein solution near its isoelectric
point can induce protein precipitation [32].

High pressure CO2
High-pressure CO2 as a volatile acid can be used as a fine tuning adjustment of the solutions pH, therefore, RSF

solutions subjected to high-pressure CO2 at 60 bar, has been shown to form stable hydrogels within 2 h [129].

Chemical crosslinking Chemical crosslinking agents (e.g., hydrogen peroxide and horseradish peroxidase) can be used to covalently
crosslink phenol groups of tyrosine residues on silk fibroin proteins to form highly elastic RSF hydrogels [130].

Chemical coupling
Diazonium coupling chemistry can functionalize tyrosine residues of SF protein, resulting in an adjustment of the

hydrophobic and hydrophilic properties, giving rise to the ability to rapidly produce controlled RSF hydrogels
from as little as 5 min to two hours [131].

Physically induced gelation

Temperature The gelation time of RSF solutions decreases with increasing temperature, this is because molecular collisions
increase with respect to temperature [117,123].

Shear force
A strong enough shear force applied to an RSF solution can promote molecule-molecule interactions and improve
concentration fluctuation, resulting in gelation and aggregation phenomena [132,133]. Vortex mixing is the way to

initiate RSF gelation due to the high shear forces applied to the solution [134].

Ultrasound Sonication can lead to local areas of extreme pressure and temperature, resulting in gelation and aggregation [135].

Electric fields Applying electric fields across RSF solutions leads to local pH decreases and thus silk protein aggregates [134].
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5.4. Sponges

Sponges are made up of interconnected porous structures that have been shown to
closely mimic physiological environments in vivo [1]. RSF sponge scaffolds with different
pores size can be formed by use of porogens, freeze-drying, and gas foaming fabrication
techniques [73,136]. Sodium chloride (NaCl) particles are a classic example of a porogen
and are added into SF solutions cast into Teflon (PTFE) molds. After scaffold formation,
the salt is left to leach out of the construct (in di-water) [73]. This method leads to RSF
sponge scaffolds with a highly homogeneous uniform pore size distribution, providing
the NaCl particles added have a homogenous size distribution [136]. Another method of
regulating the pore size of sponges is via freeze drying, here the freeze drying temperature,
fibroin concentration, and pH of the RSF solution affect the pore size [137]. For example,
Mandal et al. [138] reported that at fixed fibroin concentrations, the pore size decreased
with decreasing temperature. In contrast, with a constant freeze-drying temperature
but increasing fibroin concentration the pore size decreased. In addition, the pore size
increased further with repeated freeze and thawing cycles [139]. Gas foaming techniques
also can form RSF sponges. Ammonium bicarbonate added into fibroin solutions will
sublimate in hot water aiding the formation of porous sponge structures [73]. Yan et al. [33]
also combined the aforementioned and mixed NaCl particles in highly concentrated RSF
solutions, followed by freeze drying, which showed a favorable stability in the formation
of macro- and microporous structures. RSF sponges have been widely used in tissue
engineering, especially in bone and cartilage, [1,26] because of excellent porosity and pore
size control [140].

5.5. Micro-Patterning Structures

The Extracellular matrix (ECM) is made up of complex micro- and nano-scale topogra-
phies, which can affect cell behaviour. It is therefore important to try and mimic these
topographies as much as possible, to ensure cell behaviour is similar in-vitro to in-vivo
scenarios. Micro-patterning structures of RSF have been shown to affect the cell migration,
proliferation, and adhesion [141,142]. At present, lithographic techniques are the most
commonly used methods in micropatterning RSF biomaterials. These methods include,
ultraviolet lithography (UVL) [143], soft lithography (SL) [144], electron-beam lithography
(EBL) [145] and scanning probe lithography (SPL) [146].

UVL, as schematically shown in Figure 5A, is carried out by spin coating RSF onto
silica substrates as a positive-tone photoresist, which was illuminated by argon fluoride
excimer laser through a patterned chrome mask. After washing the exposed area with
Di-water, the patterned RSF film showed diffracted colours with minimum line widths
of 1 µm. It is important to note that, this process is water-based and does not require
photoinitiators [143]. In contrast to UVL, SL is cheaper and requires fewer steps [147]. For
example, Gupta et al. [144] spin-coated RSF onto polydimethylsiloxane (PDMS) stamps, and
submerged them into a methanol solution. The crystallized RSF films were then peeled from
the stamp, as shown in Figure 5B. In the case of EBL, shown in Figure 5C, RSF functioned as
a resist material, the solubility of which could be regulated by different dosages of electron
radiation. Therefore, amorphous RSF can be crosslinked while crystalline RSF can be
de-crosslinked through electron bombardment. The RSF that has not been crosslinked can
then be simply washed away with water. For example, RSF was spin-coated onto substrates
to form RSF films. Then, for positive resist fabrication, inelastic collision of electrons with
RSF resulted in protein degraded (de-crosslinked) into a water-soluble state, followed by
washing away during the ‘water development’ process. In contrast, for negative resist
fabrication, high doses electron beam bombarding on a water-soluble RSF solution resulted
in crosslinking of the RSF into the water-insoluble state. After that, the ‘water development’
process washed away the area that has not been crosslinked, leaving the area exposed to
the electron beam [145]. The reported critical feature sizes of UVL, SL, and EBL techniques
are around 1.5 µm, 40 nm, and 20 nm, respectively [148]. Another technique namely SPL,
as shown in Figure 5D, also offers high precision and resolution by means of an atomic
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force microscopy (AFM) tip. One type of SPL uses AFM as a tool to pattern RSF films under
aqueous environments via tapping mode or contact mode [146]. Piezoelectric-based inkjet
printing can be used in large-scale fabrication where no cast or spin coating is needed for
inducing structural transformation of SF [148]. Inkjet printing can print functional inks in
computer-aided design (CAD) patterns, such as RSF inks mixed with enzymes, [34] growth
factors, gold nanoparticles, antibiotics, or other moieties on different surfaces suitable for
tissue engineering applications. Tao et al. [101] reported inkjet printing of a spider web
(Figure 5E) pattern using RSF as the ink and the thickness of the pattern could be regulated
by controlling the amounts of printed drops.

Figure 5. Micro-patterning of silk-based biomaterials. (A) Schematic diagram of ultraviolet lithog-
raphy process which can form high-resolution silk fibroin micro-patterns by ArF (argon fluo-
ride) excimer laser. (B) Schematic diagram of soft lithography of fabricating patterned silk films.
(C) Schematic diagram of water-based electron-bean patterning on a silk film. Dark-field and electron
microscopy images of silk nanostructures generated on positive and negative resist. (D) Atomic force
microscopy (AFM) images of patterned silk films fabricated by AFM patterning in tapping mode and
contact mode. (E) SEM images of micro-spider web fabricated by inkjet printing. Reprinted with
permissions from [101,143–146].

5.6. 3D Bioprinting Structures

Sponges prepared with typical methods have no defined internal pore architecture
which can obstruct cellular response. Bioprinting is a bottom-up additive manufacturing
technology that can be used to manufacture complex structures via CAD design at high
definition. For example, biocompatible hydrogels can be printed via 3D extrusion bioprint-
ing. It is possible to encapsulate cells in hydrogels giving them mechanical support in a
3D environment similar to their native tissue [149]. Although 3D bioprinting has been
applied in tissue engineering, there are still many challenges to overcome, including a
limited range of materials and choice of cell types [150]. RSF is a unique material for 3D
printing owing to its biocompatibility and polymorphic nature [21]. RSF can be printed
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via inkjet printing to fabricate “nest” shapes. RSF printed “nests” of 70–100 µm diameters,
were stabilized by ionic pairing, followed by a drying process to form silk II crystalline
secondary structures, and could act as anchored nests for cell incubation and prolifera-
tion [151]. Das et al. [152] reported 3D bioprinting RSF-gelatin scaffolds which could be
used in culturing human nasal inferior turbinate tissue-derived mesenchymal progenitor
cells. The sonication treated RSF-gelatin hydrogels possessed higher β-sheet content com-
pared to that of tyrosinase enzyme-treated hydrogels, further to this only the sonication
produced RSF-gelatin hydrogels demonstrated enhanced osteogenic differentiation. In
addition, a recent study by Rodriguez et al. [102] reported the successful printing of RSF,
synthetic nanoclay (Laponite), and polyethylene glycol (PEG) scaffolds via extrusion-based
3D Printing. Here, a key advantage is that gelation of the scaffolds occurs during the print-
ing process and therefore there is no need for additional post-processing, such as chemical
or photochemical crosslinking. This allowed for simple and rapid fabrication of complex
geometries of the biomaterials down to the microscale. Generally, 3D printed RSF scaffolds
are macroscopic in structure, but can be regulated into mesostructures and nanostructures
by using mechanical stresses and dopants. For example, Sommer et al. [153] reported the
pore size of an RSF structure could be regulated by adding sacrificial monodisperse organic
microparticles with varying sizes into RSF-based inks to create well-defined porous RSF
scaffold structures. Recently, Kim et al. [154] reported RSF can be chemically modified with
glycidyl methacrylate (GMA) to form a printable bioink (Sil-MA) (Figure 6A) which could
be printed to form complex structures, e.g., brain and ear, via a digital light processing
(DLP) 3D printer (Figure 6B). The produced 3D scaffolds possessed strong mechanical
properties, which can be used in cartilage TE applications. Following this work, Ajiteru
et al. [155,156] further improved the properties of the Sil-MA bioink by conjugating it with
reduced graphene oxide (rGO) to form a composite bioink, which was shown to exhibit
better thermal stability, as well as higher solubility.

Figure 6. (A) Regenerated silk fibroin (RSF) was chemically modified with glycidyl methacrylate (GMA) to form (Sil-MA)
as a pre-hydrogel. (a) RSF covalently immobilized with GMA, generating a vinyl double bond as a UV-crosslinking
site. (b) Schematic diagram of the methacrylation process of SF; LAP represents Lithium phenyl(2,4,6-trimethylbenzoyl)
phosphinate which is a photoinitiator. (B) Representative 3D printed models (brain and ear) via a digital light processing
(DLP) printer using Sil-MA as a bioink, showing complex structure reflecting their CAD images. Reprinted with permission
from [154].
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6. Application of Silk Fibroin in Tissue Engineering
6.1. Bone Tissue Regeneration

Bone is a specialized connective tissue, and is composed of 35% organic parts and 60%
inorganic matrix. More than 90% of the organic extracellular matrix of bone is made up of
collagen and the rest contains hyaluronan, proteoglycans, bone sialoprotein, osteopontin,
osteonectin, and osteocalcin [157,158]. Hydroxyapatite (HA) is the major component
of the inorganic mineral phase of bone, while the remaining is composed of inorganic
salts and carbonate [159]. This means that collagen and HA are the major components
of bone tissue, which enhances the strength and hierarchical architecture of bone [160].
Designed scaffold materials for the use in bone tissue engineering should guarantee matrix
toughness and allow for ECM deposition. SF has high toughness, mechanical strength
and proven biocompatibility which has already been widely studied in bone TE [161].
For example, RSF scaffolds have been shown to promote osteogenic differentiation of
human mesenchymal stem cells (HMSC) in vitro. These constructs have been shown to
heal femoral defects in vivo in nude rat models [162]. Meinel et al. [140] demonstrated
that after initial incubation in bioreactors for 5 weeks, porous SF-based scaffolds could
be implanted into cranial defects in mice and showed advanced bone formation within
5 weeks, in vivo.

RSF scaffolds are used in combination with other biomaterials such as collagen, or
calcium phosphate-based inorganic components to enhance osteogenic properties [28,163].
For example, HA–RSF porous scaffolds were fabricated through an alternate soaking
process in CaCl2 andNa2HPO4, or alternatively by mixing NaCl particles with HA and
then mixing these with RSF solutions [164,165]. These composite scaffolds were shown to
have better osteoconductivity and exhibited an enhanced formation of tissue engineered
bone, compared to unmodified RSF scaffolds.

Bone morphogenetic protein (BMP)-2 and BMP-7 are FDA recognised growth factors
that can support bone formation and regeneration [166]. It has been shown that RSF
combined with these growth factors together with HMSCs exhibited enhanced osteoblast
adhesion and differentiation, stimulated alkaline phosphatase activity and promoted bone
formation in vivo [167,168]. In addition, Li et al. [169] reported the modification of electro-
spun RSF mats with BMP-2 and HA nanoparticles, which support HSMCs differentiation
and growth and resulted in more calcium deposition in comparison to RSF mats only.
Moreover, demineralized bone matrix (DBM) powder or particles are mainly composed of
collagen and BMP which also has osteoinductive and osteoconductive. Ding et al. [170]
reported RSF as a carrier for loading DBM. This carrier can form stable porous structures
and has been shown to promote osteogenesis in mice together with bone marrow stem
cells (BMSC).

Rapid and thorough vascularization is required in order to increase the success of
bone regeneration. For example, RSF matrices pre-incubated with osteoblasts in vitro and
then implanted into mice showed enhanced vascularization in vivo [171]. In addition, co-
cultures of endothelial cells and osteoblasts in RSF scaffolds in vitro showed the formation
of microcapillary-like structures and pre-vascular structures [172,173]. Subsequently, pre-
formed microcapillary-like structures implanted into immune-deficient mice, not only
survived, but successfully interfaced with the host vasculature, and further stimulated
the host capillaries for vascularization [174]. Further to this the vascular endothelial
growth factor (VEGF) could not only promote osteoblast differentiation but also caused
neovascularization [175]. In this context, Farokhi et al. [176] embedded VEGF into RSF–
calcium phosphate–poly(lactic-co-glycolic acid) scaffolds. The results indicated that the
scaffolds maintained about 83% bioactivity after VEGF release up to 28 days in vitro. For
in vivo study, the neo-bone formation in defects site of rabbits after implanted for 10 weeks.
Another study conducted by Zhang et al. [120] reported that a sonicated silk hydrogel
carrier loaded with BMP-2 and VEGF could promote both osteogenesis and angiogenesis
in rabbit’s maxillary sinus floor after implanted for 12 weeks.
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6.2. Cartilage Tissue Regeneration

Cartilage is avascular and aneural connective tissue surrounded by a dense ECM and
lacks the innate ability to self-repair after injury degeneration. Collagen and proteoglycans
make up the main parts of the cartilage ECM, which can provide adequate mechanical
properties for tissues in vivo [177,178]. Therefore, maintaining and preserving this tissue
is an important aspect of tissue engineering. SF scaffolds can be used to enhance the
production of cartilaginous ECM [179] and owing to its tuneable properties the resulting
scaffolds can be fabricated into different morphologies [180]. For example, porous RSF
scaffolds combined with HMSCs can provide zonal structures similar to that of native
cartilage tissue, which was shown by Wang et al. [180] after 3 weeks of incubation, HMSCs
grew along the chondrogenic route within the scaffold [181]. In addition, the Insulin-like
growth factor I (IGF-I) can promote different progenitor cell growths, which can be loaded
into porous RSF scaffolds promoting chondrogenic differentiation of HMSCs [182].

Other natural biopolymers can be blended with RSF to produce biocompatible carti-
lage constructs. One example is chitosan, which can provide sufficient support to chon-
drocytes due to the existing glycosaminoglycan residues [183]. Both Bhardwaj et al. [184]
and Silva et al. [185] investigated this, showing that chitosan could increase cell attach-
ment, proliferation, and chondrogenic phenotype of chondrocytes or chondrocyte-like
cells. Another biopolymer combination that has been studied is RSF-Gelatin. Gelatin is a
partial derivative of collagen, and both collagen and gelatin possess the ability to promote
chondrogenic differentiation [186]. RSF–collagen dense mats fabricated by electrospin-
ning and seeded with MSCs showed better chondrogenic differentiation of MSCs and
promoted expression of cartilaginous matrix compared to collagen-only dense mats [187].
It is assumed this might be caused by the increase in scaffold strength. In addition, Wang
et al. [30] fabricated porous RSF–collagen scaffolds combined with poly-lactic-co-glycolic
acid (PLGA) microspheres which exhibited good cell affinity and promoted articular carti-
lage in rabbits. Recently, Shi et al. [188] reported that a mixture of SF solution (6.9% w/v)
and gelatin solution (6.9% w/v) at a mass ratio 1:2 could be used to fabricate RSF–Gelatin
scaffolds with good degradation and mechanical properties via 3D printing for the use in
cartilage repair (Figure 7A,B). SFG scaffolds have chondrogenic differentiation abilities of
bone marrow stem cells (BMSC), the native round shape of chondrogenic cells could be
observed after 21 days of in vitro incubation (Figure 7C). In addition, it has been shown
that SFG scaffolds implanted into defective rabbit cartilage positions repaired the cartilage
defect after 24 weeks (Figure 7D). Except for the above mentioned, RSF also can be blended
with other biopolymers such as cellulose, hyaluronic acid, agarose, and poly(D,L- lactic
acid) to provide sufficient support to chondrogenesis [189–192].

It has been shown that, the mechanical and structural characteristics of RSF-based scaf-
folds can be improved by argon plasma treatment [193–195]. For example, Baek et al. [193]
reported that porous RSF scaffolds treated with microwave-induced argon plasma exhib-
ited a significantly increased hydrophilicity and therefore increased chondrocyte adherence,
and proliferation. It has been shown that cells seeded on the RSF scaffolds and then incu-
bated in physically stimulated bioreactors under physiological conditions could further
improve cartilaginous constructs [196,197]. For example, the amounts of glycosaminogly-
can, total collagen, collagen II, and DNA along with cartilage-related gene produced by
cells increased significantly by seeding porous SF scaffold with HMSCs and incubated in
perfusion bioreactors for 4 weeks. Additionally, the same study found that the mechanical
stiffness of the stimulated scaffold also increased in comparison to a static culture [196].
These results indicate that hydrodynamic factors, as well as cell types [198], scaffold archi-
tectures, e.g., pore size and distribution are key components to successful constructs for
cartilage TE [36].
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Figure 7. (A) Schematic diagram illustrating the fabrication of a 3D of scaffold made via Bioprinting up to the final in vivo
implantation. (B) Microscopy and SEM images of the RSF-Gelatin scaffold (mixture of SF solution and gelatin solution at a
mass ratio 1:2). (C) Phalloidin/Hoechst assay of chondrogenic morphology on the SFG scaffold after 21 days incubation.
(D) Hematoxylin-eosin staining of repaired cartilage at 6, 12, and 24 weeks. (MF represents the microfracture control group;
N represents normal cartilage; R represents repaired cartilage; the margins between repaired and normal cartilage are
indicated by black arrows; scale bar: 200 µm). Reprinted with permission from [188].

6.3. Ligament and Tendon Tissue Regeneration

Ligament and tendon tissues are composed of collagen and fibrocytes which are made
up of a dense fibrous connective tissue, which can be easily impaired, and severely lacks
the ability of natural regeneration [199,200]. Due to its unique mechanical properties (such
as high toughness values and good elasticity) and structural integrity, RSF scaffolds have
become a preferred biopolymer for the use in ligament and tendon TE [36]. In 2002, the
first RSF matrix was successfully implemented in engineering an anterior cruciate ligament
(ACL) that matched the mechanical properties of the human ACL [72]. Based on these
promising results, researchers started fabricating knitted SF-based scaffolds for the regener-
ation of ligaments and tendons. For example, Liu et al. fabricated web-like SF sponges on
knitted scaffolds on which HMSCs were seeded, these scaffolds are more cellular actively
compared to RSF hydrogel knitted scaffolds. The results demonstrated SF-based knitted
scaffolds proved structural strength, while the web-like microporous RSF sponges can
enhance cellular activity [201]. Subsequently, Fan et al. implanted RSF porous knitted scaf-
folds with MSCs into rabbit [202] and pig [203] models to regenerate ACL. After 24 weeks
of implantation, the direct ligament–bone insertion with four zones (bone, fibrocartilage,
mineralized fibrocartilage, and ligament) in rabbit and three zones (bone, Sharpey’s fibers,
and ligament) in pig was reconstructed, which was similar to native structures of ACL-bone
insertion. The tensile strength of regenerated ligaments also compared to the mechanical
properties of the native ligaments. In addition, Chen et al. [204] combined RSF knitted
scaffolds with collagen and then implanted these into rabbit medial collateral ligament
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(MCL) defected regions, which was shown to promote scaffold–ligament interface healing,
compared with untreated MCL or only SF knitted scaffold.

An arginine-glycine-aspartic acid (RGD) peptide sequence can also be immobilized
onto RSF scaffolds and has been shown to promote the attachment of BMSC cells leading
to higher human bone marrow cells and ligament fibroblast formation [205]. Additionally,
sequential administration of growth factors, including epidermal growth factors, transform-
ing growth factor-β and basic fibroblast growth factor, induced BMSCs cells to proliferate
and differentiate on RGD-coupled RSF scaffolds, which can boost the development of
ligament tissue. Growth factors stimulate biochemical and mechanical properties, thereby
inducing cell differentiation toward a fibroblast lineage and enhanced matrix in-growth, as
well as collagen production [206–208].

In conclusion, blending RSF with natural biomaterials such as collagen type I, hyaluronic
acid and gelatin and synthetic materials, e.g., polyelectrolyte and PLGA leads to the en-
hancement of scaffolds for use in the reconstruction of ligament and tendon connective
tissues [209–213].

6.4. Skin and Wound Tissue Regeneration

The skin holds a critical role as the first line of defense to infectious organisms. Epi-
dermis and dermis are the main layers of skin, which mainly consist of keratinocytes and
ECM (mainly collagen and elastin). In cases with extreme loss of skin integrity, e.g., severe
burns, this can lead to disability and even death [214,215]. RSF biomaterials have been
shown to influence the attachment of keratinocytes and fibroblasts [106] and are widely
applied to skin regeneration in TE. Recently, Zhang et al. [97] reported RSF films could
be implanted into full-thickness skin defects in rabbit models (Figure 8A,B) and porcine
models (Figure 8C), which significantly reduced the healing time and showed better skin
regeneration compared to current commercial wound dressings. In clinical trials, RSF films
have also been shown to significantly reduce the healing time and lower the probability of
adverse events, compared to commercial wound dressings. Additionally, RSF mats coated
with antibacterial silver nanoparticles (AgNPs) could be used as antimicrobial wound dress-
ings to inhibit the growth of Staphylococcus aureus and Pseudomonas aeruginosa [110].
The hydrophilicity of RSF nanofibers has been shown to increase after O2plasma treatment,
which has been shown to promote human keratinocytes and fibroblasts activities [216].

Appendages on the skin (e.g., hormonal glands and hair) make skin tissue com-
plex [36]. Chitosan has been widely used in skin TE, due to its biocompatibility, biodegrad-
ability and antimicrobial ability, as well as being known to promote collagen formation from
fibroblast cells, which increases the tensile strength of the regenerated tissue in the defected
area [215]. Cai et al. [29] fabricated RSF–chitosan scaffolds via electrospinning and found
the mechanical strength increased with increasing RSF concentration, as well as an increase
in antimicrobial activity with increasing chitosan concentration. Moreover, RSF–chitosan
scaffolds were shown to promote cellular proliferation and antimicrobial property against
Escherichia coli [29,217]. Furthermore, alginate dialdehyde (ADA) enhances cell proliferation
and attachment and has a lower toxicity when used as a crosslinker [218]. Therefore, ADA
can be used to crosslink RSF–chitosan scaffolds in defected skin areas and shows good wa-
ter absorption, high water transmission and increased cell activity [219]. Guang et al. [220]
reported chitosan coatings on porous RSF scaffolds via a hydrogen-bonding technique to
form 3D RSF–chitosan scaffolds, and then implanted these into a rat wound. Their data
showed the wound was fully repaired after 21 days and without any teratogenic effects and
infections. In comparison non-mulberry RSF from Antheraea assama (A. assama) was also
shown to be a promising material for skin TE. This is because it naturally contains the RGD
peptide sequence that promotes cell attachment [221]. Chouhan et al. [222] fabricated RSF
hydrogels by blending SF solutions isolated from A. assama and B. mori, which promoted
the differentiation of primary human dermal fibroblast and keratinocytes cells in vitro. In
addition, the blended SF solutions were injected into third-degree burn wounds in-vivo and
formed gels that firmly adhered to the wounds. The blended RSF hydrogel not only acted
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as a supportive matrix for skin repair, but also showed transition stages from inflammation
to proliferation.

Figure 8. (A) Schematic diagram of silk fibroin films via Temperature Controlled Water Vapor annealing (TCWVA). (B) RSF
films implanted into full-thickness skin defects in rabbit models compared to Suprathel, Sidaiyi, and untreated tissue at
0, 7, 12, 14, 17, and 21 days. (C) RSF films implanted into full-thickness skin defects in a porcine model and compared to
Suprathel, Sidaiyi, or untreated at 0, 30, and 90 days. Reprinted with permission from [97].

The above mentioned illustrate the vast capabilities the RSF scaffold materials and
how they can be blended with natural and synthetic materials, such as dextrose, 2,2,6,6-
Tetramethyl-1-piperidinyloxy (TEMPO)-oxidized cellulose nanofiber, Manuka honey, Ag
particles, collagen, chitin to increase mechanical properties, decease wound infections, and
improve wound healing [215,223–228]. Therefore, the use of composite RSF scaffolds were
able to provide overall better results to pure RSF scaffolds in skin TE applications.

6.5. Tympanic Membrane Tissue Regeneration

Tympanic membrane (TM) is a transparent structure located between outer and middle
ear, whose functions are receiving sound vibrations and protecting the middle ear. TM
is composed of the epidermal outer layer, fibrous middle layer and mucosal inner layer,
which mainly consist of keratinocytes, fibroblasts, and collagen (type II and type III). TM
perforations are normally caused by middle ear infections or traumatic ruptures caused
by mechanical trauma and pressure blasts. If the rupture has not self-repaired within
3 months, it will become a chronic perforation, which can lead to hearing loss and recurrent
infections [229–231]. The excellent properties of RSF as mentioned above make it an ideal
material for tympanic membrane TE, supporting the growth and spread of keratinocytes
derived from human TM cells. Shen et al. implanted RSF films into rat and guinea pig
models to regenerate acute [232–236]. TM perforations using onlay myringoplasty. After
implantation, a perforation closure for both rat and guinea pig models were observed after
7 days, where no recovery was observed in the control groups. In addition, RSF films were
shown to not only repair TM perforation but also accelerate the regeneration of TM, leading
to a significantly faster hearing recovery. Furthermore, Shen et al. [237] demonstrated RSF
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films showed no significant macrophage response in host tissue, less inflammation, and
was degradable in vivo. In addition, Allardyce et al. [238] reported that RSF membranes
possess good acoustic energy transfer capability and excellent tensile strengths to cartilage,
indicating the great potential of these membranes to regenerate chronic TM perforations
in vivo.

7. Conclusions

The future of modern tissue engineering is to regenerate and replace damaged tissue
and organs. This means that implanted scaffolds should be fully integrated into the
surrounding tissue without any immune response or adverse effects. Silk Fibroin extracted
from silkworm cocoons, is an FDA approved biomaterial and has been widely recognized
for use in TE applications, due to its unique biomedical properties, mechanical performance
and tuneability. SF has been fabricated into various morphologies including films, mats,
artificial fibers, sponges, and hydrogels, which have all been successfully deployed in a
large variety of TE applications. Recent advances have played particular emphasis on bio-
nanotechnology technologies, such as micropatterning and 3D bioprinting to fabricate SF
multi-level structures with high structural definition down to the nanoscale. This has been
shown to be advantageous for cell proliferation, differentiation, migration, and adhesion
in many studies. Overall, silk is a versatile biomaterial which has shown promising
applications in TE.

8. Prospects and Challenges

As was reported by Thakur et al., 2D nanomaterials possessing high aspect ratios and
ultrathin structures could interact with the polymers to enhance their mechanical proper-
ties [239]. Additionally, some specific pattered 2D nanomaterials could have similar effects
to growth factors on the enhancement of cell differentiation [240]. SF has shown great po-
tential together with 2D nanomaterials to increase its mechanical properties for future bone,
cartilage ligament and tendon tissue engineering applications. In skin and wound applica-
tions, the production of SF matrices built on particular morphologies has demonstrated
promise in decreasing the risk of scar tissue in patients. However, at present, their clinical
applications are still scarce and therefore more research needs to be conducted to move
towards clinical trials and FDA approved products based on this excellent biomaterial.

In addition, pure RSF has been shown to exhibit poor attachment and proliferation
for some cells, such as neuronal cells [27]. Therefore, research suggests that SF should be
used in conjunction with other moieties, e.g., ECM or synthesized peptides to improve
its functionality to enhance its applicability in other fields of TE. On the other hand, four-
dimensional (4D) printing (when 3D printing combined with ‘Time’) has emerged and
became an emerging technology and attractive topic, which can overcome some limitations
of 3D printing, such as the creation of the sophisticated dynamics of native tissues [241]
and optimize the functional responses of cell-constructs interactions [242]. ‘Time’ is defined
as printed 3D biocompatible scaffolds that continue to evolve over time while they are
printed [243]. The materials chosen for 4D printing should possess biocompatibility and
reshape or change their function by means of external stimuli including temperature, water,
magnetic fields, osmotic pressure, and light [243]. Very recently, Kim et al. [244] described
a 4D printing system based on Sil-MA hydrogels and DLP, which has been successfully
applied in the regeneration of damaged trachea of rabbits. Therefore, RSF could be a key
biomaterial that can be used in bioink formulations, illustrating its great potential in future
4D bioprinting.
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