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Objectives: Tumor pathology examination especially epidermal growth factor receptor

(EGFR) mutations molecular testing has been integral part of lung cancer clinical

practices. However, the EGFR mutations spatial distribution characteristics remains

poorly investigated, which is critical to tumor heterogeneity analysis and precision

diagnosis. Here, we conducted an exploratory study for label-free lung cancer pathology

diagnosis and mapping of EGFR mutation spatial distribution using ambient mass

spectrometry imaging (MSI).

Materials and Methods: MSI analysis were performed in 55 post-operative non-small

cell lung cancer (NSCLC) tumor and paired normal tissues to distinguish tumor from

normal and classify pathology. We then compared diagnostic sensitivity of MSI and

ADx-amplification refractory mutation system (ARMS) for the detection of EGFRmutation

in pathological confirmed lung adenocarcinoma (AC) and explored EGFR mutations

associated biomarkers to depict EGFR spatial distribution base on ambient MSI.

Results: Of 55 pathological confirmed NSCLC, MSI achieved a diagnostic

sensitivity of 85.2% (23/27) and 82.1% (23/28) for AC and squamous cell

carcinoma (SCC), respectively. Among 27 AC, there were 17 EGFR-wild-type and 10

EGFR-mutated-positive samples detected by ARMS, and MSI achieved a diagnostic

sensitivity of 82.3% (14/17) and 80% (8/10) for these two groups. Several phospholipids

were specially enriched in AC compared with SCC tissues, with the higher ions

intensity of phospholipids in EGFR-mutated-positive compared with EGFR-wild-type

AC tissues. We also found EGFR mutations distribution was heterogeneous in

different regions of same tumor by multi-regions ARMS detection, and only the

regions with higher ions intensity of phospholipids were EGFR-mutated-positive.
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Conclusion: MSI method could accurately distinguish tumor pathology and subtypes,

and phospholipids were reliable EGFR mutations associated biomarkers, phospholipids

imaging could intuitively visualize EGFR mutations spatial distribution, may facilitate our

understanding of tumor heterogeneity.

Keywords: tumor heterogeneity, mass spectrometry imaging, lipids, non-small cell lung cancer (NSCLC),

epidermal growth factor receptor (EGFR)

HIGHLIGHTS

- Lung tumors are heterogeneous, making diagnosis, and
treatment difficult.

- Metabolomics can be used to separate lung tumor and healthy
tissue in real time.

- Metabolite profiling can assess lung tumor pathology and
EGFR mutation status.

- Mass spectrometry imaging analysis can visually plot the
spatial distribution heterogeneity of EGFR mutation status,
which may benefit our understanding of tumor heterogeneity.

INTRODUCTION

Lung cancer is a highly heterogeneous malignant epithelial
tumor with distinct pathological features and clinical behavior
(1). It can be routinely classified into non-small cell lung
cancer (NSCLC) and small cell lung cancer according to
histopathology, with NSCLC accounts for 85% of cases. The
clinical treatment program decisions in lung cancer always
depended largely on accurate classification of tumor types and
subtypes. Advance in molecular diagnostic technology and deep
study of tumor biology, NSCLC are found to have diverse
molecular subtypes according to lung cancer-specific driver
oncogenes (2–5). Epidermal growth factor receptor (EGFR) (6–
10) is one of the most common driver oncogenes, but also an
important therapeutic target and good predictor of the curative
effect of targeted drugs in NSCLC. Hence, accurate molecular
pathology testing especially EGFR mutations detection has been
an expert consensus in lung cancer clinical practice (11).

Tumor spatiotemporal heterogeneity remains themain reason
of anti-tumor therapy failure, which has significant influence on
the treatment decision making and patients’ prognosis. Because
of tumor spatiotemporal heterogeneity, NSCLC patients harbor
EGFR mutations will have different drug response and clinical
benefit treated with EGFR-tyrosine kinase inhibitors (TKIs) (1,
12–17). However, routine driver oncogenes detection methods
(18, 19) including direct sequencing and ARMS have inherent
limitations: lose all spatial distribution information of EGFR
mutations during the tumor tissue homogenization process.

Abbreviations: AC, adenocarcinoma; SCC, squamous-cell carcinoma; AFADESI,

air-flow-assisted desorption electrospray ionization; ARMS, amplification

refractory mutation system; EGFR, epidermal growth factor receptor; H&E,

haematoxylin and eosin; LC-MS, liquid chromatography mass spectrometry;

MS/MS, tandem mass spectrometry; MSI, mass spectrometry imaging; NSCLC,

non-small-cell lung cancer; SCLC, small cell lung cancer; TKI, tyrosine kinase

inhibitor.

Hence, the current gene mutation detection methods are unable
to reveal the EGFR mutation spatial distribution features. New
methods are urgently needed to intuitively visualize the spatial
distribution of EGFR mutations across whole tumor tissues and
facilitate more accurate EGFRmutations detection.

MSI, a spatially resolved label-free bioanalytical technique
(20–25), can directly map the spatial distribution of chemical
molecules (i.e., proteins and metabolites) in biological tissues,
has been widely used for biomarkers screening and disease
diagnosis. Air flow assisted desorption electrospray ionization-
MSI (AFADESI-MSI) (20, 21) is an ambient MSI technique
which specially characterized the endogenous metabolites such
as lipids in biological tissues. This approach allows rapid and
nearly real-time analysis with minimal pre-treatment, usually a
single AFADESI-MSI analysis of a tissue section requires only
tens of minutes. AFADESI-MSI can produce a multicolor map
to illustrate the spatial distribution of the molecules of interest
or candidate biomarkers while maintain tissue morphology
integrity, will facilitate studies of tumor spatial heterogeneity.

The present study is an extension of our previous work (20)
with the goal to explore EGFR mutations associated biomarkers,
and visualize EGFR mutation spatial distribution in lung
adenocarcinoma (LADC) tissues using ambient AFADESI-MSI.

MATERIALS AND METHODS

Sample Collection and Pre-treatment
All post-operative lung cancer tissue and paired adjacent normal
(more than 5 cm to tumor) samples were collected from the
Tang Du Hospital of Air Force Military Medical University,
Peking University People’s Hospital, and the FifthMedical Center
of Chinese PLA General Hospital following ethics committee
approval number: 2012-11-171. The enrolled patients were all
newly diagnosed did not show other tumor occurrences. Patients
had not received chemotherapy or radiotherapy prior to surgery.
Study protocols were approved by the ethical review community
of the Fifth Medical Center of Chinese PLA General Hospital,
and all study participants provided informed written consent.
Samples were washed twice with sterile saline to remove the
blood clots. Then the samples were flash frozen in liquid
nitrogen and stored at −80◦C before being sectioned at 8-µm
thickness using a cryomicrotome (CM 1950; Leica, Wetzlar,
Germany) and thaw-mounted onto glass slides (Superfrost Plus
slides, Thermo Fisher Scientific, Waltham, MA, USA). Five
tissue sections were cut and collected, and one cryosection
was acetone-fixed and subsequently stained using haematoxylin
and eosin (H&E) for pathological examination. Other slides
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FIGURE 1 | An overview of MSI platform for label-free NSCLC pathology diagnosis. Definition of regions of interest (ROIs) and strategy for developing an in situ

metabolomics method to discover reliable diagnostic biomarkers to classify molecular pathology and map EGFR mutation status in NSCLC tissues.

were stored in closed containers at −80◦C for AFADESI-
MSI analysis. Prior to analysis, the slides were allowed to
thaw at room temperature and were dried in a desiccator for
∼30 min.

Histopathology Analysis and EGFR

Mutation Detection
Tumor content and pathology was assessed by two
independent pathologists according to H&E-stained and
immunohistochemistry (streptavidin-perosidase, S-P)
examination. Detection of EGFR mutations was undertaken
using an ADx-ARMS EGFRmutation test kit (Amoy Diagnostics,
Xiamen, China) according to the manufacturer’s instructions on
a 7500 real-time PCR System (Applied Biosystems, Foster City,
CA, USA). DNA quality and integrity were evaluated according
to the 260 nm/280 nm ratio using a NanoDrop 2000 Ultramicro
spectrophotometer (Thermo Fisher Scientific). We defined
the presence of an EGFR mutation as Ct <26 (representing
the number of cycles in which the fluorescent signal from

each reaction tube reached the set threshold) and mutation
abundance >5%.

MSI Profiling and Metabolite Identification
The MSI profiling experiments were performed using a Q-TOF
(QSTAR Elite, Applied Biosystem/MDS Sciex) equipped with
a custom-made AFAI ion source as previously described (20).
Metabolite assignments were tentatively confirmed by tandem
mass spectrometry (MS/MS) based on a liquid chromatography
mass spectrometry (LC-MS) technique (26–28). Briefly, frozen
lung tissue samples (wet weight: ∼50mg) were homogenized
in a pre-cooled solution (410 µL of methanol and 210 µL
of water), followed by addition of 280 µL of methylene
dichloride and 210 µL of water. Homogenates were thoroughly
vortexed for 2min, followed by centrifugation at 15,000 rpm
for 10min at 4◦C. Centrifugation produced a biphasic mixture,
with the upper (polar) and lower (non-polar) layers collected
separately and dried under nitrogen. Before analysis, polar
extracts were resuspended in 1.2mL of 8:2 acetonitrile: water,
and non-polar extracts were resuspended in 120 µL of 40:60
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TABLE 1 | Summary of the lung cancer specimens used in this study (N = 55).

Median age, years (range) 62 (33–79)

Sex, no. (%)

Men 37 (67.2)

Women 18 (33.8)

Smoking status, no. (%)

Current smoker 20 (36.4)

Former smoker 8 (14.5)

Never smoker 25 (45.5)

Unknown 2 (3.6)

Histopathology, no. (%)

AC 27 (49.1)

EGFR 19 exon del 6 (10.9)

EGFR 21 exon L858R 4 (7.2)

EGFR wild 17 (30.9)

SCC 28 (50.9)

Stagea, no. (%)

I and II 36 (65.4)

IIIA 11 (20)

IIIB 4 (7.3)

IV 4 (7.3)

aTNM staging is evaluated according to the International Association for the Study of Lung

Cancer (IASLC) 7th edition.

acetonitrile: water. Analyses were conducted on an UltiMate
3000 RSLC System (Dionex; Thermo Fisher Scientific) coupled
to a Q-Orbitrap mass spectrometer (Q-Exactive; Thermo Fisher
Scientific). The MS spray voltage was ± 3.5 kV, and the
capillary temperature was set to 350◦C, with the sheath gas at
40 arbitrary units and the aux gas at 11 arbitrary units. The
chromatographic peak width was 15 s, and the mass scan range
was set to a range of 70 Da to 1,000 Da. The resolution of the
Orbitrap was set to 70,000. MS/MS data were collected with
the collision energy between ± 10 and ± 45 eV. A linear 30-
min water (5mM ammonium acetate)-to-acetonitrile gradient
was run on a Phenomenex Kinetex HILIC column (2.6µm,
2.1 × 150mm; Phenomenex, Torrance, CA, USA) for the
polar sample. For the non-polar layer, a linear 35-min water
(0.1% formic acid)-to-acetonitrile gradient was employed on
a Waters ACQUITY UPLC CSH C18 column (1.7µm, 2.1 ×

100mm;Waters Corp., Milford, MA, USA). Data regarding exact
molecular weights (accurate masses of parent and product ions in
MS/MS spectra) retrieved from the literature or online databases
[HMDB (http://www.hmdb.ca/metabolites), Massbank (https://
massbank.eu/MassBank/Index), and Lipid maps (http://www.
lipidmaps.org/)] were used to tentatively confirm the postulated
structures of these potential biomarkers.

Data Processing and Statistical Analysis
All LADC tissue sections were subjected to AFADESI-MSI
analysis and we constructed three diagnostic model: tumor
vs. normal, AC vs. SCC and EGFR-mutated-positive vs.
EGFR-wild-type as the flow chart described (Figure 1). Raw
mass spectrometry data were extracted from the selected

regions of interest based on the visual ion image and the
corresponding optical image of the tissue section. The raw
dataset matrixes were imported into MarkerView (v1.2.1, AB
SCIEX) for background deduction, peak picking, and peak
alignment. Filtered quality control data were then imported
into SIMCA-P software (v14.1, Umetrics AB, Umea, Sweden) to
conduct orthogonal projections to latent structures discriminant
analysis (OPLS-DA), then the OPLS-DA was applied for the
exploration of discriminating variables of three diagnostic
models, respectively (29). Discriminating variables with both
high covariance and correlation were preferentially selected by
S-plot and variable importance (26, 28). Biomarker candidates
were further confirmed by an independent t test (Microsoft
Office Excel 2010), and the variation in and comparison of
potential biomarker levels between the experimental groups were
presented as histograms (GraphPad Prism 6.02). The receiver
operating characteristic and area under the curve values were
used to assess the diagnostic power of the selected variables using
SPSS (v19.0.0).

RESULTS

A complete description of the specimens used in this study,
including information regarding number, sex, age, type, Eastern
Cooperative Oncology Group performance status scores,
smoking history, tumor-node-metastasis stage, and EGFR status,
is provided in Table 1 and Table S1. Representative mass spectra
from human lung cancer tissue and corresponding adjacent
normal tissue, as well as different pathology types and the EGFR
mutation status of lung cancer acquired by AFADESI-MSI,
are provided in Figures S1–S3 and Table 2. More detailed
information on these three diagnostic models using MSI is
described below.

Lipid Profiles Facilitate Accurate
Classification of Tumor
AFADESI-MSI analysis was performed on 55 paired,
treatment-naïve, post-operative lung cancer tissue sections,
and corresponding normal tissues to discover potential
diagnostic biomarkers for use in differentiating malignant
tumors and normal tissue (Figure S5A) according to the
protocol outlined in our previous work (20). The most prevalent
metabolites species observed in lung cancer tissues were
glycerophosphocholines (PCs) and fatty acids (FAs). Eleven
metabolites were discovered to be specially enriched in NSCLC
tumor tissues, with the signal acquired from tumor tissues
being stronger than that obtained from adjacent normal
tissues. Both potential biomarkers showed a clear distinction
between tumor tissues and normal tissues and could depict
a clear tissue contour using MSI shown in Figure 2. The
spatial distributions of these metabolites in the ion images
were consistent with the statistical trends shown in the
histogram. In addition, these differential metabolites group
achieved a high diagnostic power of 0.991 after binary logistic
regression (Figures S4A,D) for classification of tumor and
normal tissues.
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TABLE 2 | Potential biomarkers of lung tumors and their tentative identifications results.

No. m/z Adduct ion Postulated elemental composition MS/MS data Potential results AUC

1 99.0091 [M-H]− C4H4O3 99,72 Succinic anhydride 0.751

2 104.0333 [M-H]− C3H7NO3 104,74,72 Serine 0.690

3 151.0244 [M-H]− C5H4N4O2 151,108 Xanthine 0.772

4 206.0537 [M+Na]+ C5H14NO4PNa
+ 206,146,86 [Phosphorylcholine+Na]+ 0.726

5 222.0272 [M+K]+ C5H14NO4PK
+ 222,162,104,86 [Phosphorylcholine+K]+ 0.687

6 251.2015 [M-H]− C16H28O2 251,80,59 FA(16:2)a 0.740

7 301.2166 [M-H]− C20H30O2 301,257,203,59 FA(20:5) 0.700

8 305.2482 [M-H]− C20H34O2 305,249,59 FA(20:3) 0.612

9 307.2630 [M-H]− C20H36O2 307,263,59 FA(20:2) 0.800

10 327.2317 [M-H]− C22H32O2 327,283,59 FA(22:6) 0.852

11 329.2480 [M-H]− C22H34O2 329,285,59 FA(22:5) 0.881

12 331.2641 [M-H]− C22H36O2 331,313,287,59 FA(22:4) 0.772

13 335.2964 [M-H]− C22H40O2 335,59 FA(22:2) 0.813

14 359.2951 [M-H]− C24H40O2 359,59 FA(24:4) 0.867

15 436.2833 [M-H]− C21H44NO6P 436,239,196,140,78 PE(16:0/0:0)a 0.612

16 462.3007 [M-H]− C23H46NO6P 462,265,196,140,78 PE(18:2/0:0) 0.687

17 464.3141 [M-H]− C23H48NO6P 464,462,196, 78 PE(18:2/0:0) 0.810

18 758.5699 [M+H]+ C42H81NO8P
+ 575,502,496,478,184,86 PC(16:0/18:2) 0.793

19 760.5856 [M+H]+ C42H82NO8P 760,496,184 PC(16:0/18:1)a 0.824

20 782.5666 [M+Na]+ C42H82NO8PNa
+ 782,184 [PC(34:1)+Na]+ 0.864

21 784.5832 [M+Na]+ C42H84NO8PNa
+ 784, 184, 86 [PC(34:0)+Na]+ 0.725

a(X:Y) represents the number of carbon atoms (X) and the number of double bonds (Y) in the fatty acid chains.

PC, glycerophosphocholine; PE, glycerophosphoethanolamines; FA, fatty acid; AUC, area under the curve.

Lipid Profiles Facilitate Label-Free Lung
Cancer Molecular Diagnosis and EGFR

Mutations Detection
Although sharing most of the malignancy signature, different
pathological types of lung cancer were characterized by
differences in their metabolic behavior (30, 31). We further
investigated the metabolic difference of AC from SCC and
tried to explore discriminative biomarkers to classify these
two groups (Figure S5B). Interestingly, MSI images (Figure 3)
showed that the phosphorylcholine molecules and PC had
a stronger ions intensity in AC compared with SCC tissues
while the SCC tissues were specially enriched with succinic
anhydride and serine. These biomarkers group generated by
MSI achieved a diagnostic sensitivity of 85.2% (23/27) and
82.1% (23/28) for AC and SCC, respectively, with a high
diagnostic power of 0.827 for pathological diagnosis model
(Figures S4B,D). As the MSI method could intuitively reveal the
discriminative biomarkers distribution in tumor tissues without
antibody staining, the difference of metabolites abundance in
tumor tissues could be used to study the tumor behavior
characteristic between tumor subtypes. Hence, we further
validated the ability of the MSI method to distinguish EGFR-
mutated-positive from EGFR-wild-type AC samples. There
was a trend indicating clear separation between EGFR-
mutated-positive and EGFR-wild-type samples after multivariate
statistical analysis (Figure S5C), whereas EGFR-mutated-positive

subtypes (19-DEL vs. 21-L858R) were not distinguished well
(Figure S5D), possibly due to the number of specimens. We also
discovered a panel of lipids associated with EGFR mutations
status. As shown in Figure 4, the phospholipids molecules
m/z 436.3 [PE(16:0/0:0)], m/z 462.3 [PE(18:2/0:0)], m/z 464.3
[PE(18:2/0:0)], and m/z 758.6 [PC(16:0/18:2)] were discovered
to be specially enriched in EGFR-mutated-positive compared
with EGFR-wild-type samples. These phospholipids biomarkers
achieved a diagnostic sensitivity of 82.3% (14/17) and 80%
(8/10) for these two groups with a high diagnostic power of
0.880 (Figures S4C,D). Noteworthy, in one AC sample (N34,
EGFR-mutated-positive), we observed that these phospholipids
had a distinct distribution in separate regions of the same
tumor tissue. We deduce that the heterogeneous distribution
of phospholipids in tumor tissues may be related to the spatial
distribution heterogeneity of EGFR mutations. To validate this
hypothesis, we confirmed that the N34 sample had a high
abundance of tumor cells according to imaging of tumor-
related biomarkers (Figure 5A). Then, we extracted nucleic

acids from different regions of tumor tissue for ARMS analysis,

which revealed that only the region providing the strongest ion
intensities of phospholipids (Figure 5B) for the EGFR mutation

returned a positive result (Figures 5C–E). These results suggested

that phospholipids molecules, including PC and PE, but not
FA, might be more reliable biomarkers to characterize EGFR

mutation status.
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FIGURE 2 | Distributions of representative potential biomarkers (group) across tumors and adjacent normal tissue sections from AC and SCC lung cancer. (A)

Xanthine; FA(20:5); FA(20:3); FA(20:2); FA(22:6); FA(22:5); FA(22:4); FA(22:2); FA(24:4); PC(16:0/18:1); [PC(34:1)+Na]+]. (B) Optical images of corresponding H&E

stained sections and the amplified figures of tumor and normal lung tissues (× 200).

DISCUSSION

Endogenous metabolites serve as direct signatures of biochemical

activity and downstream products of gene expression, and are

therefore easier to correlate with phenotype and can help to

understand the pathogenesis (31). In this study, we discovered

several reliable discriminative tumor biomarkers which could be
used for classification of tumor and normal samples. Based on
the tumor associated lipids imaging, tumor margin and contour
could be immediately recognized andmapped, whichmay benefit
accurate surgical resections. We also found the phospholipids
were specially enriched in AC compared with SCC tissues.

Frontiers in Oncology | www.frontiersin.org 6 August 2019 | Volume 9 | Article 804

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. MS Imaging of EGFR-Mutation Status in NSCLC

FIGURE 3 | Distributions of representative potential pathology-related biomarkers (A) across AC and SCC tumors and the histogram (B) showed relative expression

level of these biomarkers in AC (black box) and SCC tumors (gray box). (C) Optical images of corresponding H&E stained sections the amplified figures (× 200). PC,

Phosphorylcholine. *p < 0.05, **p < 0.01, ***p <0.001 (t-test).

Noteworthy, with the higher ions intensity of phospholipids
in EGFR-mutated-positive AC compared with EGFR-wild-type
samples. These findings were consistent with the result that
abnormal choline phospholipid metabolism is a hallmark of
cancer (32). Two independent studies also revealed EGFR-
mutated-positive NSCLC had a unique metabotype according
to lipidomic profiling in lung pleural effusion (33) and
phospholipids of tumor extracellular vesicles were different in
gefitinib-resistant NSCLC cells from gefitinib-sensitive NSCLC
cells (34). These results along with our observation showed
phospholipids may represent reliable discriminative biomarkers
associated with EGFRmutations status.

Tumor tissues are known to contain both tumor cells and
normal cells, with transitional and apoptotic cells also included,
the EGFR mutations in separate regions of the same tumor
tissuemay be highly heterogeneous. In addition, EGFRmutations
spatial heterogeneity remains one of most important reason
leading to targeted drug resistance, which has posed a series of
challenge to both accurate diagnosis and personalized therapy.

The routine EGFR mutations detection methods inherently
lose all spatial information during pre-treatment process,
may obscure the difference between separate spatial regions
of tumor tissues. Hence, current gene mutations detection
methods provided little information of EGFR mutations spatial
distribution, were unable to assess the intra-tumor heterogeneity.
For a more accurate EGFR mutations diagnosis, several research
groups (12–14) tried to apply laser capture micro-dissection
to extract tumor materials in different tumor spatial regions
and perform multiregional genomic sequencing to generate a
comprehensive EGFR mutations spatial landscape. In addition,
isotopically labeled EGFR-TKIs probes (35, 36) have also been
used for in vivo molecular imaging of EGFR spatial distribution
in lung tumor xenografts. However, these methods have inherent
limitations: a large amount of tumor tissue is needed, the
sample pre-treatment is complex and time consuming. These
methods remain available only in a low-throughput manner,
and therefore cannot be routinely applied clinically for lung
cancer diagnosis.
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FIGURE 4 | (A) Distributions of representative potential EGFR-related biomarkers (A) across different EGFR mutation status of lung cancer, and histogram (B) the

boxplot showed relative expression level of these biomarkers in EGFR-mutated-positive (gray box) and EGFR-wild (black box) samples. (C) Optical images of

corresponding H&E stained sections and DNA amplification plot of EGFR by ARMS; *p < 0.05, **p < 0.01, ***p <0.001 (t-test).

As MSI can directly map the spatial distribution of molecules
of interest in association with pathological features in small
amount of tissue sample with minimal pre-treatment, has
been recognized as a label-free IHC form (25). The matrix
assisted laser desorption/ionization mass spectrometry imaging
(MALDI-MSI) technique has been used to explore the proteomic
differences and intuitively reveal HER2 receptor status in
breast cancer (37). In this study, we also revealed that
the phospholipids signature was able to accurately classify
EGFR mutation status. According to phospholipids imaging,
the EGFR mutation spatial distribution map in whole tumor
tissues was not difficult to generate, thereby we could visually
observe the EGFR mutations spatial distribution features.
We also performed multi-regions ARMS EGFR detection in
tissue section of each tumor sample. Interestingly, we found
that only the regions providing the strongest ions intensity
of phospholipids were EGFR-mutated-positive, suggested that

phospholipids imaging could reveal EGFR mutations spatial
distribution heterogeneity. To our knowledge, this is the first
time to generate a comprehensive EGFR spatial distribution
landscape and observe EGFRmutation intratumor heterogeneity
based on metabolites imaging. The MSI method may provide
a new perspective to analyze and monitor the EGFR mutation
status in vivo, potentially benefitting real-time monitoring of
targeted therapy.

As this is a preliminary study, the number of cases studied
here was limited, our findings of the phospholipid biomarkers
for the identification of EGFR mutations status need to be
validated in a larger cohort of patients. Second, whether or not
these biomarkers can predict the clinical response of EGFR-
targeting drugs remains unclear. Future studies to use these
phospholipid biomarkers for dynamic observation of EGFR-TKIs
efficacy are currently under consideration as a possible extension
of our work.
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FIGURE 5 | AFADESI-MSI revealed the spatial heterogeneity of EGFR by in situ metabolomics imaging. (A) The tumor-related biomarkers of FA(20:5), FA(20:3),

FA(22:4), FA(22:2) were used to showcase the overall contour of cancerous tissue. (B) The EGFR-related biomarkers of PE(16:0/0:0), PE(18:2/0:0), and PE(16:0/18:0)

present the EGFR mutation spatial distribution heterogeneity. (C) With region of tissue harbor EGFR mutation delineated by dotted blue line shown in optical image.

DNA amplification plot of EGFR by ARMS. (D) EGFR mutant-wild; (E) EGFR mutant positive.
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