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Objectives: To investigate if glucose levels influence seizure patterns.
Materials and methods: In a patient with RNS/NeuroPace implanted bi-temporally and type 1 diabetes mellitus,
seizure event times and onset locations were matched to continuous tissue glucose.
Results: Left focal seizure (LFS, n= 22) glucoses averaged 169mg/dL, while right focal seizure (RFS, n= 23) glu-
coses averaged 131 mg/dL (p= 0.03). LFS occurred at mean time 17:02 while RFS occurred at 04:23. LFS spread
to the contralateral side (n = 19) more than RFS (n = 2).
Conclusion: Seizure onset laterality and spread vary with glucose and time of seizure.
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1. Introduction

In people with epilepsy, the inter-relationship between glucose and
seizure provocation is not well understood. Glucose is an important en-
ergy source during seizure, nonketotic elevations may predispose to
focal seizures while failure of glucose transport into the central nervous
system can predispose to epilepsy [1,2]. Regional glucose uptake or
hypometabolic changes in possible epileptogenic tissue may become
evident with 18F-fluoro-deoxyglucose (FDG) positron emission tomog-
raphy (PET) mapping [3]. In patients with type 1 diabetes mellitus
(T1DM), seizures may be provoked with hypo-, hyper- and ketotic gly-
cemia [4–6]. Yet howalterations in glucose change seizure susceptibility
is not well described.

The responsive neurostimulation system (RNS, NeuroPace, Moun-
tain View, CA) reduces self-reported seizure frequencies in patients
with drug-resistant focal epilepsy [7]. The RNS surveys electrocorticog-
raphy, which is trained to recognize physician-selected patterns associ-
ated with seizure onset, and then triggers electrical stimulation(s) or
therapies designed to help mitigate or ideally terminate seizure. De-
pending on where the electrodes are placed, the device can survey
and record two different locations for seizure activity. That time-
stamped data uploads to an online-accessible format for provider re-
view, including if the stimulation failed and the event turned into an ob-
vious electrical seizure.
98122, USA.
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In diabetes management, continuous glucose monitoring (CGM) is
increasingly used to target insulin dosing and glucose response [8,9].
Dexcom monitoring systems (San Diego, CA) can continuously survey
tissue glucose with data uploads every 5-min to an online repository
[9]. CGM estimates tissue glucose and needs near daily calibration be-
tween the device and blood glucose (finger sticks) surveyedwith a sep-
arate functional glucometer. Our index patient has both the RNS and
CGM devices, she regularly calibrates her CGM and the two devices
are time synchronized. We assume, based on humans and animal
models, that tissue glucose parallels glucose availability to the central
nervous system [10,11]. From studying these data sets, we aim to de-
scribe relationships between tissue glucose and seizures in this patient.

2. Material and methods

After informed consent medical histories including data from CGM
and RNS devices were studied in a patient with drug-resistant
bitemporal epilepsy and T1DM for relationships between left focal sei-
zures (LFS) or right focal seizures (RFS) by outcomes time of seizure
and glucose. Consecutive RNS long events (LE) were reviewed by a
board certified Epileptologist and considered as seizure proxies. Sei-
zures were not studied unless glucose data was available at the time
of seizure, only one seizure per day, the first, was used. The closest
CGM reading prior to seizure onset was studied (tissue glucose is typi-
cally recorded every 5min). Ultradian trends in glucose were also stud-
ied immediately after seizure and in the hours prior and post-seizure. In
this study, tissue glucose was considered a proxy for glucose levels
within the central nervous system.
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A control group was set up based on random date generations dur-
ing the study period at the exact time of left or right focal seizures. I.e.
for every seizure detected off the left or right side, a control glucose
from different date was assigned based on the exact event time pro-
vided that no seizure on the control day occurred and that glucose
data was available. Two controls were studied, one based only on glu-
coses from seizure-free times matched to LFS or RFS seizure times,
and a second based on glucose from seizure-free times matched to
any seizure. Two-tailed independent sample T-tests were run with var-
iables including tissue glucose by side of seizure onset and control.
Trends in tissue glucose in the hour prior to and post-event were stud-
ied with Chi2.

3. Results

A 47-year-old female with drug-resistant bitemporal epilepsy and
T1DM underwent implantation of the RNS device after failure of medi-
cal and VNS therapies. Seizure types include audiogenic/reflex Johnny
Cash's Ring of Fire, for instance, would trigger events of impaired
awareness. Independent events characterized by automatisms of lip
smacking and behavior arrest and possible progression to bilateral
tonic clonic activities were also noted. The LG1 gene, GLUT1 and Anti-
GAD antibody status remains unknown. Epilepsy onset was at
18 years, her diabetes at age 31.

Brain MRI scan pre-RNS showed left mesial temporal blurring and
size diminishment and an absence of diabetes-related ischemic disease.
Comorbid conditions include depression, hypothyroidism, inflamma-
tory bowel disease and insomnia. An ineffective VNS device remained
off.

Two prior scalp EEG studies showed a breakdown of diffuse onset
and poorly localized (central/temporal or frontal) RFS (n = 6) and
one likely left temporal event. The left hippocampus was an obvious
site for RNS electrode placement based off of intracranial data, six sei-
zures originated there. The second RNS electrode site proved more dif-
ficult. Only one intracranial subclinical event was recorded off of a
right lateral inferior temporal location at an edge-of-grid location. Fre-
quent interictal hippocampal discharges from the right hippocampus
were noted. The second electrode was placed in the right hippocampus,
assuming that placewould prove important either as a generator or as a
network hub for seizure spread.

An insulin pump and a regularly calibrated (average 2.4 times a day)
continuous glucose monitor (CGM) were used during the study period.
Anti-seizure medications used during this period included topiramate,
levetiracetam, clobazam, clonazepam, and gabapentin. Dosing and
timing of those medications varied little in the March 2016–October
2017 study period.

Insulin dosing varied by daily glucose reads. Day glucose targets
were 70–180 mg/dL while night targets were 80–150 mg/dL (Fig. 1).
No emergency presentation or lab findings to suggest nonketotic
hyperosmolar hyperglycemia, ketotic hyperglycemia, or critical hypo-
glycemia occurred during the study period. The only hemoglobin A1C
drawn during mid-study period was 7.3% (normal range 4–5.6%).
Hourly glucose trends by 90-day blocks along with target glucose
thresholds are depicted (Fig. 1).

RNS detectors off of both left and right hippocampi were changed
once to enable more detections off of the left hippocampi. Stimulation
settingswere changedfive timeswith four program changes to increase
charge density and once to decrease stimulation frequency (settings not
shown).

A total of 45 seizures were recorded from the lateralized hippocam-
pal electrodes, 22 LFS and 23 RFS. Seizures showed no seasonal or
monthly trends apparent in frequency or onset location. Seizures were
least likely between 6 AM and 4 PM, a time in which glucose in general
was normal or hyperglycemic (Fig. 2). The average glucose closest to
time of seizure was 150 mg/dL, those levels were measured on average
2.3 min prior to seizure onset. The average glucose at the next CGM
reading post-seizure was 149 mg/dL and occurred on average
3.27 min post-seizure. Glucose levels for LFS showed a mean of
169 mg/dL (SD = 66.3), for RFS 131 mg/dL (SD 41.5, t = 2.29 p =
0.03 2-tailed T-test). With comparison to control groups, only the
right side showed significance (Table 1). The mean time of seizure for
LFS was 17:02 and for RFS was 4:23, though time plots suggest closer
acrophasic clusterings of seizures than the mean levels, LFS in the eve-
ning, RFS from midnight until 4 AM (Fig. 2). These times are similar to
her historic other ultradian patterns, specifically evening wake and
early AM sleep and PM elevations in glucose and midnight until 7 AM
declines in glucose (Fig. 1). Interestingly, LFS were of greater intensity,
19 of 22 events spread from left to right hippocampi, while most RFS
remained unilateral, with only 2 of 23 spreading to the left side.

Not all seizures had obvious glucose trends in the hour prior to or
post-seizure. If glucose levels were falling in the hour prior to seizure
(n = 14), the event was more likely to be a RFS, if they were rising (n
= 15) the event was more likely to be a LFS (p = 0.02, Chi2 = 5.85).
In the hour after seizure, no similar patterns were seen (p = 0.28,
Chi2 = 1.16). Regardless if LFS or RFS occurred, glucose tends to fall
post-seizure (n = 26 down, n = 6 up). Hypoglycemia (defined as
b70 mg/dL) associated seizures were uncommon, two occurred with
glucose at 48 and 62mg/dL; all were unilateral RFS. Twelve hyperglyce-
mic (in this study N180mg/dL) seizureswere seenwith a LFS:RFS of 9:3.

Somogyi effects of post-hypoglycemia rebound to hyperglycemia
were not noted, for instance summer 2016 shows the most AM hypo-
glycemia, yet the post-hypoglycemia rebound varies little between
90 day epochs (Fig. 1). Three seizures occur summer of 2016, they clus-
tered around midnight with an average glucose of 167 mg/dL.

4. Discussion

This is the first paper to our knowledge that looks closely at seizure
and glucose at time of seizure events in an ambulatory patient. The data
is most significant for right side events showing lower glucose (but not
hypoglycemia) than control at time of seizure. This data remains
unique, intriguing and impossible to collectwithout continuous surveil-
lance devices. The clinical implications of tighter PM and pre-sleep glu-
cose controls were suggested to hopefully avoid her larger left-sided
seizures. The impact of those changes on her seizure patterns remains
to be seen. Important questions are raised by this case study.

4.1. Are there nonketotic glucose levels – high or low – that predispose to
seizure?

We reviewed the literature on glucose levels and seizure provoca-
tion in humans. Almost all of it documents post-event or intra-event
glucose such as in status epilepticus, and almost none of it clarifies glu-
cose at seizure onset or prior to events. In 53,505 emergency responses
to seizure, when glucosewas checked, only 1% of presentations had fin-
ger sticks of ≤60 mg/dL, while the average was 112 mg/dL suggesting
that most seizures occur with a relatively normal glucose [12]. That
study did not report hyperglycemic presentations. In neonates with hy-
poglycemic seizures, ≤50mg/dL is considered low [13]. In childrenwith
complex or prolonged febrile seizures, 10% had stress hyperglycemia
post-event, defined as ≥150 mg/dL [14]. Data correlating what levels
of nonketotic hyperglycemia are associated with seizure provocation
is harder to find, most series are small, post-event and range from 300
to 900 mg/dL [15,16]. Importantly, serum glucose and CSF glucose are
likely different, serum runs higher than CSF, we would speculate a sim-
ilar relationship to tissue (as measured by CGM) and CSF glucose [11].
What is absent from the literature are glucose levels that differ by loca-
tions of onset in patients with epilepsy. Perhaps themost relevant cite is in
children with Landau–Kleffner syndrome (continuous spike and wave
discharges during sleep) where ultradian and regionalized glucose utili-
zation (either hypo- or hyper-metabolic changes) was seen with FDG-
PET during wake and sleep [17].



Fig. 1. Glucose trends by hour averaged into 90 day blocks during the study course. The yellow line is target maximum glucose level, b150mg/dL during sleep and b180mg/dL during the
day. The orange line is target minimumglucose N80mg/dL during sleep and N70mg/dL during day. The black line is the average glucose by hour, the gray line spans 15th–75th percentile
and any yellow vertical bar suggests an average above threshold, while red vertical bar suggests an average below threshold. PM showed consistently higher sugars than AM.
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4.2. What's the relationship between type I diabetes mellitus and epilepsy?

T1DM is comorbid with epilepsy, with a hazard ratio of 2.89 [4–6].
Most T1DM patients are diagnosed with diabetes on average 2.8 years
prior to their epilepsy, in this patient, the opposite was true [4]. Inde-
pendent of risks of seizure from low or elevated glucose levels, individ-
uals with T1DM may be prone to reflex epilepsy, our patient has a
history reflex/audiogenic seizure, though we do not know which of
her seizures were audiogenic to then correlate her glucose or laterality
with [18]. There may be shared autoimmune risks due to anti-GAD
antibody present in up to 80% type I diabetics and 6% of people with ep-
ilepsy [4–6]. GADhelps convert glutamate to gamma-aminobutyric acid
(GABA), that process is contingent also on glucose through citric acid
cycles. We do not know if this patient has anti-GAD antibodies.

4.3. Glucose manipulation as anti-seizure therapy, are there examples?

Anti-seizure diets such as low glycemic, modified Atkins or keto-
genic all rely on marked reduction in carbohydrates and promotion of
fat metabolism with the aim being ketosis and/or glucose lowering



Fig. 2. Number of events by hour of day and side of onset.
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[19]. Ketosis involves acetoacetate, acetone and β-hydroxybutyrate for-
mation, which in turn helps lower pH and glucose utilization, which di-
minishes seizure activity. Anti-seizure drugs can alter glucose
utilization. Oral glucose tolerance testing post-IV valproic acid (VPA) in-
fusions show rapid decrement of serum glucose, perhaps suggesting al-
ternate VPA mechanism(s) of action [20]. Similarly when lamotrigine
was administered to patients with generalized epilepsy, regionalized
decreases in FDG-PET uptake were noted [21]. Topiramate is associated
with clinical weight loss, seizure betterment and improved glucose con-
trol [22]. Anti-diabetic medicationsmay also alter seizure control, in an-
imals, metformin, a medicine used in type 2 diabetes mellitus for
chronic glucose lowering, shows promise in decreasing seizure severity
and duration [23].

This study, however, shows a differential between side of seizure onset
and glucose levels, with one side, the right, consistently lower in glucose at
time of seizure than the left. In our patient this implies amore complex re-
lationship than seizure betterment by glucose lowering.

4.4. Do ultradian influences help provoke seizure-induction?

Focal seizure susceptibility is influenced by circadian and ultradian
cycles mediated through posterior hypothalamic networks, specifically
Table 1
Glucose levels at time of seizure as well as immediately after seizure by side of detected seizur

Average
time
of onset

Average glucose
at time of seizure
mg/dL (range, SD)

Average difference
between time of
prior tissue glucose
and time of seizure,
minutes (range)

Compa
left to
onset
time o

Any seizure N = 45 10:34 150 (48–272) −2.3 (0 to −5)
Left onset seizure N = 22 17:02 169 (82–272, 66.6) −2.2 (0 to −5) t = 2.3

p = 0.
Left control N = 22 17:02 159 (87–233, 42.5)

All control 10:34 165 (84–253, 50.4)

Right onset seizure N = 23 04:23 131 (48–205, 41.5) −2.6 (−1 to-4) t = 2.3
p = 0.

Right control N = 23 04:23 170 (84–253, 57.4)

All control N = 45 10:34 165 (84–253, 50.4)
with GABA releaseswhich are thought to effect slowwave sleep, arousal
states and their associated EEG changes [23,24]. Because of insomnia, in
April of 2016, this patient underwent a one night polysomnography
test. In that study, the longest duration of sleep stage was in slow
wave/stage 3, from midnight until 4 AM, a time which overlaps with
the majority of RFS, which remain the most intriguing for a glucose re-
lationship/provocation. (Fig. 2) [25]. A onenight study is unlikely to rep-
resent this patient's sleep during the study, but may at least permit
speculation about how sleep staging could drive a sleep vs. wake glu-
cose requirement in differing brain areas.

Perhaps the most relevant data on this shows localized but not
lateralized ultradian patterns in a recent study of seizure times in RNS
patients. Neocortical temporal and frontal onset patients showed sei-
zure increases between 00:00 and 05:00 AM, and mesial temporal pa-
tients more often displayed seizure activity in day/wake time [26].

Our index patient has similar ultradian trends (Fig. 2). Our patient's
left temporal times match what Spencer et al. describe for mesial tem-
poral patients. If we assume our patient's second zone of seizure gener-
ation is neocortical based on timing of events, her right hippocampal
recordings of seizure may document spread rather than seizure onset.
As a reminder, her pre-RNS intracranial localization showed only one
subclinical right-onset event from a neocortical temporal edge-of-grid
e.

rison of
right
glucose at
f seizure

Comparison of
side of onset
glucose to either
control side
glucose or all
control glucose

Average glucose
after seizure,
mg/dL (range, SD)

Average
difference
between time
of seizure and
post-tissue
glucose, minutes
(range)

Comparison of
left and right
onset glucose
levels
immediately
post-seizure

149 (52–261) 3.27 (0 to 7)
1,
03

166 (82–261, 62.7) 3.5 (1 to 7) t = 2.19,
p = 0.04

t = 0.58,
p = 0.56
t = 0.3,
p = 0.79

1,
03

131 (52–203, 41.2) 3.1 (0 to 5) t = 2.19,
p = 0.04

t = −2.63,
p = 0.01
t = −2.94,
p = 0.01
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location and her right-sided scalp localizations were poorly localized
over anterior temporal locations.

4.5. Is there a network that links ultradian cycles, glucose levels and seizure
onset locations?

If there was a linking network between cortex, wake/sleep regula-
tion and glucose control one might presume the hypothalamus must
be involved. The arcuate nucleus and lateral hypothalamus help regu-
late wake–sleep states and feeding behaviors [11,23,24,26–30]. Orexin,
a key arousal/feeding/wake/sleep influencing neuropeptide is synthe-
sized in the lateral hypothalamus and levels inversely correlate with
serum and CSF glucose [11,30]. In rats, Orexin receptors are present in
hippocampal CA-1 neurons and help trigger their firing [29]. Again
from rat studies, orexin receptor mRNA is present diffusely in the
brain — with locations varying from infra-limbic cortex, thalamus, and
cerebral cortex suggesting diffuse pathways into epileptogenic tissues
that might mediate ultradian and glucose influences [30].

4.6. What implications do these observations have for future work?

Given this data is convenient rather than common, cohorts of type-1
diabetics with both CGS and RNS are unlikely. Confirming this observa-
tion probably would require some step-wise approaches. Specifically, if
there are lateralized and localized seizure onset times that differ from
other RNS patients? If there are, what regions are most susceptible?
Andwithin those regions, from resected tissues banked from similar pa-
tients, might pathologies be demonstrated in pathways similar to what
is seen in rat brain mRNA for Orexin similar neuropeptides or glucose
receptors?

4.7. Hypothesis generated from this study include

A– Is there a kind of glucostat, where ultradian influences turn on
right temporal neocortical vulnerabilities to seizure in the set-
ting of a lowering glucose?

A correlate in a non-pathological state would be prioritizing glucose
allocation for memory consolidation and storage during slow wave
sleep. Meaning in much of our brains, network areas are turned off
and on through an ultradian cycle — vision for instance is presumably
not on/interpreted during sleep, nor is perhapsmuchof our sensory cor-
tex, or even primary motor controls during REM sleep. However, areas
that help withmemory consolidation or dreaming are switched on dur-
ing sleep and when they are, the glucose requirement presumably goes
up. The pathology – in this case right neocortical seizure – becomes
more likely when glucose is lower than usual, but only at a certain
time during sleep. There is precedent for this, specifically in Landau–
Kleffner patients that show lateralized glucose utilization varying by lo-
cation and sleep/wake state [17].

B– Maybe the cyclic relationships are more important and the glu-
cose observations are over-called?

The left hippocampus shows little variability with glucose compared
to control, pre-sleep ultradian influences alone (Fig. 2) are perhaps
more important for that location. The vast majority of times when this
patient drops her glucose, seizures donot occur from the right side. Sim-
ilarly, for most of the time when her glucose is elevated, her left hippo-
campus functions verywell. Perhaps infradian effects compound seizure
risks, most classically hormonal fluxes during menstrual cycling, and
those effects might show a differential on neocortical vs. hippocampal
tissues.
C– Maybe the glucose remains a peripheral tissue epiphenomenon,
coincident and unrelated to seizure provocation by site or time
of seizure?

4.8. Implications for surveillance devices

RNS therapies delivered did not cause clinically significant tissue glu-
cose alterations. If there is a relationship between epileptogenic zone,
glucose levels and ultradian cycles, the ability to read CNS glucose and
seizure onset times may permit a finer tailoring of therapies and/or
mapping of lateralized differences by ictal onset locations. Observations
of seizure risk perhaps increasing in the hour prior to seizure based on
glucose trends may be important, specifically in altering surveillance
thresholds or for warning of heightened seizure susceptibility. Finally,
elevated glucose and left hippocampal events more often spread
contralaterally, implying that stimulation pathways for LFS in this pa-
tient should be stronger.

4.9. Concessions and limitations

There are numerous issues beyond our control in this study. For in-
stance variable insulin dosing, time of anti-seizure drug use, setting
changes on the RNS or CGM calibrations, the tendency of the RNS to
overwrite long events or seizures, inability to otherwise correlate in-
flammatory, autoimmune, menstrual, circadian or ultradian variabil-
ities, use of other medications, the inability to accurately measure
glucose directly in our patient's CNS tissues (or alternatively delays be-
tween CGM tissue glucose vs CNS glucose) fat/protein/glucose/AED ab-
sorption issues in the setting of inflammatory bowel disease, and
perhaps most importantly over the study duration, changes in her un-
derlying epilepsy. We are assuming those effects randomize over the
duration and number of events studied and with two-tailed statistical
methods.

5. Conclusion

In this convenience sample a type I diabetic with hippocampal RNS
electrodes showed variations by side of seizure onset that were both
ultradian and related to tissue glucose. The right side, which we pre-
sume may be measuring neocortical seizures, shows perhaps the most
vulnerability to glucose, with seizure provocation at relatively lower
glucose levels and earlier AM times when compared to the control or
left-sided data. Seizures (or RNS stimulations) do little to alter tissue
glucose post-events. Further study of how glucose impacts seizure con-
trol will be important to further clarify this finding.
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