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Studies of the adoptive antibody response of rats to horse spleen ferrifin and diph- 
theria toxoid (DT) 1 indicate that the circulatory characteristics and life-span of 
thoracic duct B lymphocytes that initiate the primary response ("virgin" cells) and 
secondary response ("memory" cells) differ. Virgin B cells do not recirculate from 
the blood to the lymph and are short lived (1). Memory B cells continually recircu- 
late and are relatively long lived (1). Similar studies of memory B cells in the spleen 
show that hapten (DNP)-primed cells recirculate and turn over slowly (2). Indeed, 
the recirculating ceils can account for all the immunological memory transferred by 
spleen cells in the adoptive secondary anti-DNP response. 

The object of the present investigation was to obtain further evidence for 
physiological changes in virgin and memory B lymphocytes involved in a well- 
defined antihapten response. Accordingly, the migratory pattern, tissue dis- 
tribution, and turnover rate of thoracic duct, spleen, and bone marrow cells 
involved in the adoptive pr imary and secondary an t i -DNP response to D N P -  
D T  were studied. The results of the present s tudy confirm our previous report 
tha t  B cells involved in the adoptive pr imary response are relatively fixed, 
but  B cells involved in the adoptive secondary response continually recircu- 
late. The relative inability of bone marrow cells to carry immunological mem- 
ory is related to the inability of recirculating cells to penetrate the marrow. 
However, studies of the rate of formation of B cells involved in the pr imary 
and secondary response to D N P  show that  both populations of cells turn over 

* Supported by U.S. Public Health Service Grant AI-10293. 
Career Development Awardee AI-70018, U.S. Public Health Service. 

1 Abbreviations used in this paper: B, bursa equivalent; DNP, dinitrophenyl(ated); DNP- 
BSA, dinitrophenyl-bovine serum albumin; DNP-DT, dinitrophenyl-diphtheria toxoid; DT, 
diphtheria toxoid; Ig, immunoglobulin; M-199, tissue culture medium 199; M-199-FCS, tis- 
sue culture medium 199 with 5% fetal calf serum; ME, mercaptoethanol; NRS, normal rab- 
bit serum; PBS, phosphate-buffered saline; RARBS, rabbit antirat B-cell serum; VBS-FCS, 
Veronal-buffered saline with 5% fetal calf serum. 
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slowly.  T h e s e  r e su l t s  differ  f r o m  ou r  p r e v i o u s  f indings ,  s ince  u n p r i m e d  B cells 

i n v o l v e d  in t h e  a d o p t i v e  p r i m a r y  r e sponse  to  f e r r i t i n  t u r n  o v e r  r ap id ly .  Dif fer -  

ences  in  t h e  t u r n o v e r  r a t e s  of u n p r i m e d  cells u s i n g  d i f fe ren t  a n t i g e n s  a r e  dis- 

cussed  in t he  c o n t e x t  of a n t i g e n - d e p e n d e n t  B-cel l  m a t u r a t i o n .  

Materials and Methods 

Animals.--Inbred Lewis rats were used in all experiments. Animals were purchased from 
Microbiological Associates, Inc., Bethesda, Md. 

Preparation of Cdl Suspensions.--The thoracic duct of adult male rats was cannulated by a 
modification of the technique of Bellman et al. (3). Rats were maintained in restraining cages 
and received a continuous intravenous infusion of Ringer's solution containing streptomycin 
(0.1 mg/ml) and heparin (1 U/m1) at  2 ml/h. Thoracic duct cells were collected at  4°C 
for 24 h in 5 ml of Ringer's solution with 100 U of heparin and 1 mg of streptomycin. Cells 
were harvested by centrifugation at  150 g for 10 rain and resuspended in tissue culture me- 
dium 199 (M-199) (Grand Island Biological Co., Grand Island, N.Y.) before injection. Spleen 
and bone marrow cell suspensions were made in medium 199 by the method of Billingham (4). 

X-Irradiation.--Rats received 500 R whole body X-irradiation from a single 250 kV (15 
A) source. The source axis distance was 52 cm, and the dose rate was 105 R/min (0.25 mm 
of Cu plus 0.55 mm of A1 filtration). 

Immunization Procedures.--Rats were immunized to alum-adsorbed diphtheria toxoid 
(DT) (Parke, Davis and Co., Detroit, Mich.) by a single subcutaneous (7.5 Lf, 0.25 ml) and 
intraperitoneal (7.5 Lf, 0.25 ml) injection of 15 Lf toxoid. Fluid DT (Commonwealth of 
Massachusetts, Department of Health) was dinitrophenylated (DNP) by the procedure of 
Eisen et ah (5). The composition of the conjugate was DNPn-DT.  Immunization to DNP-DT 
was achieved by injecting 0.1 ml of an emulsion of equal volumes of DNP-DT in phosphate- 
buffered saline (PBS) and complete Freund's adjuvant (Difco Laboratories, Inc., Detroit, 
Mich.) in each hind footpad to give a total dose of 0.4 mg of protein per animal. 

Immunization to DNP-bovine serum albumin (DNP35-BSA) was accomplished by in- 
jecting 0.1 ml of an emulsion of equal volumes of DNP-BSA in phosphate-buffered saline and 
complete Freund's adjuvant in each hind footpad to give a total dose of 0.4 mg of protein 
per rat. In  studies of the adoptive secondary response, hosts were challenged with soluble 
DNP-DT by injecting 0.5 mg of protein intraperitoneally in 1 ml of phosphate-buffered 
saline. 

Antibody Titrations.--Antibodies to DNP were measured by a previously described modi- 
fication of the Farr assay (6). Antibody responses are expressed as the logl0 of that  titer of 
antiserum that  bound 33% of [3H]DNP-ethylaminocaproic acid (10 - s  M). Mercaptoethanol 
(ME)-resistant antibody was measured by incubating equal volumes of a 1:2.5 dilution of 
whole antiserum and 2-ME (0.1 M in saline) for 30 rain at room temperature before titration. 
All antibodies from day 14 were 2-ME resistant. 

Rabbit Ant#at B-Cell Serum (RARBS).--RARBS was kindly supplied by Dr. J. C. How- 
ard, Cellular Immunology Research Unit, Sir William Dunn School of Pathology, Oxford 
University, Oxford, England, and Dr. D. W. Scott, Department of Immunology and Micro- 
biology, Duke University, Durham, N. C. Rabbits were given intravenous injections of 
thoracic duct cells from August rats that  were adult thymectomized, lethally irradiated, 
and bone marrow reconstituted (7). The antiserum was subsequently absorbed with thymo- 
cytes from Lewis rats. Details of immunizations and absorptions have been described else- 
where (2). The absorbed antiserum specifically kills B but not T cells in the thoracic duct 
lymph (2). 

Cytotoxlc Assay.--50 ttl of RARBS and 25 ttl of a suspension of thoracic duct, spleen, or 
bone marrow cells (5 X 106 cells/ml) diluted in Veronal-buffered saline with 5% fetal calf 
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serum (VBS-FCS) was placed in 10 X 75 mm glass tubes, and the reaction mixture was 
allowed to incubate for 15 min at room temperature. 25 #1 of rabbit complement absorbed 
1:1 (vol/vol) with rat thymocytes and diluted 1:4 in VBS-FCS was then added. Cells were 
harvested by centrifugation at 150 g 45 min later and resuspended in 50 #1 of M-199, 50/zl 
of 0.2% trypan blue in M-199 was added just before counting the cells in a standard hema- 
cytometer. Approximately 200 cells were counted from control tubes (containing normal 
rabbit serum (NRS) absorbed 1 : 1 (vol/vol) with rat thymocytes) for each point of the titra- 
tion. When thymocytes were used as target cells, the diluent was 0.15 M fructose with 5% 
FCS. Fructose minimizes nonspecific killing of rat thymocytes by NRS, but does not alter 
specific killing by RARBS. 

Results of the cytotoxic assay are expressed as the cytotoxic index: 

% cells killed by antiserum -- % cells killed by NRS 
Cytotoxic index = 

100 - % cells killed by NRS 

In Vitro Incubation of Thoracic Duct, Spleen, or Marrow Cells with RARBS.--Thoracic 
duct, spleen, or bone marrow ceils were suspended in M-199-FCS at a concentration of 2 )< 
l0 T cells/ml. 20 #1 of RARBS was added to each milliliter of cell suspension. 15 min later 
absorbed rabbit complement diluted 1:4 in M-199-FCS was added to make a final dilution 
of 1:10 complement. The reaction mixture was allowed to incubate an additional 45 min at 
room temperature. Cells were harvested by centrifugation at 150 g for 10 min and resus- 
pended at the desired cell concentration in M-199 before intravenous injection. 

Preparation of Ficoll-Hypaque-Puri~ed Bone Marrow Cdls.--Bone marrow lymphocytes 
were separated from a suspension of bone marrow cells in M-199 by means of a Ficoll-Hypaque 
gradient (8). 15 parts of a 25% solution of Hypaque M 75% (Winthrop Laboratories, New 
York) were added to 24 parts of a 9% Ficoll solution (Pharmacia Fine Chemicals, Uppsala, 
Sweden) and stirred for 1 h at room temperature. 10 ml of the mixture was placed in a 40 
ml conical centrifuge tube and carefully overlaid with 20 ml of bone marrow cells in M-199 
(10-15 X 106 cells/ml). Cells were spun at 20°C for 35 min at 400 g and then aspirated from 
the Ficoll-ttypaque middle layer. Mter two washes in M-199, the Ficoll-purified cells were 
used in cell transfer experiments or in cytotoxic assays for B lymphocytes. A mean of 66% 
small lymphocytes were present in these cell suspensions as compared with a mean of 7% 
in unfractionated bone marrow cells. The yield of purified cells was approximately 10% of 
bone marrow cells applied to the gradient. 

Intravenous Injection of Cells and Bleeding Procedures.--Injection and bleeding techniques 
have been described elsewhere (1). 

RESULTS 

Adoptive Primary Anti-DNP Response Restored by DT-Primed Spleen Cells.-- 
Lewis rats were given 500 R whole body X-irradiation. Graded numbers of 
DT-primed spleen cells were injected intravenously 2 h later. The adoptive 
hosts were challenged with DNP-DT in complete Freund's adjuvant 24 h 
after irradiation. Spleen cells were obtained from rats immunized to D T  4-8 
wk before. Fig. 1 a shows the adoptive primary anti-DNP response restored by 
2, 10, 50, and 100 X 106 spleen cells. Significant antibody titers were de- 
tected by days 12 or 14 for all cell doses above 2 X 106. 

Adoptive Primary Anti-DNP Response Restored by DT-Primed Spleen Cells 
Passaged through an Intermediate Host.--In order to determine whether B 
lymphocytes that restore the adoptive primary anti-DNP response are able 
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FIc. 1. Adoptive anti-DNP response of rats to DNP-DT. Spleen cells were obtained from 
donors immunized to DT or DNP-BSA 4-8 wk before. Cells were injected intravenously into 
X-irradiated hosts and DNP-DT was given 22 h later. Each point represents the mean re- 
sponse of four to nine rats with brackets showing the standard error of the mean. Responses 
are expressed as logl0 titer that bound 33O-/o labeled antigen. (a) Adoptive primary response 
to 0.4 mg of DNP-DT in complete Freund's adjuvant. V- -V,  mean response of rats given 
100 X 106 DT-primed spleen ceils; 0 - - 0 ,  mean response of rats given 50 X 106 cells; 
O--O,  mean response of rats given 10 X 106 cells; V - - V ,  mean response of rats given 2 X 
106 cells; A--A,  mean response with 30 X 106 passaged DT-primed spleen cells; I - - I ,  
mean response with 100 X 106 DT-primed spleen ceils treated with [3H]thymidine; X--X,  
mean response with 50 X 106 DT-primed spleen cells treated in vitro with NRS; [q--lq, 
mean response with 50 X 106 DT-primed spleen cells treated in vitro with RARBS. (b) 
Adoptive secondary response to 0.5 mg of DNP-DT in PBS. All rats were given 50 X 106 
DT-primed spleen ceils and graded numbers of DNP-primed cells. 0 - - 0 ,  mean response of 
rats given 50 X 106 DNP-primed spleen cells; V--V,  mean response of rats given 25 X 106 
spleen cells; A- -A,  mean response of rats given 10 X 106 spleen cells; E]--F1, mean re- 
sponse with 50 X 106 DT-primed spleen cells treated in vitro with [3H]thymidine; A - - A ,  
mean response with 10 X 106 passaged DNP-primed spleen cells; WF--Y, mean response with 
50 X 106 DNP-primed spleen cells without antigen. 

to recirculate from the blood to the lymph, DT-pr imed spleen cells were pas- 
saged through an intermediate host before cell transfer. Approximately 400 X 
106 spleen cells were injected intravenously into intermediate hosts that  had 
received 500 R whole body X-irradiat ion 2 h before. The thoracic duct of these 
animals was cannulated 24 h later and lymph was collected for 48 h. The pas- 
saged spleen cells were harvested from the lymph and injected intravenously 
into final hosts that  had been irradiated 2 h previously. The reconsti tuted final 
hosts were challenged with D N P - D T  22 h later. Cells present in the lymph of 
the intermediate host are almost exclusively of donor origin (1, 2). 

Fig. 1 a shows that  30 X 106 passaged DT-pr imed spleen cells restore an 
a n t i - D N P  response that  is similar in time-course and magni tude to that  re- 
stored by 2 X 106 unpassaged cells. The decreased restorative action of pas- 
saged cells is related to the inabil i ty of splenic B cells to migrate from the 
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blood to the lymph, since the helper activity of passaged carrier-primed cells 
(T cells) is at least as great as that of unpassaged cells (2). 

Adoptive Primary Anti-DNP Response Restored by DT-Primed Spleen Cells 
Treated with [3tt]Thymidine.--The rate of formation (turnover rate) of DT- 
primed spleen cells that initiate the primary anti-DNP response was studied 
by treating rats immunized to DT with [3H]thymidine before cell transfer. 
DT-primed donors received intraperitoneal injections of [SH]thymidine (New 
England Nuclear, Boston, Mass.; specific activity 20 Ci/mmol) in aqueous 
solution every 8 h for a period of 48 h before removal of the spleen. Each in- 
jection contained 3.5 mCi in 3.5 ml of sterile water (24.5 mCi total dose). 
The interval between immunization and administration of [SH]thymidine was 
4-6 wk. This dose of radioactive material produces a 20-100-fold decrease in 
the ability of rat thoracic cells to restore the adoptive primary response to 
ferritin (1), and a 10-fold decrease in colony-forming units in mouse bone 
marrow cells (9). The functional deficits are related to radiation damage after 
the uptake of radioactive material by rapidly dividing cells. 

In order to minimize reutilization of [3H]thymidine in the adoptive hosts, 1 
ml of a 10 -4 M solution of cold thymidine was injected intraperitoneally into 
adoptive hosts after cell transfer, and thymidine (10 -4 M) was added to the 
drinking water. Fig. 1 a shows that 100 X 106 [3H]thymidine-treated spleen 
cells restore an adoptive anti-DNP response that is at least as great as that of 
an equal number of untreated cells. 

Adoptive Secondary Anti-DNP Response Restored by a Combination of Carrier 
(DT)- and Hapten (DNP)-Primed Spleen Celts.--In several experiments a 
constant number (50 X 106) of DT-primed spleen cells and a graded number 
of DNP-primed spleen cells were injected intravenously into irradiated hosts. 
The reconstituted hosts were challenged intraperitoneally with soluble DNP- 
DT 24 h after irradiation. Hapten (DNP)-primed cells were obtained from 
donors immunized to DNP-BSA 4-8 wk before. 

Fig. 1 b shows the adoptive secondary response restored by 10, 25, and 50 X 
108 DNP-primed spleen cells. Antibody titers were substantial by day 7 and a 
plateau was achieved by day 9. Although the response restored by 10 and 25 X 
106 cells was similar, a more vigorous response was noted with 50 X 106 cells. 
A comparison of the adoptive primary and secondary responses shows that 
the adoptive secondary response was more rapid and required fewer cells to 
achieve similar antibody titers. Antibodies in both responses are resistant to 
treatment with mercaptoethanol. 

Adoptive Secondary Anti-DNP Response Restored by Hapten-Primed Cells 
Passaged through an Intermediate Host--The circulatory dynamics of hapten- 
primed spleen cells was studied by injecting 300 X 106 cells intravenously into 
an intermediate host and collecting donor cells in the thoracic duct lymph as 
before. The restorative action of the passaged cells was subsequently examined 
in irradiated hosts that received 50 X 106 unpassaged I)T-primed spleen 
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cells and an intraperitoneal injection of D N P - D T .  Fig. 1 b shows that  10 X 
106 passaged cells restored a response that  was greater than that  restored by 
25 X 106 unpassaged cells. A comparison of the adoptive pr imary and sec- 

ondary responses shows that  passaged cells were less efficient (~10-fold) than 
unpassaged cells in the pr imary response and were more efficient (~3-fold)  
than unpassaged cells in the secondary response. 

Adoptive Secondary Anti-DNP Response Restored by Hapten-Primed Spleen 
Cells Treated with [3H]Thymidine.--[nH]thymidine was administered to D N P -  
primed donors 4-6 wk after immunization.  Spleen cells were obtained after the 
injection of 24.5 mCi as described before. Fig. 1 b shows that  the an t i -DNP 
response restored by 50 X 106 [3H]thymidine-treated cells was slightly below 
that  restored by 50 X 106 untreated cells, but  was considerably greater than  
that  restored by 25 X 106 untreated cells. 

Adoptive Primary A nti-DNP Response Restored by Passaged or [3H]Thymidine- 
Treated Thoracic Duct Cdls.--Fig. 2 a shows the adoptive primary a n t i - D N P  
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FI6. 2. Adoptive anti-DNP response of rats to DNP-DT. Thoracic duct cells were ob- 
tained from donors immunized to DT or DNP-BSA 4~8 wk before. Cells were injected intra- 
venously into X-irradiated hosts and DNP-DT was given 22 h later. (a) Adoptive primary 
response to 0.4 mg of DNP-DT in complete Freund's adjuvant. O- -O,  mean response of 
rats given 100 X 106 DT-primed thoracic duct cells; El--E], mean response of rats given 
50 X 106 cells; O--O,  mean response of rats given 10 X 10 s cells; H ,  mean response of 
rats given 2 X 106 cells; V--V,  mean response of rats given 50 X 106 DT-primed thoracic 
duct cells treated with [3HJthymidine; A- -A ,  mean response of rats given 50 X 106 pas- 
saged DT-primed thoracic duct ceils; X--X,  mean response with 50 X 106 DT-primed 
thoracic duct ceils treated in vitro with NRS; A - - A ,  mean response with 50 X l0 s DT- 
primed thoracic duct cells treated in vitro wlth RARBS. (b) Adoptive secondary response to 
0.5 mg of DNP-DT in PBS. All rats were given 50 X 106 DT-primed thoracic duct cells 
and graded numbers of DNP-primed cells. Q--Q,  mean response of rats given 25 X l0 s 
DNP-primed thoracic duct cells; O--O, mean response with 10 X l0 s DNP-primed cells; 
A--A,  mean response with 2 X 106 DNP-primed cells; H ,  mean response with 10 X 106 
DNP-primed cells treated with [3H]thymidine; O--[~, mean response with 10 X 106 pas- 
saged DNP-primed cells. 



SAMUEL STROBER AND JEANETTE DILLEY 1337 

response restored by 2, 10, 50, or 100 X 106 DT-primed thoracic duct cells in 
irradiated hosts challenged with DNP-DT in complete Freund's adjuvant. 
The adoptive response restored by 50 X 106 thoracic duct cells passaged 
through an irradiated intermediate host fell below that restored by 10 X 106 
unpassaged cells (Fig. 2 a). Nevertheless, antibody titers were substantial by 
day 21 and well above those restored by 2 X 106 unpassaged cells. Treatment 
of DT-primed donors with [3H]thymidine produced little effect on the anti- 
DNP response restored by 50 X 106 thoracic duct cells, since equal numbers of 
treated and untreated cells produced similar responses (Fig. 2 a). 

Adoptive Secondary Anti-DNP Response Restored by Hapten-Primed Thoracic 
Duct Cells Treated with [3tt]Thymidine or Passaged through an Intermediate 
Itost.--Fig. 2 b shows the adoptive secondary anti-DNP response restored 
by a constant number (50 X 106) of DT-primed thoracic duct cells and graded 
numbers of DNP-primed thoracic duct cells. Similar responses were produced 
by 10 and 25 X 106 DNP-primed cells, but a sharp fall-off was observed with 
2 X 106 cells. Both passaged and [3H]thymidine-treated cells (10 X 106) were 
slightly less efficient in restoring the anti-DNP response than unpassaged or 
untreated cells (Fig. 2 b). 

Adoptive Primary Anti-DNP Response Restored by Passaged Bone Marrow 
Cells.--Fig. 3 a shows the adoptive primary anti-DNP response restored by 
unprimed bone marrow cells alone or in combination with 10 X 106 DT-primed 
spleen cells. The response restored by the combination of cells is greater than 
the sum of the responses restored by each cell inoculum independently. 

In order to examine the migratory pattern of marrow cells involved in the 
adoptive anti-DNP response, 450 X 106 marrow cells were injected into each 
of four irradiated intermediate hosts, and cells were collected in the thoracic 
duct lymph as described before. A mean of 75 X 103 cells was collected in the 
intermediate host lymph during 48 h of thoracic duct drainage. This represents 
a yield of about 0.02 % of the cells injected. Almost all of the cells were of 
donor origin, since fewer than 5 X 103 cells were obtained from uninjected ir- 
radiated rats. The mean yield of passaged thoracic duct cells in four similar 
experiments was 22 %. The adoptive anti-DNP response restored by a combi- 
nation of 50 X 1@ passaged marrow cells and 10 X 106 DT-primed spleen 
cells was similar to that of 10 X 106 DT-primed spleen cells alone (Fig. 3 a). 

Adoptive Secondary Anti-DNP Response Restored by ttapten-Primed Bone 
Marrow Cells.--Fig. 3 b shows the adoptive secondary anti-DNP response 
restored by a constant number (50 X 106) of DT-primed spleen cells and 
graded numbers of bone marrow, spleen, or thoracic duct cells from donors 
immunized to DNP-BSA 4-6 wk earlier. Although 10 X 106 hapten-primed 
thoracic duct cells produced a vigorous response by day 7, no detectable anti- 
body was restored by 10 X 106 hapten-primed bone marrow cells by day 14. 
However, 100 X 106 hapten-primed marrow cells did restore a slowly rising 
response that was similar in time-course and amplitude to that of the adoptive 
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Fla. 3. Adoptive anti-DNP response of rats to DNP-DT. Bone marrow cells were ob- 
tained from unimmunized donors or from donors immunized to ])NP-BSA 4-8 wk before. 
All spleen cells were obtained from ])T-primed donors. Cells were injected intravenously into 
X-irradiated hosts and DNP-DT was given 22 h later. (a) Adoptive primary anti-DNP 
response to 0.4 mg of DNP-DT in complete Freund's adjuvant. A - - A ,  mean response of 
rats given 10 X 106 ])T-primed spleen ceils and 100 X 106 unprimed bone marrow cells; 
E]--[~, mean response with 10 X 106 spleen cells and 50 X 106 bone marrow cells; H ,  
mean response with 10 X 106 spleen cells and 10 X 106 bone marrow ceils; 0 - - 0 ,  mean 
response with 10 X 106 spleen cell alone; V - - V ,  mean response with 100 X 106 bone mar- 
row cells alone; O - - O ,  mean response with 10 X 106 spleen cells and 50 X 103 passaged 
bone marrow cells; A - - A ,  mean response with 10 X 106 spleen cells and 10 X 106 Ficoll- 
purified marrow cells treated in vitro with NRS; V - - V ,  mean response with 10 X 106 
spleen cells and 10 X 106 Ficoll-purified marrow cells treated in vitro with RARBS. (b) 
Adoptive secondary anti-])NP response to 0.5 mg of DNP-DT in PBS. All rats were given 
50 X 106 ])T-primed spleen cells and graded numbers of DNP-primed thoracic duct, spleen, 
or bone marrow cells. O - - O ,  mean response of rats given 50 X 106 DNP-primed spleen 
cells; A - - A ,  mean response of rats given 10 X 106 DNP-primed thoracic duct cells; V - - V ,  
mean response of rats given 2 X 106 DNP-primed thoracic duct ceils; 0 - - 0 ,  mean response 
of rats given 10 X 106 DNP-primed bone marrow cells; EJ--rq, mean response of rats given 
100 X 106 DNP-primed bone marrow cells. 

p r i m a r y  response (Figs. 3 a a n d  b). The  response of 50 X 106 h a p t e n - p r i m e d  
spleen cells is shown for comparison.  

Cytotoxic Action of Rabbit Antirat B Cell Serum (RARBS) on Thoracic Duct, 
Spleen, Bone Marrow, and Thymus Cells.--The effect of R A R B S  on  several  ra t  
l ympho id  tissues was s tud ied  in a n  in  v i t ro  cy to toxic i ty  assay.  Fig. 4 shows 
represen ta t ive  t i t r a t ion  curves wi th  thoracic  duct ,  spleen, un f r ac t i ona t ed  bone  
marrow,  Ficoll-purif ied bone  marrow,  and  t h y m u s  cells. The  highest  t i ters  
( t i ter  a t  5 0 % kill) were observed wi th  spleen ta rge t  cells, a n d  no  ki l l ing of 
t hymocy te s  was observed.  An  ini t ia l  p l a t eau  up  to a 1 :40 d i lu t ion  was no ted  
wi th  all t a rge t  cells except for t h y m u s  cells. The  cytotoxic  index indicates  the 
percen t  of lymphocy tes  killed in the  case of thoracic  duc t  cells, since a lmos t  all  
cells found  in  r a t  thoracic  duc t  l ym ph  are  lymphocy tes  (10). However,  the  
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FIG. 4. Cytotoxic action of rabbit antirat B cell serum (RARBS) on rat lymphoid tissues. 
t - - O ,  thoracic duct cells; I I - - l ,  spleen cells; l~--H, unfracfionated bone marrow cells; 
0 - -©,  Ficoll-puritied bone marrow cells; A--A, thymus cells. 

cytotoxic index in the case of spleen and bone marrow cells may include killing 
of cells other than lymphocytes. 

Effect of RARBS on the Adoptive Primary Anti-DNP Response Restored by 
Spleen, Thoracic Duct, and Bone Marrow Cells.--The adoptive ant i -DNP 
response restored by DT-primed thoracic duct cells treated in vitro with 
RARBS was studied. Fig. 2 a shows that  the response restored by 50 X 106 
thoracic duct cells incubated with RARBS was markedly reduced and was 
below that  restored by 2 X 106 untreated cells at day 21. Treatment  with 
RARBS also abolished the adoptive response restored by 50 X 106 DT-primed 
spleen cells on days 12 and 14, as compared with an equal number of untreated 
cells (Fig. 1 a). However, antibody titers were detectable by day 18 and were 
similar to those produced by 10 X 106 untreated cells by day 21. On the other 
hand, treatment with RARBS did not reduce the ability of bone marrow 
lymphocytes purified on a Ficoll-Hypaque gradient to restore the adoptive 
ant i-DNP response (Fig. 3 a). I t  is of interest that  the purified cells were no 
more efficient on a cell-per-cell basis in restoring the adoptive antibody response 
than unfractionated bone marrow cells, despite the 10-fold increase in the 
proportion of small lymphocytes in the former cell inocula. 

D I S C U S S I O N  

Our previous studies of the adoptive antibody response of rats to horse 
spleen ferritin suggest that  "virgin" B lymphocytes are nonrecirculating cells 
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that turn over rapidly (1). On the other hand, "memory" B cells continuously 
recirculate from the blood to the lymph and turn over slowly (1, 2). The object 
of the present investigation was to examine the migration pattern, rate of 
formation, and tissue distribution of B cells in a well-defined experimental 
system using a hapten-protein conjugate (DNP-DT) instead of ferritin as the 
antigen. 

In order to determine the circulatory characteristics of unprimed splenic 
B cells involved in the adoptive primary anti-DNP response, DT-primed 
spleen cells were passaged (intravenous injection and subsequent collection 
in the thoracic duct lymph) through an irradiated intermediate host before 
transfer to the final host. The latter host was challenged with DNP-DT in 
complete Freund's adjuvant, since the primary antihapten response to soluble 
DNP-DT is barely detectable (Strober, S., unpublished observations). The 
restorative action of passaged and unpassaged cells was compared. Any re- 
duction in the response restored by the former cells as compared with the latter 
would be related to the inability of unprimed B cells to migrate from the blood 
to the lymph, since the helper activity of passaged carrier-primed cells is at 
least as great as that of unpassaged cells (2). The experimental findings show 
that passaged cells were approximately 15-fold less efficient in restoring the 
adoptive primary anti-DNP response as compared with unpassaged cells. 
This indicates that the large majority of unprimed B cells in the spleen do not 
recirculate from the blood to the lymph. 

On the other hand, studies of the adoptive secondary anti-DNP response to 
soluble DNP-DT show that hapten-primed spleen cells obtained from donors 
immunized to DNP-BSA continuously recirculate, since the restorative action 
of passaged hapten-primed cells was about three fold greater than that of un- 
passaged cells. The unprimed B cells in the spleen appear to change from non- 
recirculating to recirculating cells after exposure to antigen. I t  is unlikely 
that this change is due to the use of adjuvant in the primary response, since 
the same change has been noted when adjuvant was used to elicit both the 
adoptive primary and secondary responses (1). 

The rate of formation of unprimed and DNP-primed spleen cells was in- 
vestigated by administering a large dose (~-~25 mCi) of high specific activity 
[3H]thymidine to the spleen cell donors for 48 h before cell transfer. This dose 
of radioactive material has been shown to reduce the number of colony-forming 
units in mouse bone marrow about 10-fold (9) and to reduce the adoptive 
primary antiferritin response restored by thoracic duct cells 20-100-fold (1) 
The extent of "thymidine suicide" is related to the turnover rate of the target 
cells. The experimental results show that the anti-DNP response restored by 
both unprimed and DNP-primed spleen cells was unaffected by treatment 
with [3H]thymidine. This indicates that both populations of cells are turning 
over relatively slowly. 

Similar studies of the circulatory characteristics and rate of formation of 
unprimed and primed thoracic duct cells involved in the adoptive anti-DNP 



SAMUEL STROBER AND JEANETTE DILLE¥ 1341 

response were carried out. The results again show that the majority of un- 
primed B lymphocytes are unable to recirculate, since passaged DT-primed 
thoracic duct cells were about fivefold less efficient than unpassaged cells in 
restoring the adoptive primary anti-DNP response. However, it is of interest 
that a significant fraction (~20  %) of unprimed thoracic duct cells are able to 
migrate from the blood to the lymph. Experiments with DNP-primed thoracic 
duct cells indicate that the large majority of hapten-primed cells recirculate. 
As in the case of spleen cells, both unprimed and DNP-primed thoracic duct 
cells turn over slowly, since the restorative action of both types of cells was 
not affected by treatment with [3H]thymidine. 

Although the results of the migration studies of unprimed and DNP-primed 
spleen and thoracic duct cells confirm our previous findings using horse spleen 
ferritin as antigen, important differences were noted in studies of the rate of 
formation of unprimed and primed cells. Although treatment with [3H]thy- 
midine produced a 20-100-fold decrease in the restorative action of unprimed 
thoracic duct cells when ferritin was used, no effect on the restorative action 
of unprimed cells was noted when DNP-DT was used. Differences in the 
turnover rate of unprimed cells to different antigens have been noted previously 
in studies using vinblastine instead of [3H]thymidine as the mitotic inhibitor 
(11). 

Our initial interpretation of these results was that different populations of 
cells are involved in the adoptive antibody response to different antigens. 
However, in view of recent data (1, 2), it is more likely that differences in the 
turnover rate reflect differences in the extent of environmental priming of 
experimental animals to the antigen under investigation. For example, rats 
used in experiments with ferritin may have little or no previous exposure to 
antigens that cross-react with ferritin; so that unprimed ("true virgin" cells) 
and primed cells differ in both migratory behavior and turnover rate. Rats 
used in the present study may have some previous exposure to antigens that 
cross-react with DNP. This could account for the similar rate of formation of 
unprimed and intentionally primed B cells and for the significant fraction of 
unprimed thoracic duct cells that recirculate. Studies with sheep red blood 
cells suggest that Lewis rats have a considerable exposure to cross-reacting 
antigens, since both the circulatory characteristics and turnover rate of un- 
primed and primed cells are similar (Strober, S., unpublished observations). 
Experiments with germfree animals may provide definitive evidence for this 
hypothesis. 

Studies of the adoptive primary anti-DNP response restored by a combi- 
nation of unprimed bone marrow cells and DT-primed spleen cells show that 
both populations cooperate in initiating the primary response. In order t~ 
study the migration pattern of bone marrow cells involved in the response, 
we attempted to test the restorative action of passaged and unpassaged marrow 
cells. However, a mean of 75 )< 103 ceils (mainly small lymphocytes) was 
collected in the lymph of the intermediate hosts after injecting 400-500 × 10 ~ 
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cells intravenously (yield ~0.02 %). The yield of injected marrow small lympho- 
cytes is also exceedingly low (0.1-0.2 %) as compared with that of injected 
thoracic duct cells (mean of 22 %). This indicates that only a minute fraction of 
bone marrow cells of Lewis rats are able to recirculate. Strain differences appear 
to play an important role in determining this fraction (12). Examination of 
the anti-DNP response restored by small numbers of passaged cells (50 X 
103) showed no detectable activity. 

A comparison of the restorative action of hapten-primed thoracic duct or 
bone marrow cells in the adoptive secondary anti-DNP response shows that 
10 X 106 thoracic duct cells restore a vigorous response @-dog~02) at day 7, 
but no detectable response is restored by 100 X 10 ~ marrow cells at that time. 
In addition, the time-course and magnitude of the anti-DNP response restored 
by equal numbers of primed and unprimed marrow cells is similar. The prim- 
ing effect observed with thoracic duct or spleen cells (a more rapid response 
requiring fewer cells) was not demonstrated with marrow cells. This is con- 
sistent with previous findings that memory B cells recirculate, and recircu- 
lating cells do not easily penetrate the bone marrow. 

The effect of rabbit antirat B cells serum (RARBS) on the ability of rat 
lymphoid cells to restore the adoptive primary anti-DNP response was studied. 
RARBS has been previously shown to kill B (hapten-primed), but not T 
(carrier-primed), lymphocytes (2). However, the specificity of the antiserum 
for cells other than lymphocytes has not been evaluated. The present findings 
show that RARBS abolished the restorative activity of DT-primed thoracic 
duct lymphocytes for a period of 21 days. I t  is likely that the effect was medi- 
ated by the killing of mature B lymphocytes. This indicates that residual B 
cells of the sublethally irradiated hosts do not play an important role in the 
adoptive primary response, since the injection of large numbers of helper cells 
does not restore a detectable anti-DNP response. RARBS only partially di- 
minished the restorative activity of DT-primed spleen cells and had no effect 
on the activity of bone marrow cells purified on a Ficoll-Hypaque gradient. 
This suggests that the bone marrow, and the spleen to some extent, have the 
ability to generate mature B cells from cells that are not killed by RARBS 
(i.e., B-cell precursors). Thoracic duct cells appear to lack this regenerative 
capacity. Indeed, the slow rising response restored by bone marrow as com- 
pared with spleen or thoracic duct cells suggests that few mature B cells are 
involved in the adoptive primary response restored by the marrow. 

Table I summarizes the tissue distribution and biological characteristics of 
different types of B cells or B-cell precursors identified in the present work. 
The actual derivation of one cell from the other along specific pathways of 
differentiation is likely but not proven. Since B-cell maturation may proceed 
by continuous rather than quantum changes, the different categories of B cells 
may refer to cells at given points in time rather than to stable populations of 
cells. 



SAMUEL STROBER AND JEANETTE DILLEY 1343 

TABLE I 
Stages of B-Cell Maturation 

Cell type marrowB°ne Spleen ThoraciCduct circu-Re- Rapid 
lares turnover 

Antigen-independent ;B-cell precursor -}-+ + 0 0 N.T.* 
maturation ~Virgin B cell (B1) 4- -{- -{- 0 + 
Antigen-dependent ~Intermediate B cell 4- + + 0 0 

maturation ~Memory B cell (B2) 0 + + +  + 0 

* Not tested. 

Although antigen-dependent maturation has been shown in studies with 
ferritin and DNP, the extent of antigen-independent maturation remains to 
be elucidated. Presumably antigen-dependent maturation requires the presence 
of recognition sites on the surface of maturing cells and, therefore, would 
proceed after recognition sites are developed. I t  is unclear when maturing B 
cells acquire these sites, since other lymphocytes (T cells) without easily de- 
tectable surface Ig are able to bind antigen specifically (i.e., bear surface re- 
ceptors) (13). 

SUMMARY 

The migration pattern, tissue distribution, and turnover rate of unprimed 
and primed B lymphocytes involved in the adoptive anti-DNP response was 
studied. The adoptive primary response restored by unprimed spleen or 
thoracic duct cells passaged through an intermediate host (intravenous injec- 
tion and subsequent collection in the thoracic duct lymph) was markedly 
diminished as compared with that restored by unpassaged cells. On the other 
hand, the adoptive response restored by passaged spleen or thoracic duct cells 
from DNP-primed donors was greater than or the same as that restored with 
unpassaged cells, respectively. This suggests that unprimed B cells change 
from nonrecirculating to recirculating lymphocytes after exposure to antigen. 

Studies of the adoptive anti-DNP response restored by unprimed or primed 
bone marrow cells showed little change in the time-course or amplitude of the 
response restored by either population of cells. The relative inability of marrow 
cells to carry immunological memory was related to the inability of recirculating 
memory cells to penetrate the marrow. 

The turnover rate of unprimed and primed B cells was investigated by treat- 
ing the cell donors with [3H]thymidine for 48 h before removal of thoracic duct 
or spleen cells. The adoptive anti-DNP response restored by unprimed or 
primed cells was not affected by [3H]thymidine treatment. This indicates that 
both populations of cells turn over slowly. However, our previous studies 
show that unprimed B cells involved in the adoptive antibody response to 
ferritin turn over rapidly. The different findings are discussed in the context of 
antigen-dependent B-cell maturation. 
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