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Abstract: Hepatitis B Virus (HBV) infection is a major cause of morbidity and mortality worldwide.
However, poor understanding of its pathogenesis often gives rise to intractable immune escape and
prognosis recurrence. Thus, a valid systematic approach based on big data mining and genome-wide
RNA-seq data is imperative to further investigate the pathogenetic mechanism and identify biomarkers
for drug design. In this study, systems biology method was applied to trim false positives from
the host/pathogen genetic and epigenetic interaction network (HPI-GEN) under HBV infection
by two-side RNA-seq data. Then, via the principal network projection (PNP) approach and the
annotation of KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, significant biomarkers
related to cellular dysfunctions were identified from the core cross-talk signaling pathways as drug
targets. Further, based on the pre-trained deep learning-based drug-target interaction (DTI) model
and the validated pharmacological properties from databases, i.e., drug regulation ability, toxicity,
and sensitivity, a combination of promising multi-target drugs was designed as a multiple-molecule
drug to create more possibility for the treatment of HBV infection. Therefore, with the proposed
systems medicine discovery and repositioning procedure, we not only shed light on the etiologic
mechanism during HBV infection but also efficiently provided a potential drug combination for
therapeutic treatment of Hepatitis B.

Keywords: hepatitis B virus infection; pathogenesis; host/pathogen interspecies genetic and epigenetic
network (HPI-GEN); systems medicine discovery; drug-target interaction (DTI) model; deep learning;
multiple-molecule drug

1. Introduction

Hepatitis B Virus (HBV) infection remains a prevalent health challenge worldwide, and is
greatly associated with substantial morbidity and mortality due to serious liver diseases, such as
hepatitis, fibrosis, cirrhosis, and even hepatocellular carcinoma [1]. According to the latest report of
World Health Organization (WHO) [2], HBV affected an estimated 257 million people and causing
600,000 deaths per year. While current therapies seek to control the progression of the disease,
life-long treatment and surveillance are still needed because resistance develops during treatment and
reactivation often occurs after medication discontinuation [3,4]. In recent years, dedication to new
drug design and immunotherapy development has been made by researchers to hopefully silence
HBV in infected hepatocytes [5,6]. However, the host/pathogen cross-talk mechanism contributing
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to the development and persistence of HBV infection requires further investigation, and its current
therapies are still inadequate. Thus, new treatment options are needed to achieve a better therapy for
HBV-infected patients.

Even so, de novo drug discovery is particularly an expensive, time-consuming, and high-risk
process, let alone exploring a drug to eradicate HBV from patients, which is generally believed
arduous [4,7,8]. Conventionally, the pipelines of drug development from laboratory to market take
nearly average 13 to 15 years and cost approximately two to three billion U.S. dollars, in which about
10% of all drugs that start from pre-clinical trials ever make it to actual human testing [9,10]. Fortunately,
as the advancement of biological science drives the progress of high-throughput functional genomics
and proteomics technology, novel experimental and bioinformatics methods have not only accelerated
the deciphering of protein interactions, but also given rise to the construction of networks for signaling
pathways and protein complex identification in specific diseases [11]. Meanwhile, based on the
manifold data types from wet-lab experiments, several computational approaches have been suggested
to predict biological networks for expediting the modeling of functional pathways so as to exemplify the
molecular mechanisms of cellular processes. Researchers are thereby being empowered to profoundly
explore the complicated and mysterious mechanisms of biological systems for better investigating
the potential drug targets [12]. On the other hand, with the development of molecular biology, drug
repurposing, also known as drug repositioning, was proposed to reduce the time spent and the capital
expenditure. The process of drug repositioning is to find new use outside the scope of the original
medical indication for existing drugs [13]. Its prospect for new clinical indications is promising, since
compared with other drug development strategies, a repositioned drug could be instantly put into
preclinical testing and clinical trials for its safety and reliability proven in humans.

Nonetheless, the commonly used correlation networks in bioinformatics applications are often
based on oversimplified algorithms. As inherent difficulties appear in assessing the impact of
microRNA (miRNA), long non-coding RNA (lncRNA), epigenetic modification, microenvironment
factors, etc., hardly can these networks mirror the complicated mechanisms of factual biological
systems. In addition, while wide doses of the repositioned drugs can be tested using in vitro and
in vivo experiments, it takes great time and effort. Therefore, to discover potential drugs for the
treatment of HBV-infected patients, the development of a systematic procedure in computational
framework based on potent models and existing data is indispensable.

In this study, we employed the systems biology technique to identify the significant biomarkers
from the host/pathogen interspecies genetic and epigenetic interaction network (HPI-GEN) through
two-side RNA-seq data during HBV infection. Subsequently, with the analysis of these biomarkers by
the proposed drug discovery and repositioning procedure, potential combinations of multi-targets
drugs were recommended to the clinical trials of Hepatitis B therapy. By and large, the process can be
subdivided into a few steps: (1) Construct candidate HPI-GEN composed of host/pathogen interspecies
protein-protein interaction network (HPI-PPIN) and host/pathogen interspecies gene regulation
network (HPI-GRN) by big data mining. (2) Prune the false positives in candidate HPI-GEN by system
identification analysis with the assistance of two-side profile RNA-seq data and Akaike Information
Criterion (AIC) to identify the real HPI-GEN between host and pathogen. (3) Extract the core HPI-GEN
from real HPI-GEN via principal network projection (PNP) approach. (4) Investigate the core signaling
pathways related to manifold cellular function (especially host inflammatory and immune response,
pathological anti-apoptosis, and cell survival) in the core HPI-GEN by the annotation of KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathways to gain insights into the etiologic mechanism
of HBV infection. (5) Select the significant biomarkers related to pathological cellular dysfunctions.
(6) Predict the candidate drugs from available drugs for the selected significant biomarkers by the
pre-trained deep learning-based drug-target interaction (DTI) model. (7) Consider general criteria
for drug design specifications including regulation ability, toxicity, and sensitivity to further sift out
the promising drugs. (8) Combine these agreeable drugs as a potential multiple-molecule drug for
possible therapeutic treatment of Hepatitis B. It is worthwhile to note that instead of a single drug,
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a combination of promising drugs was proposed for the treatment to slow or even prevent inherent or
adaptive drug resistance through the simultaneous blockade of multiple targets or pathways [14].

Nowadays, researches have been dedicated to drug discovery and design, while few of them
propose an integral end-to-end systematic procedure from identifying significant biomarkers based
on pathogenic mechanism to recommending promising drugs for one disease. Here, we dig into the
pathogenic characters of viral proteins played on the pathogenesis to select the potential drug targets
from two-side RNA-seq data and reinterpret the role of available drugs based on a pre-trained deep
learning-based DTI model through big drug-target interaction data, which gives an alternative way for
systems drug discovery and repositioning to overcome HBV infection.

2. Materials and Methods

2.1. The Construction of the HPI-GEN in HepaRG Cell Line during HBV Infection and the Application of Deep
Learning-Based DTI Model for New Drug Design: An Overview

To gain new insight into the molecular mechanism of HBV infection, candidate cross-talk HPI-GEN,
which consists of candidate intraspecies, candidate interspecies PPIN between host and pathogen,
and candidate HPI-GRN encompassing regulatory networks between host gene, pathogen gene,
host miRNA and host lncRNA, was constructed by big data mining and preprocessing of host/pathogen
gene/miRNA/lncRNA expression from online database.

Given that the information for interspecies PPIN construction is insufficient, in addition to
interactions attained from bio-databases, data amplification technique through nature-linguistic
programming (NLP) and web scrapping was introduced to expand the dataset. Then, for identifying
real HPI-GEN, a systematic identification approach was exploited based on the genome-wide RNA-seq
data of HepaRG cells and Hepatitis B Virus under HBV infection. In addition, to deal with the highly
complicate real HPI-GEN, we employed PNP method to extract core network structure consisted of
the top 3000 nodes with highest energy. Such effective approach benefits us to investigate the core
signaling pathways for establishing the crucial molecular pathogenic mechanism to identify significant
biomarkers that contribute to the progression of HBV infection. Finally, following the drug discovery
procedure, we built the deep learning-based DTI model to identify the potential multi-target drugs to
target their significant biomarkers for therapeutic treatment of HBV infection.

2.2. Big Data Mining and Data Preprocessing of RNA-seq Data for Human and Pathogen

In this study, two-side sequencing-based dataset was obtained from the Gene Expression Omnibus
(GEO) at the National Center for Biotechnology Information (NCBI). We obtained the data recorded by
Mueller et al. [15], containing human and virus genomes with the time-course through GEO series
with accession number GSE101575 [15]. The raw data of the dataset, which contains 27,267 human
genes and 4 HBV genes, involves the gene expression profiles of human HepaRG cells from three
patients during HBV infection at 6, 9, 12, and 24 h post reactivation with drug (RG7834) treatment
and without. Only the data without medication administration was deployed to the ensuing system
identification process.

To unravel the cellular mechanism during HBV infection, core signaling pathways identified
from HPI-GEN are requisite. The candidate HPI-GEN, involving many experimental data and
computational predictions from numerous databases, consists of multiple networks. Among them,
the candidate human PPIs were obtained from the Biological General Repository for Interaction
Datasets database (BioGRID) [16], DIP [17], BIND [18], IntAct [19], and MINT [20]; the candidate
human miRNA and lncRNA regulations were individually obtained from Target Scan Human
database [21], and CircuitDB [22]; the candidate regulations between human transcription factors
and their targets were according to the Integrated Transcription Factor Platform database (ITFP) [23],
the Human Transcriptional Regulation Interactions database (HTRIdb) [24], and the Transcription
Factor database (TRANSFAC) [25]; the candidate host-pathogen interspecies PPIs were obtained from
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VirusMentha [26], IMEx [27], PSICQUIC [28], the PPIN constructed by Zhong et al. [29], and based on
the automatic pipeline method of NLP; the candidate host-pathogen interspecies regulations were
collected from VIRmiRNA [30], ViRBase [31], miRecords [32], starBase v2.0 [33], miRTarBase [34],
and based on the automatic pipeline method of NLP.

2.3. Text Mining of Human and Pathogen Protein Interactions

To reinforce the comprehension of the interaction relationships between host and pathogen,
BioBERT (Bidirectional Encoder Representations from Transformer for Biomedical Text Mining) [35,36],
an up-to-date BioNER (Biomedical Named Entity Recognition) approach is employed on the PubMed
database to analyze binary interactions between host and pathogen. BioNER is a computerized
procedure of identifying biomedical named entities such as genes, protein complexes, diseases,
and chemicals in texts referring to information retrieval and data extraction. Amongst all the
BioNER application, BioBERT, which has achieved state-of-the-art performance in terms of precision,
is efficaciously utilized in biomedical text mining applications to address data.

In brief, we scraped and collected 26,732 existing PubMed articles associated with Hepatitis B
Virus and Homo sapiens within 20 years and transformed it into XML format. Nonetheless, on account
of Pubmed’s property, the full texts from most articles in PMC aren’t publicly accessible so that looking
forward to automatically download integrated content is unrealistic. Consequently, we additionally
crawled 2831 articles from PLOS ONE to strengthen our network complexity. Then, BioBERT model
was exerted to discern known entities and identify the types of overlapping entities among each
sentence separated from the relevant content with periods in the corpus.

In order to facilitate analysis and reconfirmation, we also gathered the synonym names of both
host and pathogen proteins (compiled from BioThesaurus database [37]) to prevent omission of vital
interactions owing to protein names mismatch. Afterwards, in each sentence, we extracted all present
proteins and identified the correlations by determining the human proteins under the circumstance
that Hepatitis B Virus proteins had existed. To abate computational complexity, in conformity with the
subsequent system identification processing requirement, the verb recognition and identification were
left out of account and binary interactions were built. For instance, providing that “HBx” and “BCL2”
were simultaneously identified in the same sentence, we then set the corresponding value to 1 and so
forth, vice versa to 0.

Furthermore, to verify that authentic interaction relationships derived from the statistical analysis
of sentences, we scrutinized entire extracted entities and completed the construction of ultimate host
and pathogen interaction-relationships matrix.

2.4. Dynamic Models of Candidate HPI-GEN for Human Cells and HBV During the Infection

Candidate HPI-GEN, constructed via big data mining techniques, is the epitome of an intricate
network comprised of protein interactions and gene regulations between host and pathogen during
HBV infection. As inevitable false-positive information extraction might incur system distraction from
genuine consequence and discrepancy during the pathway analysis process, dynamic models were
built to carry out systematic identification approach by two-side time-profile HBV infection RNA-seq
data to prune false-positives in candidate HPI-GEN.

Protein abundances mirror a dynamic balance among a series of linked processes spanning the
transcription, processing, and degradation of mRNAs to the translation, modification, and breakdown
of the proteins themselves necessary for cellular protein production and maintenance [38].
As a consequence, for the protein interactive model of PPI pre-network in candidate HPI-GEN,
the dynamic interaction model of the ith host protein can be described by the following equation:

pH
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i (t) +
Ni∑

n=1
aH

inpH
i (t)p

H
n (t) +
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i (t) − γ
H
i pH
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(1)
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where pH
i (t), pH

n (t), gH
i (t) and pP

v (t) indicate the expression levels of the ith host protein, the nth host
protein, the ith host gene, and the vth pathogen protein at time t, respectively; aH

in and bH
iv denote the

interactive ability between the ith host protein and nth host protein and between the ith host protein
and vth pathogen protein, respectively; Ni and Vi signify the number of host proteins and pathogen
proteins interacting with the ith host protein; and I typifies the total number of the human proteins
in candidate PPIN. αH

i , −γH
i and βH

i indicate the translation rate from the corresponding mRNA,
the degradation rate, and the basal expression level of the ith host protein, respectively; the basal level
denotes the interactions with unknown factors, such as acetylation, methylation, and ubiquitination;
and vH

i (t) represents the stochastic noise of the ith host protein at time t. Note that the intraspecies and
interspecies biological mechanism of human proteins in candidate PPIN are represented in Equation (1)

as the form of
Ni∑

n=1
aH

inpH
i (t)p

H
n (t) and

Vi∑
v=1

bH
ivpH

i (t)p
P
v (t), respectively.

Now that the interactions between the host and pathogen proteins are mutual and their biological
characteristics involved in PPIs are similar, the dynamic PPIN of the qth pathogen protein in candidate
HPI-GEN can be described by the analogous equation as follows:

pP
q (t + 1) = pP

q (t) +
Nq∑

n=1
aP

qnpP
q (t)pH

n (t) +
Vq∑

v=1
bP

qvpP
q (t)pP

v (t)

+αP
q gP

q (t) − γP
q pP

q (t) + βP
q + vP

q (t), for q = 1, 2, . . . , Q, αP
q ≥ 0 and − γP

q ≤ 0
(2)

where pP
q (t), pH

n (t), gP
q (t) and pP

v (t) indicate the expression levels of the qth pathogen protein, the nth
host protein, the qth pathogen gene, and the vth pathogen protein at time t, respectively; aP

qn and bP
qv

denote the interactive ability between the qth pathogen protein and nth host protein and between the qth
pathogen protein and vth pathogen protein, respectively; Nq and Vq signify the number of host proteins
and pathogen proteins interacting with the qth pathogen protein; and Q typifies the total number
of the pathogen proteins in candidate PPIN. αP

q , −γP
q and βP

q indicate the translation rate from the
corresponding mRNA, the degradation rate, and the basal expression level of the qth pathogen protein,
respectively; the basal level βP

q denotes the interactions with unknown factors such as acetylation and
ubiquitination; and vP

q (t) represents the stochastic noise of the qth pathogen protein at time t. Similarly,
the intraspecies and interspecies biological mechanism of pathogen proteins in candidate PPIN are

represented in Equation (2) as the form of
Nq∑

n=1
aP

qnpP
q (t)pP

n(t) and
Vq∑

v=1
bP

qvpP
q (t)pH

v (t), respectively.

For the GRN of host genes in the candidate HPI-GEN, the dynamic regulatory model of the jth
host gene can be described as follows:

gH
j (t + 1) = gH

j (t) +
T j∑
τ=1

cH
jτpH

τ (t) +
L j∑
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dH
j`l

H
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(3)

where gH
j (t), pH

τ (t), mH
µ (t) and lH

`
(t) indicate the expression levels of the jth host gene, the τth host TF,

the µth host microRNA, and the `th host lncRNA at time t, respectively; cH
jτ, −eH

jµ and dH
j` represent the

regulation ability of the τth host TF, the µth host microRNA, and the `th host lncRNA on the jth host
gene, respectively; T j, M j and L j denote the number of host TFs, host miRNAs, and host lncRNAs,
respectively, which regulate the expression level of the jth host gene; J indicates the total amount of
genes in GRN; −λH

j and δH
j indicate the degradation rate and the expression basal level of the jth host

gene, respectively; and $H
j (t) denotes the stochastic noise due to modeling residue at time t. The basal

level δH
j denotes the unknown regulations such as methylation. Note that since microRNAs silence

gene expression by binding to target mRNAs [39], repression ability −eH
jµ in candidate GRN model

should be constrained negative. Likewise, −λH
j degradation rate should be restricted non-positive

due to the depression regulation of mRNA. Furthermore, though supporting evidence comes from
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numerous research showing that HBV proteins play a vital role in the regulation of viral and host
gene expression, different from other viruses such as HIV, whose viral protein directly binds to
nucleic acids [40], HBV proteins are thought to affect host gene expression through transregulation,
e.g., transactivation and transrepression [41–44]. Thus, it seems tenable to exclude the regulations
between pathogen proteins and host gene in the Equation (3).

In the same way, for the GRN of pathogen genes in the candidate HPI-GEN, the dynamic regulatory
model of the uth pathogen gene can be described as follows:

gP
u(t + 1) = gP

u(t) +
Tu∑
τ=1

cP
uτpH

τ (t) +
Lu∑
`=1

dP
u`l

H
`
(t) −

Mu∑
µ=1

eP
uµgP

u(t)mH
µ (t)

−λP
u gP

u(t) + δP
u +$P

u(t), for u = 1, 2, . . . , U, −eP
uµ ≤ 0 and− λP

u ≤ 0
(4)

where gP
u(t), pH

τ (t), mH
µ (t) and lH

`
(t) indicate the expression levels of the uth pathogen gene, the τth

host TF, the µth host microRNA, and the `th host lncRNA at time t, respectively; cP
uτ, −eP

uµ and dP
u`

represent the regulation ability of the τth host TF, the µth host microRNA, and the `th host lncRNA on
the uth pathogen, respectively; Tu, Mu and Lu denote the number of host TFs, host miRNAs, and host
lncRNAs, respectively, which regulate the expression level of the uth pathogen; U indicates the total
amount of pathogen genes in GRN; −λP

u and δP
u indicate the degradation rate and the expression

basal level of the uth pathogen, respectively; and $P
u(t) denotes the stochastic noise due to modeling

residue at time t. It is worth noting that there is a consensus on the opinion about the indispensability
of host protein synthesis machinery for pathogen protein production and gene transcription [45,46].
Walsh et al. [47] even suggested that viruses are fully reliant on the translation machinery of their
host cells to produce the polypeptides that are essential for viral replication. As a result, only gene
regulation conducted by host transcription factors pH

τ (t) instead of pathogen proteins pP(t) is included
in Equation (4).

Since the expression of the µth host miRNA mH
µ (t) and the ` th host lH

`
(t) in Equation (3) at time

t might also be regulated by other regulators, the µth miRNA can be described by the following
stochastic dynamic regulatory equation:

mH
µ (t + 1) = mH

µ (t) +
Tµ∑
τ=1

f H
µτpH

τ (t) +
Lµ∑
`=1

hH
µ`

lH
`
(t) −

Mµ∑
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µrmH

µ (t)mH
r (t)

−ϕH
µmH

µ (t) + ηH
µ + εH

µ (t), for µ = 1, 2, . . . , M, −kH
µr ≤ 0 and−ϕH

µ ≤ 0
(5)

where mH
µ (t), pH

τ (t), mH
r (t) and lH

`
(t) indicate the expression levels of the µth host gene, the τth host

TF, the rth host miRNA and the `th host lncRNA at time t, respectively; f H
µτ, −kH

µr and hH
µ`

represent the
regulation ability of the τth host TF, the rth host microRNA and the `th host lncRNA on the µth host
miRNA, respectively; Tµ, Mµ and Lµ denote the number of host TFs, host miRNAs and host lncRNAs,
respectively, which regulate the expression level of the µth host miRNA; M indicates the total number
of miRNAs in GRN; −ϕH

µ and ηH
µ indicate the degradation rate and the expression basal level of the µth

host miRNA, respectively; and εH
µ (t) denotes the stochastic noise due to modeling residue at time t.

Along the same line, the dynamic regulatory model of the host lncRNA in candidate GEIN can be
described by the following dynamic equation:

lH
`
(t + 1) = lH

`
(t) +

T∑̀
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xH
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pH
τ (t) +

O∑̀
`=1

yH
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lH
`
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−σH
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≤ 0 and− σH

`
≤ 0

(6)

where lH
`
(t), pH

τ (t), mH
µ (t) and lHo (t) indicate the expression levels of the `th host lncRNA, the τth host

TF, the µth host microRNA and the `th host lncRNA at time t, respectively; xH
`τ

, −zH
`µ

and yH
`o represent

the regulation ability of the τth host TF, the µth host microRNA and the oth host lncRNA on the `th host
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lncRNA, respectively; T`, M` and L` denote the number of host TFs, host miRNAs and host lncRNAs,
respectively, which regulate the expression level of the `th host lncRNA; L indicates the total number
of lncRNA in GRN; −σH

`
and φH

`
indicate the degradation rate and the expression basal level of the `th

host lncRNA, respectively; and ψH
`
(t) denotes the stochastic noise due to modeling residue at time t.

2.5. Parameter Estimation of the Dynamic Models of Candidate HPI-GEN by System Identification Approach

In order to identify real HPI-GEN, the accurate model parameters training process by executing a
system identification approach to the candidate HPI-GEN after the construction of dynamic model
Equations (1)–(6) is requisite. Consequently, the stochastic Equations (1) and (2), which depict the
relation of protein interactions of the ith host and qth pathogen protein, can be converted into the linear
regression forms as below, respectively:

The ith host protein:

pH
i (t + 1) = [pH

i pH
1 (t) · · · p
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i pH
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i pP
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where φHP
i (t) and φPP

q (t) represent the regression vectors that can be obtained from the expression
data and θHP

i and θPP
q are the unknown parameter vectors to be estimated for the ith host protein,

qth pathogen protein in host PPIN, respectively.
Thence, the Equations (7) and (8) of the ith host and qth pathogen protein can further be augmented

for Yi and Yq time points as the following forms, respectively:
The ith host protein:

pH
i (t2)

pH
i (t3)

...
pH

i

(
tYi + 1

)
 =


φHP

i (t1)

φHP
i (t2)

...
φHP

i

(
tYi

)
θ

HP
i +


vH

i (t1)

vH
i (t2)

...
vH

i

(
tYi

)
, for i = 1, 2, . . . , I (9)
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the Equation (9) can also be simply represented as

PH
i = ΦHP

i θHP
i + ΩHP

i , for i = 1, 2, . . . , I (10)

The qth host protein:
pP

q (t2)

pP
q (t3)

...
pP

q

(
tYq + 1

)
 =


φPP

q (t1)

φPP
q (t2)

...
φPP

q

(
tYq

)
θ

PP
q +


vP

q (t1)

vP
q (t2)

...
vP

q

(
tYq

)
, for q = 1, 2, . . . , Q (11)

the Equation (11) can also be simply represented as

PP
q = ΦPP

q θPP
q + ΩPP

q , for q = 1, 2, . . . , Q (12)

After a succession of equation transformation procedure in advance, the parameters in vectors
θHP

i and θPP
q of Equations (10) and (12) can be estimated by individually employing the following

constrained least-squares estimation problems, θHP
i parameters estimation:

θ̂HP
i = min

θHP
i

‖ΦHP
i θHP

i − PH
i ‖

2
2, subject to AHP

i θ̂HP
i ≤ bHP

i

where AHP
i =

[
0 · · · 0 0 · · · 0 −1 0 0
0 · · · 0 0 · · · 0 0 1 0

]
∈ R2×(I+Q+3) and bHP

i =

[
0
1

] (13)

θPP
q parameters estimation:

θ̂PP
q = min

θPP
q

‖ΦPP
q θPP

q − PP
q ‖

2
2
, subject to APP

q θ̂PP
q ≤ bPP

q

where APP
q =

[
0 · · · 0 0 · · · 0 −1 0 0
0 · · · 0 0 · · · 0 0 1 0

]
∈ R2×(I+Q+3) and bPP

q =

[
0
1

] (14)

Subsequently, we can acquire the interaction parameters in PPIN Equations (1) and (2) individually
by resolving the least-squares problems in (13) and (14) with the help of the function lsqlin in MATLAB
optimization toolbox and simultaneously ensure the protein translation rate αH

i and αP
q to be a

non-negative value and the protein degradation rate −γH
i and −γP

q to be a non-positive value; that is to
say αH

i ,αP
q ≥ 0 and −γH

i ,−γP
q ≤ 0.

In the same manner, the dynamic Equations (3)–(6) which depict the relationship of gene regulations
for the jth host gene, uth pathogen gene, µth host miRNA, and `th host lncRNA can be rewritten into
the linear regression forms below, respectively:
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The jth host gene:

gH
j (t + 1) = [pH

1 (t) · · · p
H
T j
(t)gH

j (t)m
H
1 (t) · · · g

H
j (t)m

H
M j

(t) lH1 (t) · · · l
H
L j
(t) gH

j (t) 1]



cH
j1
...

cH
jT j

−eH
j1

...
−eH

jM j

dH
j1
...

dH
jL j

1− λH
j

δH
j



+$H
j (t)

, φHG
j (t)θHG

j +$H
j (t), for j = 1, 2, . . . , J

(15)

The uth pathogen gene:

gP
u(t + 1) = [pH

1 (t) · · · p
H
Tu
(t)gP

u(t)mH
1 (t) · · · g

P
u(t)mH

Mu
(t) lH1 (t) · · · l

H
Lu
(t) gP

u(t) 1]



cP
u1
...

cP
uTu

−eP
u1
...

−eP
uMu

dP
u1
...

dP
uLu

1− λP
u

δP
u



+$P
u(t)

, φPG
u (t)θPG

u +$P
u(t), for u = 1, 2, . . . , U

(16)

The µth host miRNA:

mH
µ (t + 1) = [pH

1 (t) · · · p
H
Tµ

mH
µ (t)mH

1 (t) · · ·m
H
µ (t)mH

Rµ
(t) lH1 (t) · · · l

H
Lµ
(t) mH

µ (t) 1]



f H
µ1
...

f H
µTµ
−kH

µ1
...

−kH
µRµ

hH
µ1
...

hH
µLµ

1−ϕH
µ

ηH
µ



+ εH
µ (t)

, φHM
µ (t)θHM

µ + εH
µ (t), for µ = 1, 2, . . . , M

(17)



Biomedicines 2020, 8, 320 10 of 48

The `th host lncRNA:

lH
`
(t + 1) = [pH

1 (t) · · · p
H
T`

lH
`
(t)mH

1 (t) · · · l
H
`
(t)mH

M`
(t) lH1 (t) · · · l

H
L`
(t) lH

`
(t) 1]



xH
`1
...

xH
`T`
−zH

`1
...

−zH
`M`

yH
`1
...

yH
`L`

1− σH
`

φH
`



+ψH
`
(t)

, φHL
`

(t)θHL
`

+ψH
`
(t), for ` = 1, 2, . . . L

(18)

where φHG
j (t), φPG

u (t), φHM
µ (t) and φHL

`
(t) represent the regression vectors that can be obtained from

the expression data and θHG
j , θPG

u , θHM
µ and θHL

`
are the unknown parameter vectors to be estimated for

the jth host gene, uth pathogen gene, µth host miRNA, and `th host lncRNA in host GRN, respectively.
Then, Equations (15)–(18) of the jth host gene, uth pathogen gene, µth host miRNA, and `th host

lncRNA can be further augmented for Y j, Yu, Yµ and Y` time points as the following forms, respectively:
The jth host gene:

gH
j (t2)

gH
j (t3)

...
gH

j (tY j + 1)


=


φHG

j (t1)

φHG
j (t2)

...
φHG

j (tY j)


θHG

j +


$H

j (t1)

$H
j (t2)

...
$H

j (tY j)


, for j = 1, 2, . . . , J (19)

the Equation (19) can also be simply represented as:

GH
j = ΦHG

j θHG
j + ΩHG

j , for j = 1, 2, . . . , J (20)

The uth pathogen gene:
gP

u(t2)

gP
u(t3)

...
gP

u(tYu + 1)

 =

φPG

u (t1)

φPG
u (t2)

...
φPG

u (tYu)

θ
HG
u +


$P

u(t1)

$P
u(t2)

...
$P

u(tYu)

, for u = 1, 2, . . . , U (21)

the Equation (21) can also be simply represented as:

GP
u = ΦPG

u θPG
u + ΩPG

u , for u = 1, 2, . . . , U (22)

The µth host miRNA:


mH
µ (t2)

mH
µ (t3)

...
mH
µ (tYµ + 1)

 =

φHM
µ (t1)

φHM
µ (t2)

...
φHM
µ (tYµ)

θ
HM
µ +


εH

j (t1)

εH
j (t2)

...
εH

j (tYµ)


, for µ = 1, 2, . . . , M (23)
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the Equation (23) can also be simply represented as:

MH
µ = ΦHM

µ θHM
µ + ΩHM

µ , for µ = 1, 2, . . . , M (24)

The `th host lncRNA:
lH
`
(t2)

lH
`
(t3)
...

lH
`
(tY` + 1)

 =

φHL
`

(t1)

φHL
`

(t2)
...

φHL
`

(tY` )

θ
HG
j +


ψH
`
(t1)

ψH
`
(t2)
...

ψH
`
(tY` )

, for ` = 1, 2, . . . , L (25)

the Equation (25) can also be simply represented as:

LH
` = ΦHG

` θHG
` + ΩHG

` , for ` = 1, 2, . . . , L (26)

After a succession of equation transformation procedure in advance, the parameters in vectors
θHG

j , θPG
u , θHM

µ and θHL
`

of Equations (20), (22), (24) and (26) can be estimated by individually
employing the following constrained least-square estimation problem,

θ̂HG
j = min

θHG
j

1
2‖ ΦHG

j θHG
j −GH

j ‖
2

2
, subject to AHG

j θ̂HG
j ≤ bHG

j where bHG
j =

[
0
1

]

and AHG
j =



0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 0
0 0 · · · 0 0 1 · · · 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
0 0 · · · 0 0 0 · · · 1 0 0 · · · 0 0 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0


∈ R(M j+1)×(T j+M j+L j+2)

(27)

θ̂PG
u = min

θPG
u

1
2‖ ΦPG

u θPG
u −GP

u‖
2
2, subject to APG

u θ̂PG
u ≤ bPG

u where bPG
u =

[
0
1

]

and APG
u =



0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 0
0 0 · · · 0 0 1 · · · 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
0 0 · · · 0 0 0 · · · 1 0 0 · · · 0 0 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0


∈ R(Mu+1)×(Tu+Mu+Lu+2)

(28)

θ̂HM
µ = min

θHM
µ

1
2‖ ΦHM

µ θHM
µ −MH

µ ‖
2
2
, subject to AHM

µ θ̂HM
µ ≤ bHM

µ where bHM
µ =

[
0
1

]

and AHM
µ =



0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 0
0 0 · · · 0 0 1 · · · 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
0 0 · · · 0 0 0 · · · 1 0 0 · · · 0 0 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0


∈ R(Mµ+1)×(Tµ+Mµ+Lµ+2)

(29)

θ̂HL
`

= min
θHL
`

1
2‖ ΦHL

` θHL
`
− LH

`
‖

2
2, subject to AHL

`
θ̂HL
`
≤ bHL

`
wherebHL

`
=

[
0
1

]

and AHL
` =



0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 0
0 0 · · · 0 0 1 · · · 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
0 0 · · · 0 0 0 · · · 1 0 0 · · · 0 0 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0


∈ R(M`+1)×(T`+M`+L`+2)

(30)
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Through applying the function lsqlin in MATLAB optimization toolbox to solve the constrained
least-squares estimation problem in (27)–(30), we could obtain optimal regulatory parameters for GRN
Equations in (3)–(6) and concurrently guarantee that the miRNA repression ability −eH

jµ, −eP
uµ, −kH

µr and

−zH
`µ

as well as the degradation rate −λH
j , −λP

u , −ϕH
µ and −σH

`
values corresponding to the jth host gene,

the uth pathogen gene, the µth host miRNA, and the `th host lncRNA to be non-positive, respectively.
So far, the structure of dynamic regression model construction is complete, yet if we substitute the

expression data into the linear model right away, infinite solutions problems will emerge due to the
lack of enough data points, in other words, information deficiency in comparison with parameters for
evaluation, that is, overfitting. Thus, the cubic spline for extra numbers of time-profile data points
interpolation is applied to prevent this trouble (For more details, readers can refer to Appendix A).
Then, with the processed RNA-seq data, the accurate solutions of the constrained least-squares
estimation problems in (13)–(14) and (27)–(30) can be attained.

Moreover, since the measurement technology of genome-wide protein expression in HepaRG cells
and Hepatitis B Virus during infection hasn’t been realized yet, and supporting evidence comes from
research showing that the cellular concentrations of proteins correlate with the abundances of their
corresponding mRNAs, which implied that the variance in protein abundance can be explained by that
of mRNA [48–51] and a correlation coefficient of 48% was also obtained between the mRNA and protein
abundances in human liver [49], i.e., the RNA-seq data of gene expressions can substitute protein
expressions and contribute to sufficient information for resolving above constrained least-squares
parameter estimation problems in (13) and (14) and (27)–(30). One could retain more information in
our previous research [52].

2.6. Determination of Significant Interaction Pairs

On account of approaching the best combination to constitute the robust HPI-GEN in the parameter
identification procedures, we exploited the cost function to obtain the optimal fit for the host/pathogen
RNA-seq data, to be more precisely, estimation of the expected relative distance between the fitted
model and the unrecognized authentic molecular pathogenic mechanism that actually generated the
observed data. On the whole, as the cost function of the parameter estimation for linear regression
model, mean squared error (MSE) is enough to calculate the residual variance. However, the cost from
the model complexity that might also influences the performance should be taken into consideration as
well. Akaike Information Criterion (AIC), taking the place of MSE, was thereby selected to assess the
residual variance and model complexity at once. As the expected residual variance declines with rising
parameter numbers for inadequate model complexities, there should be a minimum around the correct
parameter number after repeated coordination [52]. Meanwhile, owing to computational efficiency,
computing the AIC statistics for all possible combinations is impracticable. Stepwise methods are
developed to decreasing the complexity of exhaustive searching [52]. Finally, while reaching the
minimum of AIC value, we could acquire the real number of interactions or regulations for each protein
(gene) one by one in the candidate HPI-GEN. Those insignificant regulations or interactions out of the
real number determined by AIC should be pruned to obtain the real HPI-GEN.

For each model composing PPIN, the AIC values of the ith host and the qth pathogen protein can
be defined individually as the following equations:

The ith host protein:

AICHP
i (Ni, Vi) = log

(
1
Yi

(
PH

i −ΦHP
i θ̂HP

i

)T(
PH

i −ΦHP
i θ̂HP

i

))
+

2(Ni+Vi)
Yi

= log
[
(σHP

i

)2
]
+

2(Ni+Vi)
Yi

(31)
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The qth pathogen protein:

AICPP
q

(
Nq, Vq

)
= log

(
1

Yq

(
PP

q −ΦPP
q θ̂PP

q

)T(
PP

q −ΦPP
q θ̂PP

q

))
+

2(Nq+Vq)
Yq

= log
[
(σPP

q

)2
]
+

2(Nq+Vq)
Yq

(32)

for i = 1, . . . , I and q = 1, . . . , Q, where AICHP
i (Ni, Vi) with the model complexity Ni + Vi and

AICPP
q

(
Nq, Vq

)
with the model complexity Nq + Vq denote the ith host and the qth pathogen protein

in PPI model, respectively; (σHP
i

)2
and (σPP

q

)2
signify the covariance of estimated residual error

between PH
i and ΦHP

i θ̂HP
i and between PP

q and ΦPP
q θ̂PP

q , respectively; and θ̂HP
i and θ̂PP

q represent the
estimated parameters acquired from the solutions of the parameter estimation problems in (13) and
(14), respectively. Suppose N∗i , V∗i and N∗q, V∗q could minimize AICHP

i (Ni, Vi) and AICPP
q

(
Nq, Vq

)
in (31)

and (32), respectively. Then, N∗i , V∗i and N∗q, V∗q denote the real number of PPIs in the ith host protein
and the qth pathogen protein. The insignificant PPIs out of these numbers should be pruned as false
positives from candidate PPIs to obtain real PPIs in HPI-GEN.

For each model comprising GRN, the AIC values of the jth host gene, the uth pathogen gene,
the µth host miRNA, and the `th host lncRNA can be defined individually as following equations:

The jth host gene:

AICHG
j

(
T j + M j + L j

)
= log

(
1

Y j

(
GH

j −ΦHG
j θ̂HG

j

)T(
GH

j −ΦHG
j θ̂HG

j

))
+

2(T j+M j+L j)
Y j

= log
[
(σHG

j

)2
]
+

2(T j+M j+L j)
Y j

(33)

The uth pathogen gene:

AICPG
u (Tu + Mu + Lu) = log

(
1

Yu

(
GP

u −ΦPG
u θ̂PG

u

)T(
GP

u −ΦPG
u θ̂PG

u

))
+

2(Tu+Mu+Lu)
Yu

= log
[
(σPG

u

)2
]
+

2(Tu+Mu+Lu)
Yu

(34)

The µth host miRNA:

AICHM
µ

(
Tµ + Mµ + Lµ

)
= log

(
1

Yµ

(
MH
µ −ΦHM

µ θ̂HM
µ

)T(
MH
µ −ΦHM

µ θ̂HM
µ

))
+

2(Tµ+Mµ+Lµ)
Yµ

= log
[
(σHM
µ

)2
]
+

2(Tµ+Mµ+Lµ)
Yµ

(35)

The `th host lncRNA:

AICHL
`

(T` + M` + L`) = log
(

1
Y`

(
LH
`
−ΦHL

` θ̂HL
`

)T(
LH
`
−ΦHL

` θ̂HL
`

))
+

2(T`+M`+L`)
Y`

= log
[
(σHL
`

)2
]
+

2(T`+M`+L`)
Y`

(36)

for j = 1, . . . , J, q = 1, . . . , Q, µ = 1, . . . , M, and ` = 1, . . . , L where
AICHG

j

(
T j + M j + L j

)
, AICPG

u (Tu + Mu + Lu), AICHM
µ

(
Tµ + Mµ + Lµ

)
and AICHL

`
(T` + M` + L`)

with the model complexity T j + M j + L j, Tu + Mu + Lu, Tµ + Mµ + Lµ and T` + M` + L` denote the
AIC values of the jth host gene, the uth pathogen gene, the µth host miRNA, and the `th host lncRNA
in GRN model, respectively; (σHG

j )2, (σPG
u )2, (σHM

µ )2 and (σHL
`

)2 signify the covariance of estimated

residual error between GH
j and ΦHG

j θ̂HG
j , GP

u and ΦPG
u θ̂PG

u , MH
µ and ΦHM

µ θ̂HM
µ , and LH

`
and ΦHL

` θ̂HL
`

,

respectively; and θ̂HG
j , θ̂PG

u , θ̂HM
µ and θ̂HL

`
represent the estimated parameters acquired from the

solutions of the parameter estimation problems in (27)–(30), respectively. Similarly, the real numbers of
regulation by TF, miRNA, lncRNA are obtained by minimizing the corresponding AICs in (33)–(36).
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The insignificant regulations out of these real numbers should be pruned as false positives to obtain
the real regulations by TF, miRNA, lncRNA in HPI-GEN.

So far, through a sequence of systematic identification processes, the construction for real
HPI-GENs is broadly accomplished by pruning those insignificant interactions and regulations out of
the corresponding AIC. Unfortunately, due to the excessively enormous network architecture, we could
hardly extract the core pathways to investigate the pathogenesis during HBV infection, let alone
screening of candidate proteins as new targets for drug development. We thereby extracted the core
network from the real HPI-GEN via applying the principal network projection (PNP) method.

2.7. Extracting Core Network Structure from the Real HPI-GEN by Using PNP Approach

Prior to core network extraction from the real HPI-GEN through applying PNP method, it is
essential to integrate the network estimated parameters from PPIN and GRN into a system matrix A
as follows,

A =



AHP,HP AHP,PP 0 0
APP,HP APP,PP 0 0
AHG,HP 0 AHG,HM AHG,HL
AHM,HP 0 AHM,HM AHM,HL

AHL,HP 0 AHL,HM AHL,HL

APG,HP 0 APG,HM APG,HL



=



âH
11 · · · âH

1I
... âH

in

...
âH

I1 · · · âH
II

b̂H
11 · · · b̂H

1Q
... b̂H

iv

...
b̂H

I1 · · · b̂H
IQ

0 · · · 0
... 0

...
0 · · · 0

0 · · · 0
... 0

...
0 · · · 0

âP
11 · · · âP

1I
... âP

qn
...

âP
Q1 · · · âP

QI

b̂P
11 · · · b̂P

1Q
... b̂P

qv
...

b̂P
Q1 · · · b̂P

QQ

0 · · · 0
... 0

...
0 · · · 0

0 · · · 0
... 0

...
0 · · · 0

ĉH
11 · · · ĉH

1I
... ĉH

jτ

...

ĉH
I1 · · · ĉH

II

0 · · · 0
... 0

...
0 · · · 0

−êH
11 · · · −êH

1M
... −êH

jµ

...

−êH
I1 · · · −êH

IM

d̂H
11 · · · d̂H

1L
... d̂H

j`

...

d̂H
I1 · · · d̂H

IL
f̂ H
11 · · · f̂ H

1I
... f̂ H

µτ

...
f̂ H
M1 · · · f̂ H

MI

0 · · · 0
... 0

...
0 · · · 0

−kH
11 · · · −kH

1M
... −kH

µr
...

−kH
M1 · · · −kH

MM

ĥH
11 · · · ĥH

1L
... ĥH

µ`

...

ĥH
M1 · · · ĥH

ML
x̂H

11 · · · x̂H
1I

... x̂H
`τ

...
x̂H

L1 · · · x̂H
LI

0 · · · 0
... 0

...
0 · · · 0

−ẑH
11 · · · −ẑH

1M
... −ẑH

`µ

...

−ẑH
L1 · · · −ẑH

LM

ŷH
11 · · · ŷH

1L
... ŷH

`o

...
ŷH

L1 · · · ŷH
LL

ĉP
11 · · · ĉP

1I
... ĉP

uτ
...

ĉP
Q1 · · · ĉP

QI

0 · · · 0
... 0

...
0 · · · 0

−êP
11 · · · −êP

1M
... −êP

uµ
...

−êP
Q1 · · · −êP

QM

d̂P
11 · · · d̂P

1L
... d̂P

u`

...
d̂P

Q1 · · · d̂P
QL



∈ R(2I+2Q+L+M)×(I+Q+L+M)

where HP, PP, HG, HM, HL and PG denote the host protein, pathogen protein, host gene, host miRNA,
host lncRNA and pathogen gene, respectively; âH

in, b̂H
iv and âP

qn, b̂P
qv mentioned in (1) and (2) could

be acquired in θ̂HP
i and θ̂PP

q by resolving the parameter estimation problems in (13) and (14) and

pruning false positives by AIC method in (31) and (32), respectively;
{
ĉH

jτ, −êH
jµ, d̂H

j`

}
,
{

f̂ H
µτ, −kH

µr, ĥH
µ`

}
,{

x̂H
`τ

, −ẑH
`µ

, ŷH
`o

}
, and

{
ĉP

uτ,−êP
uµ, d̂P

u`

}
mentioned in (3)–(6) could be acquired in θ̂HG

j , θ̂PG
u , θ̂HM

µ and

θ̂HL
`

by resolving the parameter estimation problems in (27)–(30) and pruning false positives by AIC
method in (33)–(36) respectively. Note that since the regulations from pathogen proteins weren’t taken
into consideration, the corresponding parameters in matrix A are padded with zeros.

Thereafter, we extract the core components of HPI-GEN by PNP approach, a principal network
analysis method for dimensionality reduction based on network structure projection technique, that is,
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projecting matrix A to its principal singular vectors space. Accordingly, the combined network matrix
A can be denoted by singular value decomposition form below,

A = USVT (37)

where U ∈ R(2I+2Q+L+M)×(I+Q+L+M), V ∈ R(I+Q+L+M)×(I+Q+L+M), and S =

diag
(
σ1, . . . , σs, . . . σI+Q+L+M

)
is a diagonal matrix of σ1, . . . , σs, . . . σI+Q+L+M which includes the I + Q

+ L + M singular values of the matrix A in descending order, i.e., σ1 ≥ . . . ≥ σs ≥ . . . ≥ σI+Q+L+M ≥ 0.

S =



σ1 0 · · · 0 · · · 0
0 σ2 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · σs · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · σI+Q+L+M
0 0 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · 0


Also, we define the expression fraction Ew of the interaction ability of the proteins and the

transcriptional regulatory ability of the genes, lncRNAs, miRNAs as the normalization of singular
value form,

Ew =
σ2

w
I+Q+L+M∑

w=1
σ2

w

(38)

According to the diminishing property of the singular values, under the basic premise of sustaining
system energy from the whole network structure, we pick out the minimum X such that ΣX

w=1Ew ≥ 0.85,
i.e., the vector space spanned by the orthonormal bases composed of the principal singular vectors
corresponding to the top X singular values contains 85% energy of HPI-GEN structure.

Afterwards, we define and apply the projection value of each node, including gene, miRNA,
lncRNA, and protein in the real HPI-GEN to the vector space spanned by the orthonormal basis
composed of the principal singular vectors corresponding to the top X singular values as below,

ProjR(Arow,i, VT∗) =

[
X∑

k=1
(Arow,ivk)

2
]1/2

ProjC(Acol, j, U∗) =
[

X∑
k=1

(AT
col, juk)

2
]1/2 (39)

where Arow,i denotes the ith row vector of A for i = 1, . . . , 2I + 2Q + L + M; Acol, j signifies jth column
vector of A for j = 1, . . . , I + Q + L + M; VT∗ ; and U∗ represent the vector spaces spanned by the
orthonormal basis {v1, v2, . . . , vk} and {u1, u2, . . . , uk} for k = 1, . . . , X, respectively; ProjR(Arow,i, VT∗)

and ProjC(Acol, j, U∗) indicate the projection value from Arow,i and Acol, j to VT∗ and U∗ vector
spaces, respectively.

While the projection value ProjR(Arow,i, VT∗) or ProjC(Acol, j, U∗) in (39) approaches zero, it intimates
that the corresponding node i or j isn’t the pivotal factor or independent to the core network extracted
via the PNP procedure. Conversely, the larger projection value it gets, the greater the node contributes
to the core network.

Eventually, we select the first 3000 components on the top of the list with higher energy in (39) as
the core host-pathogen network from real HPI-GEN of HBV infection by ranking the projection value
of each node and subsequently uploading those nodes into DAVID to obtain the KEGG pathways as
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shown in Table 3. Taking KEGG pathways as reference, we systematically identify and investigate the
molecular pathogenic mechanism of HBV infection from the core HPI-GEN as shown in Figure 4 and
select the significant biomarkers for the further novel drug discovery procedure.

2.8. Deep Learning-Based Drug-Target Interaction Prediction

2.8.1. Data Preparation

Following the identification of promising pathogenic biomarkers, a potent drug-target interaction
(DTI) model to predict the interactions between the identified biomarkers and their corresponding
molecule drugs is crucial for discovering favorable molecular compounds for the therapeutic treatment.
Thus, we constructed a deep learning-based DTI model to collect viable interactions to identify available
drugs for the selected biomarkers. Meanwhile, since most patients in need of attention and treatment
are infected with chronic hepatitis, the highest priority was assigned to efficacious drugs with lower
toxicity that would not cause irreparable harm to health.

First, we integrated databases from UniProt [53], DrugBank [54], ChEMBL [55], Pubchem [56],
and BindingDB [57] to assemble applicable drug-target interactions. As feature descriptors are simple
numerical vectors designed to delineate the complicated information of objects, they have been
widely utilized to describe the genomic sequences and chemical properties of molecules such as
the characteristics from 2D, 3D spectrum of structure, molecular weight, predictive values of LogP,
etc. of late [58,59]. In view of this property, we employed both the off-the-shelf build-in molecular
and protein descriptor functions of python package pyBioMed to transform the features from each
drug and its target among the previously collected drug-target interactions into descriptor under
python 2.7 environment, respectively. These features include molecular dockings such as amino acid
composition and dipeptide composition. For more details about the descriptor transformation, readers
could access the documents of pyBioMed. Thereafter, we united the descriptors of both drugs and
their relevant targets into a matrix as the training dataset to train the DTI model. The vector vdrug−target
corresponding to the descriptor of each drug-target pair is given below:

vdrug−target = [D, T] =
[
d1, d2, · · · , dI, t1, t2, · · · tJ

]
(40)

where vdrug−target denotes the vector of the descriptor for each the drug-target pair comprising two
parts. The former part D is the descriptor of the drug and di represents the ith drug feature; the latter
portion T is the descriptor of the target and t j indicates the jth target characteristic; I is the total number
of drug features; J is the total number of target features.

Before performing drug-target interaction prediction, to keep our DTI model from inferior
performance arising from between-class imbalance and distracting variation, some data preprocessing
procedures are requisite. The entire preprocessing procedure in our work encompasses down sampling,
data partitioning, feature scaling, and dimensionality reduction.

• Down Sampling:

There are two categories of drug-target interaction in our samples: 16,000,000 samples for
the unknown interactions (negative instances) and 60,000 samples for the known interactions
(positive instances). Though deep learning methods scale well with the quantity of data and can often
leverage extremely large datasets for good performance, imbalanced class distribution often causes
the model to be overwhelmed by the large class and ignore the minority one. So as to mitigate the
effect arising from class imbalance, we reduced the number of majority samples (negative instances) to
60,000 which will allow the model to learn from both classes equally.

• Data Partitioning:

After the down sampling procedure, we partition the data (the reconstructed matrix of drug-target
pairs) into two sets, three-fourth for training and one-fourth for testing.
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• Feature Scaling:

Since the variables of the features in each drug-target pair are measured at different scales, they
do not contribute equally to the model fitting and might end up with creating a bias. To deal with this
potential problem, a feature-wise scaling is usually implemented prior to model fitting. As powerful
techniques of feature scaling, Min-max scaling (normalization) and Standardization are both widely
used in data analysis. However, despite possessing the capability to shift and rescale the data into
a limited range of values, normalization is sensitive to the outliers [60]; in contrast, standardization
maintains useful information about outliers and makes the model less sensitive to them [61]. Thus,
we apply Standardization on each feature and the corresponding mathematical formulation is shown
as follows:

d∗i =
di−µi
σi

, ∀i = 1, . . . , I

t∗j =
t j−ω j
δ j

, ∀ j = 1, . . . , J
(41)

where di and d∗i represent the ith feature of the drug before and after Standardization, respectively;
µi and σi signify the mean and standard deviation of the ith drug feature; t j and t∗j indicate the jth
feature of the target before and after Standardization, respectively; ω j and δ j denote the mean and
standard deviation of the ith target feature; I is the total number of features in the drug while J is that
of the target.

• Dimensionality Reduction:

Since the high-dimensional patterns in samples might augment the number of neurons in the
network and elevate the computational complexity for training, we adopted principal components
analysis (PCA) to distill 692 features from original 1014 features of the samples. One could retain as
much information of interested [62,63].

Note that it is illegal and useless to carry out data preprocessing to the testing set solely relying
on the characteristics in testing data in that we would never get any information from the features of
testing data until the training phase is over. Hence, aside from the aforementioned transformation
performed on the training data sets, we also provide the identical transformation on the testing data
during the process of feature scaling and dimensionality reduction. More exactly, we extracted the
mean and standard deviation variables of each feature in the training data set to standardize the
corresponding feature in the testing data. Likewise, the transformation matrix for executing PCA of the
features in training data was concurrently used to reduce the dimension of the features in testing data.

So far, the training data for tuning the network parameters of the deep learning-based DTI
model and the testing data for evaluating the model performance are ready. Nonetheless, if learned
merely on the features from the training set, the hyperparameters would always choose the maximum
possible model capacity, leading to overfitting [63]. As a result, we randomly split out one-tenth of the
training data to estimate the generalization error during training, allowing for the hyperparameters
to be updated in every epoch. In addition, Early Stopping method was also employed to specify an
arbitrarily large number of training epochs and stop training once improving the model’s fit to the
training data comes at the expense of increased generalization error. Eventually, through setting the
optimizer as Adam [64] and learning rate = 0.001, we then trained our DTI model for 40 epochs with
100 samples in each mini-batch.

2.8.2. Parameters Tuning Process Based on Deep Learning Algorithm

In the network architecture, each layer can be simplified into a function below:

ĥn = δ(wTxn + b) (42)
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where xn and ĥn indicate the input and output vectors corresponding to the descriptor of the nth
drug-target pair, respectively; δ denotes the activation function (ReLU for each hidden layer and
Sigmoid for the output layer); and the vectors w and b are given as follows:

w =


w1

w2
...

we

, b =


b1

b2
...

be

 (43)

where the weights parameters w1, w2, . . .we in w and bias parameters b1, b2, . . . be in b are free variables
that capture the model’s representation of the data in each layer and are learned from each sample.

To evaluate the model performance, the predicted output is compared with the true label to
compute a loss for the current set of model weights. Since drug-target interaction prediction issue is
a binary classification problem, binary cross-entropy is chosen to calculate the loss of each iteration.
The summation of the loss L(y, ŷ) for totally N samples is given by the expression as below:

L(y, ŷ) = −
1
N

N∑
n=1

(yn ∗ log(ŷn) + (1− yn) ∗ log(1− ŷn)) =
1
N

N∑
n=1

Cn(yn, ŷn) (44)

where Cn(yn, ŷn) is loss of the nth sample calculated by binary cross-entropy, in which yn is the nth
actual label (1 or 0) and ŷn is the nth predicted probability distribution.

During the learning process, the parameter set θ (46) in each layer should achieve the minimization
of the objective function (47) to obtain the optimal network parameters θ∗. Accordingly, backward
propagation learning algorithm (48) is designed to update the network parameters of both weights
(w1, w2, . . . , we) and bias (b1, b2, . . . , be).

θ =



w1
...

we

b1
...

be


(45)

θ∗ = argmin
θ

L(θ) (46)

θi = θi−1
− η∇L(θi−1) (47)

where i is the ith iteration of the learning process; η is the learning rate (set as 0.001); and ∇L(θi−1) is
the gradient of L(θi−1) given as follows:

∇L(θi−1) =



∂L(θi−1)
∂w1

...
∂L(θi−1)
∂we

∂L(θi−1)
∂b1
...

∂L(θi−1)
∂be


(48)

Consequently, by back-propagating a corrective error signal through the network, weighted
connections between neurons in the DTI model are iteratively adjusted and assessed on the basis of the
drug-target pairs in the training and the validation sets.
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2.8.3. Measurement of Prediction Quality

Assessing a model is quite tricky. It isn’t reliable to evaluate model performance (training accuracy
of the final epoch) merely based on one specific validation set, in that the accuracy obtained from
one validation set can be very different to that from another. Thus, we took advantage of a general
technique named 10-fold cross validation to avoid the possible bias. That is, the original samples for
training is randomly partitioned into 10 equal size subsamples; one is retained as the validation data
for testing the model, and the remaining 9 subsamples are used as training data. Through repeatedly
training and validating the models 10 times with different partitions, we then compute an average score
over the rounds to give an estimate of the model’s predictive performance. Afterwards, the model
parameters with different validation errors were applied to the testing data for generating the final test
accuracy and loss.

Aside from that, to compare the effectiveness of our DTI model with that of other state-of-the-art
ML-based approaches, we adopted AUC-ROC curve [65] to tell how good a specific model can
distinguish two classes, that is, whether or not a drug interacts with a target. ROC represents the
relationship between benefit (true positive rate) and cost (false positive rate), while AUC is a value in
the range of 0 to 1 that indicates the degree of separability between classes. The higher AUC we obtain,
the more accurate outcome we will get from the model. The formulas for AUC-ROC curve are shown
as below:

True Positive Rate = Recall/Sensitivity =
TP

TP + FN
(49)

Specificity =
TN

TN + FP
(50)

False Positive Rate = 1− Specificity =
FP

TN + FP
(51)

where True Positive (TP) means that the actual value is positive and is judged correctly; False Positive
(FP) shows that the actual value is positive but is judged by mistake; True Negative (TN) indicates the
actual value is negative and is judged accurately; False Negative (FN) represents the actual value is
negative but is judged in error.

3. Results

3.1. Overview of Systems Medicine Discovery Procedure

Though a great advance has been made to design and evaluate medicine based on the application
of diversified drug repositioning approaches, it still takes a large amount of time and vigor if without
a potent avenue to select the promising biomarkers and drugs for the clinical trials. In this study,
we proposed a systematic biology method containing two sections including potential biomarkers
identification and novel drugs discovery.

The overall flowchart of the proposed systems biology procedure is shown in Figure 1. On one
hand, we applied a systematic identification analysis procedure to the constructed candidate HPI-GEN,
considering both accuracy and model complexity with the help of the information from the two-side
real-time profile RNA-seq. Note that the total nodes and edges respectively given in Tables 1 and 2
of the real HPI-GEN in Figure 2 abstracted from the candidate HPI-GEN has considerably shrunk
in comparison with that of the candidate HPI-GEN, which indicates that the false-positives were
eliminated during the identification process. Supported with the PNP approach, we then identified
the core HPI-GEN in Figure 3 by selecting top-ranked 3000 nodes with significant projection values
that could reflect 85% of the real HPI-GEN. The higher the projection value is, the stronger regulatory
capacity it possesses in the host/pathogen cross-talk mechanism during HBV infection. In the meantime,
given identified KEGG pathways derived through uploading nodes in core HPI-GEN into DAVID in
Table 3, we selected the core signaling pathways so as to explore the underlying etiologic mechanism
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in HBV infection as shown in Figure 4, involving microenvironmental factors by surveying relevant
papers and research.

Table 1. The total number of nodes in candidate interspecies host/pathogen interspecies genetic
and epigenetic interaction network (HPI-GEN) and identified HPI-GEN during Hepatitis B Virus
(HBV) infection.

Node Candidate HPI-GEN Real HPI-GEN

LncRNA node 143 137
MiRNA node 922 922

TF node 2477 1325
Receptor node 2105 2105

Virus node 4 4
Protein node 13,465 12,258

Total node 19,116 16,751

Table 2. The total number of edges in candidate interspecies HPI-GEN and identified interspecies
HPI-GEN during HBV infection.

Edge Candidate HPI-GEN Real HPI-GEN

LncRNA-LncRNA 0 0
LncRNA-miRNA 0 0

LncRNA-TF 156 9
LncRNA-Receptor 2 0
LncRNA-Protein 90 8
LncRNA-Virus 8 1

MiRNA-LncRNA 510 303
MiRNA-MiRNA 96 86

MiRNA-TF 42,913 7909
MiRNA-Receptor 26,888 9694
MiRNA-Protein 146,144 65,561
MiRNA-Virus 39 15
TF-LncRNA 231 157
TF-MiRNA 1439 944

TF-TF 33,426 8061
TF-Receptor 14,948 6500
TF-Protein 76,441 39,574
TF-Virus 54 38

Receptor-LncRNA 26 15
Receptor-MiRNA 143 102

Receptor-TF 2364 644
Receptor-Receptor 1490 693
Receptor-Protein 7755 4560
Virus-LncRNA 5 3
Virus-MiRNA 109 80

Virus-TF 509 77
Virus-Receptor 164 72
Virus-Protein 682 276

PPIs 4,039,657 906,428
Total edge 4,396,289 1,051,810
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Figure 1. Flowchart of applying systems biology method to construct the candidate HPI-GEN,
real HPI-GEN, core HPI-GEN, and core signaling pathways during the infection of HBV to identify
the potential biomarker for later drug discovery repurposing. The grey blocks in the shape of a
cloud indicate the online databases for constructing candidate HPI-GEN and later drug repositioning;
the white diamond blocks are the corresponding data types of each database; the orange diamond blocks
signify candidate protein-protein interaction network (PPIN) and gene regelation network (GRN);
the blue blocks represent the input information including the raw RNA-seq data for system identification
and the collected articles for BioBERT to augment the interspecies interactions and regulations in PPIN
and GRN, respectively; the red blocks denote the models comprising BioBERT and stochastic regression
models utilized in the systems biology approach; the white rectangle blocks indicate the systematic
methods applied to constructing the candidate HPI-GEN and extracting core HPI-GEN; the purple
blocks imply the drug discovery and repositioning procedure proposed afterwards; and the yellow
rounded rectangular blocks are the real HPI-GEN and core HPI-GEN during the infection of HBV.
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Figure 2. Real HPI-GEN between host and pathogen under infection of HBV. The real HPI-GEN
describes the cross-talk interaction and regulation between host and pathogen after system identification
analysis to prune false positives from candidate HPI-GEN. The purple lines denote PPIs; the green,
yellow, blue, and red lines indicate the regulations by Transcriptional factors (TFs), lncRNAs, miRNAs,
and Virus proteins respectively; and the total numbers of lncRNAs, miRNAs, proteins, receptors,
Virus proteins, and TFs in the network are 137, 922, 12,258, 2015, 4, 1325, respectively.

Biomedicines 2020, 8, x FOR PEER REVIEW 25 of 50 

 
Figure 3. Core HPI-GEN under infection of HBV. The core HPI-GEN denotes the cross-talk interactions 
between host and pathogen after performing PNP to extract the top 3000 nodes from the real HPI-GEN. The 
purple lines denote PPIs; the green, yellow, blue, and red lines indicate the regulations by TFs, lncRNAs, 
miRNAs, and Virus proteins, respectively; and the total numbers of lncRNAs, miRNAs, proteins, receptors, 
Virus proteins, and TFs in the network are 6, 262, 2086, 332, 4, 312, respectively. 

Figure 3. Core HPI-GEN under infection of HBV. The core HPI-GEN denotes the cross-talk interactions
between host and pathogen after performing PNP to extract the top 3000 nodes from the real HPI-GEN.
The purple lines denote PPIs; the green, yellow, blue, and red lines indicate the regulations by TFs,
lncRNAs, miRNAs, and Virus proteins, respectively; and the total numbers of lncRNAs, miRNAs,
proteins, receptors, Virus proteins, and TFs in the network are 6, 262, 2086, 332, 4, 312, respectively.
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Figure 4. The core host/pathogen cross-talk signaling pathways during HBV infection. This is a network obtained from the core HPI-GEN by the annotation of
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, which represents an intracellular pathogenic mechanism during the invasion of host hepatocyte by
HBV. The solid black lines indicate the regulation (with an arrowhead) and interaction between nodes. The solid lines in different colors except black represent the
regulations of the corresponding cellular functions; among them, the lines with an arrowhead denote the activation of cellular functions while the lines with a circular
head indicate the inhibition of cellular functions. Furthermore, for the nodes of downstream target genes, the blocks with an upward pointing arrow signify a rising
expression; comparatively, the blocks with a downward pointing arrow signify a dropping expression under HBV infection.
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On the other hand, after determining the biomarkers from signaling pathways of the core HPI-GEN
as shown in Table 4, we proposed a deep learning-based drug-target interaction (DTI) method to
predict the potential interactions (dockings) between the identified biomarkers and their corresponding
drugs for further candidate drugs discovery. The outcome of the DTI model is presented in a form of
probability. The higher probability analyzed by the DTI model, the connection between the selected
biomarker and the predicted drug is more likely to exist. However, given the enormous number of
candidate drugs, the general drug specifications such as regulation ability, toxicity, and sensitivity from
multiple databases were taken into consideration to reduce the search space and ensure the safety and
efficacy in clinical trials. The pertinent flow-process diagram of the systems molecular drug design
procedure is shown in Figure 5.

3.2. Extracting Core Signaling Pathways from Identified HPI-GEN and Core HPI-GEN in HBV Infection

For the purpose of analyzing the molecular mechanism under HBV infection, extracting core
signaling pathways from candidate HPI-GEN is critical. The process to construct candidate HPI-GEN
and identify real HPI-GEN as well as core HPI-GEN has been shown in the flowchart of Figure 1.

Thereafter, we identified the real HPI-GEN via parameter identification concerning the cost of
model complexity under the auspices of corresponding RNA-seq data to prune false positives from
candidate HPI-GEN (refer to Section 2.4–Section 2.6 for more details). The total numbers of the nodes
of proteins, Transcription factors (TFs), miRNAs, lncRNAs, and Virus proteins as well as the edges of
their interactions and regulations for the candidate HPI-GEN and identified real HPI-GEN are given
in Tables 1 and 2, respectively. In addition, through employing the network visualizing software
Cytoscape, the network of real HPI-GEN under HBV infection is shown in Figure 2.

Since the immense complexity of real HPI-GEN limits the possibility to efficiently investigate
the pathogenic mechanism under HBV infection, applying principal network projection (PNP) and
subsequently abstracting the top 3000 nodes with significant projection values on the 85% pivotal
network structures to distill core HPI-GEN are essential. Meanwhile, the results of core HPI-GEN
under the infection of HBV is shown in Figure 3.

Moreover, we employed DAVID Bioinformatics Resources version 6.8 to analyze the enrichments
of relative pathways and specific cellular functions of core HPI-GEN as shown in Table 3.

Table 3. The pathway enrichment analysis of proteins by applying the DAVID in core HPI-GEN during
HBV infection.

Term Numbers p-Value

MicroRNAs in cancer 103 8.6 × 10−18

Pathways in cancer 108 8.7 × 10−10

FoxO signaling pathway 49 5.6 × 10−9

Viral carcinogenesis 63 6.3 × 10−8

Hepatitis B 47 7.3 × 10−7

Cell cycle 39 1.6 × 10−5

MAPK signaling pathway 64 6.2 × 10−5

TNF signaling pathway 33 1.3 × 10−4

Ras signaling pathway 55 6.2 × 10−4

PI3K-Akt signaling pathway 77 7.6 × 10−4

Through the multifaceted assessment of the core HPI-GEN based on existing studies and the
annotation of KEGG signaling pathways, we could attain the core signaling pathways associated
with microenvironmental factors including cytokines, chemokines, etc., for the pathogenesis of HBV
infection as represented in Figure 4. Then, on the basis of the investigating the consequence of the
systematic pathogenic molecular mechanism, we could identify the potential biomarkers holding great
promise for the development of therapeutic targets.
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3.3. Analysis of Core Interspecies Cross-Talk Pathways to Investigate Host/Pathogen Offensive/Defensive
Mechanism during HBV Infection

Based on the core host/pathogen cross-talk signaling pathways in Figure 4, several identified
processes leading to dysfunction of antiviral machinery are investigated to afford a stepwise
understanding of the host/pathogen offensive and defensive mechanism under HBV infection.

3.3.1. Inception of HBV Infection

Hepatitis B Virus (HBV) has a 3.2-kb circular and partially double-stranded DNA genome that
contains four genes named S, C, P, and X genes coding for the envelope proteins, the core protein and a
related protein termed precore protein, the viral DNA polymerase, and the multifunctional regulatory
protein, respectively [66,67]. The journey of HBV virions starts from attaching to host hepatocytes
through heparan sulfate proteoglycans (SDC2 and HSPG2) and promptly transfers to sodium acid
cotransporter (SLC10A1), initiating the HBV life cycle. Once entering the cells, the viral nucleocapsid
containing the partially double-stranded DNA, known as the relaxed circular DNA (rcDNA), will be
released into the cytoplasm and transported into the nucleus. The plus strand of the rcDNA is then
repaired and completed to generate the covalently closed circular (cccDNA), which later forms the
HBV minichromosome and is transcribed into RNAs for viral replication [68].

3.3.2. Liver Microenvironment and Immune Pathogenesis under HBV Infection

Inflammatory and innate immune responses impact the pathogenesis of numerous diseases
and participate in the activation of common inflammatory mediators and regulatory pathways.
On top of the Toll pathways that could be directly stimulated by the viral particles, in response
to the foreign invasions, leukocytes, e.g., neutrophils and macrophages that phagocytose and kill
pathogens, might simultaneously coordinate additional host responses by synthesizing a wide range of
inflammatory mediators, such as TNF-α, IL-6, IFN-α, and IFN-γ [69]. These cytokines and chemokines
provoke the secretion of antiviral effectors and a series of immunoregulatory mechanisms against
HBV infection. In general, cellular and molecular events and interactions would effectively mitigate
impending injury or infection during inflammatory responses [70]. However, along with the frequent
recurrence of inflammation, once imbalances of the microenvironment occur, it might lead to abnormal
epigenetic variations and even immune dysregulation [71], which consequently incurs viral relapse.

3.3.3. Toll Pathway as the First Line of Defense against Infection

Toll-like receptors (TLRs) have long been recognized as the first line of antiviral immunity in
that they initiate intracellular signaling pathways to induce antiviral mediators, such as interferons
(IFNs) and other cytokines [72]. Upon the recognition of foreign invaders (HBV-associated molecular
patterns), TLRs elicited phosphorylation of IKKβ (IKBKB) through several signaling transduction
proteins, including MyD88, IRAK1, TRAF6, TAB1, and TAK1. IκBα (NFKBIA) is a downstream protein
of IKKβ keeping NF-κB sequestered in an inactive state in cytoplasm [73]. When phosphorylated
by IKKβ, IκBα dissociated from NF-κB, resulting in the nuclear translocation of NF-κB and the
induction of its several targets, in which the Interleukin 6 (IL6), the interferon-alpha receptor 1 (IFNAR1),
the interferon-gamma receptor 2 (IFNGR2), and BCL3 were recognized as shown in Figure 4. Among them,
IL-6 is the pleiotropic cytokine encoded by IL6 gene that catalyzes immune reaction and inflammatory
responses [74,75]; IFNAR1 is the receptor that binds type I interferons and activates the JAK-STAT
signaling pathway, along with MAPK, PI3K, and Akt signaling pathways associated with multiple
cellular functions, such as inflammation and immune response regulation [76]; IFNGR2 is a receptor
that binds to interferon-γ (IFN-γ), which is the immune interferon produced predominantly by natural
killer (NK) and natural killer T (NKT) cells in response to viral infection [77]; and BCL3 is a protein that
inhibits DNA damage-induced apoptosis and acts as a transcriptional coregulator of NF-κB [78,79].
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In addition to stimulation of the downstream NF-κB pathway, the phosphorylated IKKβ also
activated the pathway of mammalian target of rapamycin (mTOR) by triggering the disruption of
TSC1/TSC2 complex. In general, TSC1 stabilizes TSC2 through direct binding, thereby preventing
TSC2 from ubiquitination and degradation. Once IKKβ phosphorylates TSC1 incurring collapse of its
connection with TSC2, it obliquely leads to the stabilization of RhebGTP, which mediates signaling
to mTOR [80,81]. As for the substrates of mTOR, among all the identified downstream proteins in
the core host/pathogen signaling pathways as shown in Figure 4, the translational repressor 4EBP1
(EIF4EBP1) stood out to be a pivotal constituent. It is well acknowledged that when the 4EBP1 protein
is hyperphosphorylated by mTOR kinase, it can’t bind and hijack the eIF4E factor, i.e., a general initiator
for translational regulation [82,83]. Concurrently, it is reported that the released eIF4E might form a
complex with the 5′ stem-loop structure of the HBV genome, thus ensuring viral replication [84].

3.3.4. TNF-α-Stimulated Signaling Pathways

TNF-α is a multifunctional cytokine that plays a principal role in cell proliferation, apoptosis,
inflammation, and immune response. From the core host/pathogen cross-talk signaling pathways in
Figure 4, as soon as TNF-α bound to TNF receptors (TNFRs), it contributed to the phosphorylation
of Akt via both TNFR2/TRAF2/PIK3CB and TNFR1/TRADD/TRAF2/PIK3CB signaling transductions.
Akt is an effector of Class I PI3K triggering multiple downstream pathways and has been shown
to be a critical mediator of cell proliferation and survival in a variety of cell types [85]. In Figure 4,
a few pathways of Akt were incorporated into the core host/pathogen cross-talk network. First of all,
the activated Akt inhibited the induction of autophagy through transactivating mTOR, i.e., impeding
GTPase-activating protein complex TSC1-TSC2 as previously described. It is worth noting that TSC2
rather than TSC1 was directly phosphorylated by Akt, which destabilized TSC2 and disrupted its
affinity with TSC1 [86]. Secondly, Akt also enhanced MDM2-mediated ubiquitination leading to
p53 (TP53) degradation [87] and catalyzed the nuclear localization and stabilization of BCL3 by
phosphorylation [79], where BCL3 is the aforementioned transcription coregulator having been proven
to interact with NF-κB so as to facilitate its transcriptional ability. Moreover, it even caused nuclear
exclusion and cellular dysfunctions of FoxO proteins through phosphorylation and repression [88].
Therefore, as the identified target genes of FoxO proteins in the core host/pathogen cross-talk pathways,
BNIP3, BMI1, SOD2, and cyclin-dependent kinase inhibitor 1 (CDKN1A) encoding p21, might probably
be down-regulated. Within, BNIP3 is a pro-apoptotic factor that induces cell death through interacting
with anti-apoptotic proteins [89]; BMI1 is a critical epigenetic repressor that functions through chromatin
remodeling and plays a central role in DNA damage repair [90,91]; and SOD2 is the antioxidant defense
enzyme that participates in apoptotic signaling and oxidative stress regulation [92]. However, it is
well documented that FoxO1/FoxO3 could rapidly relocalize into the nucleus in response to STAT3
activation by IL-6, and the accumulation of FoxO1/FoxO3 in nuclei coincided with elevated expression
of CDKN1A and other genes [93]. This phenomenon could interpret the high expression of the target
genes BNIP3, BMI1, SOD2, and CDKN1A, as well as the promotion of viral replication, since activator
FOXO1 has also been found to bind to HBV DNA and activate its transcription [94].

Aside from the activation of PI3K/Akt pathway, in response to cytokine signals, TRAF2 also
recruited TAK1/TAB3 complex and IKK complex, which is composed of IKKα, IKKβ, and IKKγ (IKBKG),
bringing about the autophosphorylation-dependent activation of TAK1 [95] and the activation of its
substrates, such as IKKβ and MKK7. MKK7 then upregulated the transcriptional activity of c-JUN and
ATF2 via activation of the JNK1. c-Jun is an AP-1 family transcription factor involved in the regulation
of cell death and survival [96] as well as inflammation and innate immune response [97]. In Figure 4,
the induction of c-Jun is discovered to be associated with the overexpression of the proinflammatory
cytokine receptor IL18R1 essential for IL18 mediated signal transduction [98], the ligand PD-L1 (CD274)
regulating the cellular immune responses to prevent inflammation [99], and the major cyclins CCND1
controlling the progression of a cell through the G1 phase by conjugating CDK4/6 enzymes required for
the synthesis of cell cycle [100]. Besides, c-Jun not only modulated the expression of BCL3 by serving
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as either the coactivator of NF-κB or the activator of BCL3 gene to reinforce cell survival [101,102],
but also induced miR-221 to interfere with the regulation ability of the histone deacetylase 6 (HDAC6),
which has been reported to both suppress NF-κB activation and control autophagosome maturation
essential for ubiquitin-selective quality-control autophagy [103]. Apart from that, c-Jun could even
impact the modulation of Fas expression, which sparked off the loss of Fas-ligand (FasL)-mediated
apoptosis by means of down-regulating the activity of p53.

3.3.5. TAK-STAT Signaling Pathways

The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway
is a chain of interactions between proteins involved in various physiological processes, including
immune function, cell growth, and cell death [104]. The activation of STAT3 was mainly provoked by
JAK1 while JAK1 was brought in the proximity of receptors including the Glycoprotein 130 (IL6ST) and
the gamma interferon receptor 1 (IFNGR1), which receive the signal from IL-6 and IFN-γ, respectively.
However, the activation of STAT1 primarily stemmed from the phosphorylation of TYK2, a member
of JAK family that was previously described by other research groups [105], by the alpha interferon
receptor 1 (IFNAR1) residing in IFN-α stimulation. In spite of forming homodimers or heterodimers
and translocating to the nucleus where they regulated the transcription of target genes, STAT3 and
STAT1 played different even in part opposite roles in the process of pathogen infection. STAT3
constitutive activity is essential for cell survival and the extent of inflammation. Among the identified
STAT3 targets in the host/pathogen cross-talk signaling pathway in Figure 4, an anti-inflammatory and
anti-apoptosis factor referred to as PD-L1 and the major cyclin CCND1 involved in proliferation and
cell cycle progression as mentioned previously were included. Additionally, STAT3 could also inhibit
apoptosis by suppressing Fas transcription and p53 expression.

In contrast, STAT1 promoted apoptosis by inducing the expression of CXCL10 and strengthened
the antiviral ability through modulating the expression of GBP1. Amongst these two downstream
targets, CXCL10 is a ligand for the receptor CXCR3 involved in chemotaxis, induction of apoptosis,
and regulation of cell growth associated with a variety of human diseases including Hepatitis C [106]
and Endotheliitis [107]. GBP1 is a binding protein which has been shown to provide broad host
protection against different pathogen classes through expediting oxidative killing and delivering
antimicrobial peptides to autophagolysosomes [108]. Furthermore, STAT1 also negatively regulated
the cell cycle though inducing the expression of the CDK inhibitors CDKN1A, a target of transcription
factors FoxOs as stated previously.

Albeit STAT3 was directly activated by JAK1, it could also be indirectly triggered through the
cytoplasmic signaling cascade of SHC/ERK pathway composed of signaling proteins, i.e., SHC1,
GRB2, and SOS1, and the classical MAPK/ERK pathway comprised of signaling proteins, i.e., HRAS,
RAF1, MEK1, and ERK1. Except inducing the activation of STAT3, MAPK/ERK pathway also
contributed to the MSK1-mediated phosphorylation of c-Jun and ATF2, the inhibition of FoxO3
nuclear translocation, and most importantly, the regulation of eIF4E activity having been elucidated
chiefly via phosphorylation on serine 209 of eIF4E by other research groups [83,109], which ultimately
proliferated viral replication. More exactly, this was carried out by mitogen-activated kinase2 (MNK2),
the downstream kinase of ERK1.

3.3.6. TNFs-Induced Apoptotic Pathways

As a component of the cell response to viral infection, apoptosis mediated by the sequential
activation of caspases is indispensable for aborting the production and release of progeny virus.
While diverse signaling pathways inducing apoptosis have been found, caspase-mediated proteolysis
of downstream substrates is still a critical element of the execution pathway common to all forms
of apoptosis [110]. And among all the avenues conducive to apoptosis progression, the pathways
contributing to the modulation of caspase-3 (CASP3), a frequently activated death protease that
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catalyzes the specific cleavage of many integral cellular proteins, occupied a key position and a majority
of them began with the activation of FADD in Figure 4.

Induction of FADD, the upstream activating protein of caspase-10 (CASP10), was mediated by not
only the bifurcated TNFR1-TRADD signaling cascades but also the interaction with the FasL receptor
(FAS) and the TNF-related apoptosis-inducing ligand receptor (DR5). Upon stimulation, FADD in turn
recruited the initiator caspase caspase-10 to form the death-inducing signaling complex, which leads to
activation of a caspase cascade and eventual cell-death. Having been shown to activate the executioner
caspase-3 through direct processing, caspase-10 is described to be functional-independent to caspase-8
(CASP8) in initiating Fas- and tumor necrosis factor-related ligand-mediated apoptosis [111,112].
Based on the cleavage potential of caspase-3 associated with the dismantling of the cell and the
formation of apoptotic bodies, the identified critical targets including Beclin-1 (BECN1), DNA-PK
(PRKDC), and the DNA fragmentation factor subunit alpha (DFFA) were specifically cleaved by
caspase-3 with subsequent loss of its original capability. Among them, BECN1 is the component of the
phosphatidylinositol-3-kinase (PI3K) complex that induces the appearance of autophagosome [113];
PRKDC is the nuclear serine/threonine protein kinase that takes part in degraded DNA repair [114];
and DFFA is a subunit of DFF. Further, according to previous study, whilst DFFA is cleaved, the DNA
fragmentation factor subunit beta (DFFB) would dissociate from the cleaved fragments of DFFA and
trigger both DNA fragmentation and chromatin condensation during apoptosis [115].

Additionally, it is worthwhile to note that Akt, including AKT1 and AKT2, has been reported to interact
with X-linked inhibitor of apoptosis protein (XIAP) and protect it from ubiquitination and degradation [116].
Once phosphorylated by Akt, the XIAP would exploit its second baculovirus IAP repeat domain (BIR2)
to inhibit the apoptotic executioner caspase-3 [117]. We believe that this identified episode carries a
foreshadowing for the succeeding virus-induced malfunctions of programmed cell death.

3.3.7. Virus Proteins-Induced Pathogenic Mechanism

Proteins encoded by the viral genomes, especially HBx, a 154 amino acid gene product of the X gene,
have emerged as promiscuous transactivators activating the transcription of host genes by interacting
directly with nuclear transcription factors or by obliquely activating various signal transduction pathways
in the cytoplasm and have been proven to be potent epigenetic modifying factors in hepatocytes.

HBx regulated the expression of BCL3 to subvert apoptotic signaling pathways via both synergistically
cooperating with p300 (EP300) to enhance c-Jun transcriptional activity and activating NF-κB by either
directly interacting with NF-κB for augmenting its binding ability to its target DNA sequence or promoting
phosphorylation of IκB as shown in Figure 4. In addition, apoptosis inhibition could also be induced by
dysfunction of caspase-3 through enhancing the ability of Akt, an upstream kinase of caspase-3 as stated
earlier, by HBx. Once caspase-3 lost its function, in response to signal from damaged DNA, DNA-PKs,
the substrate of caspase-3, would act in concert with XRCC4 and a number of tightly coupled proteins
to repair DNA. Further, it was suggested that the intense activity or high expression of XRCC4 might be
beneficial to the promotion of HBV cccRNA formation and thereby facilitate the viral replication [118].
Since Hepatitis B Virus supremely requires components from the host cell to complete its replication cycles,
merely one developed avenue to hijack host signaling pathways can’t meet its demand. In addition to the
significant translation initiation factor eIF4E induced by HBx through Akt/mTOR pathway as just mentioned,
eIF4E was activated via the MAPK/ERK pathway as HBx could also trigger Ras and its downstream
signaling pathways. Hence, forming a node of convergence of the PI3K/Akt/mTOR and Ras/Raf/MAPK
signaling pathways, the regulation of eIF4E is clearly consequential for HBx to promote viral replication.
Additionally, overexpression of cyclin G1 (CCNG1) resulted from the loss of microRNA-122 (a liver-specific
miRNA) induced by HBx could also augment virus proliferation. It was reported that CCNG1 specifically
interacts with p53 and blocks its specific binding to HBV enhancer elements, which simultaneously abrogates
p53-mediated inhibition of HBV transcription and releases cell proliferation from G1/S arrest [119].

p53 acts as a sequence-specific DNA binding protein that activates the transcription of substantial
target genes associating with the regulation of cell cycle progression, apoptosis, DNA repair,
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and senescence. In Figure 4, HBx interacted with p53 both directly and indirectly to inhibit its
DNA consensus sequence binding and transcriptional activity, which has been reported to efficiently
block p53-mediated cellular functions [120,121]. Apart from that, HBx also inhibited p53 by conjugating
c-Jun and STAT3 as well as keeping MDM2, the principal cellular antagonist of p53 acting to limit the
p53 growth-suppressive function [122], from ubiquitin-directed self-degradation.

As for the targets of p53, apoptosis-associated proteins, such as the proapoptotic protein Bax, which could
permeabilize mitochondria and engage the apoptotic program giving rise to activation of caspase-3 [123,124],
the apoptosis antigen Fas triggering the Fas signaling pathway as mentioned earlier, and the DDIT4
negatively regulating cell growth, proliferation, and survival via inhibition of the activity of mTOR [125]
were identified in our core host/pathogen cross-talk signaling pathways in Figure 4. Further, having been
reported to participate in the generation of ROS and p53-dependent DNA damage [126], DDIT4 was
negative-regulated by the HBx-induced upregulation of microRNA-221 to promote aberrant proliferation.
Such significant inverse correlation between DDIT4 mRNA levels and miR-221 expression has been observed
in a mouse model of liver cancer as well [127]. Besides, the direct suppression of histone deacetylases 6
(HDAC6) by HBx-induced miR-221 would result in autophagosome maturation failure; nevertheless, HBx
yet also bound to Vps34 (PI3KC3) to enhance its activity, inducing the autophagic response crucial for the
formation of autophagosomes as well as the intensification of viral replication.

STAT1 and STAT3 are both critical elements in viral replication, despite acting as distinct roles from
each other. Functional characterization of miR-338-3p indicated that miR-338-3p inhibited cell proliferation
by inducing cell cycle arrest at the G1/S phase. The identified downregulation of miR-338-3p and tyrosine
phosphorylation of STAT3 triggered by HBx might cause CCND1 overexpression beneficial to virus cell
cycle progression [128]. In addition, forced low expression of miR-338 by HBx also directly led to the
increased level of autophagy. This process was mainly through the up-regulation of LC3 by the released
transcription factor ATF2, which has been identified as a direct target of miR-338 [129]. Furthermore, instead
of FoxO3, HBx appeared to assist FoxO1 in counteracting the reduction of its nuclear relocalization arising
from Akt phosphorylation by inducing STAT3 activation, which is conducive to the transcription of cccDNA
as previously described. In contrast, since interferons (IFNs) activated STATs via phosphorylation [130],
once recruited by HBx, histone acetyltransferase (HAT) CBP (CEBBP) might dynamically regulate STAT1
acetylation to counteract IFN-catalyzed STAT1 phosphorylation, nuclear translocation, DNA binding,
and target gene regulation. On the other hand, STAT1 nuclear translocation induced by IFN-αmight also
be deprived by HBV polymerase [131]. Previous studies demonstrated that miR-122 regulates type I IFN
expression through both down-regulating SOCS1 and SOCS3 to enhance interferon-mediated suppression
of HBV [132,133]. Nonetheless, it appears that merely the regulation of SOCS1 by miR-122 was identified
in Figure 4. Finally, as a target gene of FoxOs and STAT1, CDKN1A overexpression was mediated by
HBx-induced upregulation of miR-29a. Serving as a direct upstream of HDAC4, miR-29a could thereby
alleviate the deacetylation of CDKN1A through HDAC4 inhibition.

3.4. Drugs Discovery and Repositioning Based on Selected Biomarkers for HBV

Through reviewing the cellular dysfunctions triggered by the core host/pathogen cross-talk
interspecies signaling pathways under HBV infection shown in Figure 4, we selected the significant
biomarkers including AKT1, NFKBIA, EIF4EBP1, HDAC6, STAT1, STAT3, and TP53 as drug targets
shown in Table 4. However, there is still a long way to the clinical trials on account of the intrinsic
difficulties for drug design and development. To this end, we proposed a systematic drug discovery
and repositioning approach to uncover the multiple-molecule drug for therapeutic treatment based on
the deep learning and data mining technique as shown in Figure 5.

Table 4. The drug targets identified for HBV infection.

Disease Drug Targets

HBV infection AKT1, NFKBIA, EIF4EBP1, HDAC6, STAT1, STAT3, TP53
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Figure 5. The flowchart of the proposed systems drug discovery and repositioning procedure. According
to the potential biomarkers identified in Figure 4, we propose a systems drug discovery and repositioning
method for figuring out promising multiple-molecule drug to alleviate HBV infection. First, we collected
data in respect to drug-target interaction from various online databases. Then, we turned each drug
and target into descriptors and assembled them into a matrix of drug-target pairs. To keep our
model from poor performance, data preprocessing prior to training is indispensable. Accordingly,
we adopted data preprocessing approaches including down sampling, data partitioning, feature scaling,
and dimensionality reduction (For more details, readers can refer to Section 2.8.1 in Materials and Methods)
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based on the property of the data. After training the Deep learning-based drug-target interaction (DTI)
model shown in Figure 6 with the constructed training data, we evaluated the model performance
(as shown in Table 5 and Figure 7) and compared the model efficacy of DTI with that of other traditional
machine learning (ML)-based methods (as shown in Figure 8). Since there is only a neuron in the
output layer which delivers the probability of whether the relation (docking) between a drug and a
target exists, the DTI model enabled us to stress the importance on specific interactions (with output
score approaching 1) and to identify candidate drugs. Next, concerning the availability of the predicted
drugs (candidate drugs) via general criteria for drug design specifications such as regulation ability,
toxicity, and sensitivity obtained from databases, we further filtered promising drugs that modulate
multiple molecular targets and possess the efficacy with lower dosages. After all, low-dose drugs
are more attainable and cause less harm to patients. In this regard, a set of multi-target drugs with
appropriate toxicity for clinical investigations were selected as a multiple-molecule drug to overcome
HBV infection.

Table 5. Model performance (10-fold cross validation).

Validation
Loss

Validation
Accuracy (%)

Testing
Loss

Testing
Accuracy (%)

1 0.254831 92.09 0.236721 92.28
2 0.237422 91.89 0.2264 92.04
3 0.228304 92.35 0.226482 92.49
4 0.227555 92.62 0.228102 92.6
5 0.223151 92.55 0.218528 92.74
6 0.223817 93.04 0.227157 92.77
7 0.239133 92.39 0.225822 92.58
8 0.235536 92.93 0.226848 92.8
9 0.22345 93.1 0.218475 93.11
10 0.235327 92.21 0.219082 92.64

Average 0.232853 92.517 0.225362 92.605
Standard deviation 0.00983 0.409527 0.005559 0.294099
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Figure 7. Training and Validation Learning curves (10-fold cross validation). “-x-” lines in different
colors denote the training accuracy and loss, while “-o-” lines in different colors represent the validation
accuracy and loss in (a,b), respectively. The bold lines in red and blue indicate the model’s average loss
and accuracy of training and validation in (a,b), respectively. Moreover, since stopping the training
of the neural network early before it has overfitted the training dataset can reduce overfitting and
improve the generalization of the DTI model, Early Stopping approach is additionally employed to
automatically stop the learning process at the epoch of 70.
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Figure 8. The Receiver Operating Characteristic (ROC) curve of models based on different methods.
The accuracy of each method is calculated by the area under the corresponding ROC curve (AUC)
(Readers can refer to Section 2.8.3 for further illustration), where the DTI model could achieve an
accuracy of 0.99, which is higher than that of Random Forest (RF) (accuracy of 0.70), Nearest Neighbor
(accuracy of 0.67), and Support Vector Machine (SVM) (accuracy of 0.57).

3.4.1. Deep Learning-Based Drug-Target Interaction Prediction Model

To effectively predict whether the identified targets interact with some existing drugs, we provide
a deep learning-based DTI model as shown in Figure 6. It is a fully-connected neural network
containing an input layer and five layers with weights; four hidden layers (512, 256, 128, and 64 neurons
in each layer) and an output layer (1 neuron). The intermediate hidden layers are applied with
rectified linear unit (ReLU) activation function that thresholds negative signals to 0 and passes through
positive signal. This type of activation function allows faster learning in comparison with alternatives,
e.g., sigmoid or tanh unit [134]. In contrast, the output of the last layer is fed to a sigmoid function
which produces a likelihood probability (0,1) score of the corresponding predicted docking where
a higher value symbolizes a more reliable drug-target interaction. In addition, to further reducing
overfitting, we incorporated a dropout layer [135] with a probability of 0.5 following the output of
each hidden layer.
For avoiding a poor performance due to assessing the model with a data set unfairly sampled (outliers
or other anomalies are presented in one set), we introduced 10-fold cross validation measure to
authenticate the learning effectiveness as shown in Table 5 and the corresponding learning curves that
plot the learning performance of DTI model over experience and time are also presented in Figure 7.
Note that since the model has been diagnosed well-fit and continuous training will likely lead to an
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overfit, it automatically stops learning at the epoch of 70. Subsequently, via calculating the loss and
accuracy of each DTI model yields on the test set, we received an average accuracy of 92.6 (%) with the
standard deviation of 0.294 (%).
Moreover, with the increasement of experimental data, numerous machine learning approaches such as
Random Forest (RF) [136], Support Vector Machine (SVM) [137], Nearest Neighbor [138], etc. have been
applied to predict drug-target interactions. Therefore, to evaluate the model performance, we contrast
our DTI model with a few of them, which are RF, Nearest Neighbor, and SVM. By adopting the
visualization tool, Receiver Operating characteristic (ROC), we can clearly find that DTI outperforms
other traditional binary classifiers as presented in Figure 8.

3.4.2. Systems Discovery and Design of the Multiple-Molecule Drug for HBV Infection

On the basis of the pre-trained DTI model, we could evaluate the docking ability between the identified
biomarkers and the available drugs. The larger predicted result we obtain, the higher probability that
the specific drug-target pair will have interaction. Namely, the candidate drugs would be sifted out
owing to holding higher probability (with output score approaching 1) to interact with the identified
biomarkers. However, the exploration of promising drugs from a large quantity of the candidates
(predicted drugs) is still arduous. Accordingly, in order to narrow down the scope of the possible
options and improve the reliability of the ultimate selected drug combination, general criteria for drug
design specifications including regulation ability, toxicity, and sensitivity were applied to further filter
out unavailable or inappropriate medications.
Under the criteria of the pharmacological properties, the regulation ability value for each drug was
extracted from the LINCS L1000 level 5 dataset consisting of results from 978 genes of 75 cell lines
treated with 19,811 small molecular compounds. By referring to LINCS L1000, we can examine
whether a specific gene was up-regulated (positive values) or down-regulated (negative values) after
being treated with a small molecular compound. Screening through a positive-regulation of NFKBIA,
EIF4EBP1, HDAC6, STAT1, and TP53 and the negative-regulation of AKT1 and STAT3, the remaining
drugs with agreeable regulation ability for the treatment of HBV-infected patients are shown in Table 6.

Table 6. The candidate multi-target drugs for the identified biomarkers.

AKT1

Drug Regulation ability (L1000) Toxicity (LD50, mol/kg) Sensitivity (EC50, nM)

ribavirin −1.5283 1.9876 −1.18823
tacrolimus −0.5897 2.7541 −1.50335
sorafenib −0.3125 2.7885 −0.43586
tenofovir −0.6152 2.955 −0.63588

meloxicam −0.2726 3.4619 −0.68734

NFKBIA

Drug Regulation ability (L1000) Toxicity (LD50, mol/kg) Sensitivity (EC50, nM)

chlortalidone 0.4056 1.8623 0.05198
busulfan 2.501 2.3207 −0.44631
rifaximin 0.681 2.6259 0.03563
sorafenib 3.5635 2.7885 −0.43586

meloxicam 3.2603 3.4619 −0.68734

EIF4EBP1

Drug Regulation ability (L1000) Toxicity (LD50, mol/kg) Sensitivity (EC50, nM)

chlortalidone 0.4153 1.8623 0.05198
busulfan 0.7491 2.3207 −0.44631
rifaximin 1.7372 2.6259 0.03563
sorafenib 0.4733 2.7885 −0.43586

dactinomycin 0.2923 4.3767 0.00307
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Table 6. Cont.

HDAC6

Drug Regulation ability (L1000) Toxicity (LD50, mol/kg) Sensitivity (EC50, nM)

argatroban 0.5717 1.5976 −0.01405
chlortalidone 0.6495 1.8623 0.05198

entecavir 0.5388 2.3879 0.03615
nutlin-3 0.1749 2.529 −0.6695

meloxicam 0.1047 3.4619 −0.68734

STAT1

Drug Regulation ability (L1000) Toxicity (LD50, mol/kg) Sensitivity (EC50, nM)

chlortalidone 0.234 1.8623 0.05198
ribavirin 0.982 1.9876 −1.18823

zafirlukast 0.2615 2.5723 −0.24097
sorafenib 0.5799 2.7885 −0.43586

hydroflumethiazide 1.5238 3.1299 0.3949

STAT3

Drug Regulation ability (L1000) Toxicity (LD50, mol/kg) Sensitivity (EC50, nM)

argatroban −1.2902 1.5976 −0.01405
ribavirin −0.8934 1.9876 −1.18823

lamivudine −0.3132 2.1348 −1.33248
zafirlukast −0.5053 2.5723 −0.24097
tenofovir −1.5088 2.955 −0.63588

hydroflumethiazide −0.7348 3.1299 0.3949
meloxicam −1.6727 3.4619 −0.68734

TP53

Drug Regulation ability (L1000) Toxicity (LD50, mol/kg) Sensitivity (EC50, nM)

acetylcysteine 1.0705 1.294 −1.2170
busulfan 2.2886 2.3207 −0.44631
nutlin-3 1.6295 2.529 −0.6695

sorafenib 0.5683 2.7885 −0.43586
calcitriol 0.4321 5.1352 0.28577

Subsequently, to further narrow down the possibilities for drug combinations, the drug toxicity
specification (LD50) recorded in DrugBank as well as the drug sensitivity specification (EC50) obtained
from the PRISM dataset, which is a dataset comprising sensitivity values of 4518 drugs tested across
578 human cell lines, were also adopted. Being the numeric index of lethality, median lethal dose
(LD50) plays a pivotal role in drug safety evaluation [139]. The drug with lower LD50 possesses higher
toxicity, and thus it is more detrimental. On the other hand, half maximal effective concentration
(EC50) is used as a measurement of concentration, which is often adopted to evaluate the suitability
and the efficacy of drugs, where lower EC50 indicates the stronger inducibility, i.e., higher sensitivity.
Based on these concepts, the drug combination comprising Sorafenib, Nutlin-3, and Tenofovir as
shown in Table 7 was then designed as the multiple-molecule drug to rejuvenate the dysfunctions in
the pathogenic mechanism under HBV infection with minor collateral tissue damage.
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Table 7. Potential multiple-molecule drug and the corresponding target genes for HBV infection therapy.

Drugs
Targets AKT1 NFKBIA EIF4EBP1 HDAC6 STAT1 STAT3 TP53

Sorafenib O O O O O
Nutlin-3 O O

Tenofovir O O

Chemical structures of multi-target drugs

Sorafenib Nutlin-3 Tenofovir
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Among them, Sorafenib is a multikinase inhibitor drug having been approved for several tumor
types, including Hepatocellular Carcinoma (HCC) [140]. Although prominent effects of Sorafenib for
apoptosis induction were recognized, several limitations have been indicated by numerous medical
studies upon applying Sorafenib to various cancers as a single agent. Therefore, the use of Sorafenib in
combination with other targeted agents appears to be the main strategy for combatting drug resistance
and has been widely explored with promising results [141]. Falling under the category of small
molecule inhibitor, Nutlin-3 is conducive to the restoration of p53 pro-apoptotic ability, leading to the
activation of cell cycle arrest and apoptosis pathways [142]. Though it is a novel antitumor compound,
which hasn’t been clinically approved, the synergistic effect of Nutlin-3 combined with other agents
contributes to diminishing of the dose required in monotherapy and decreasing the occurrence of
adverse drug events [143,144]. Being a potent nucleotide analogue reverse-transcriptase inhibitor,
Tenofovir is highly active against human immunodeficiency virus (HIV). In spite of its clinical use
associated with the risk of kidney injury [145], it has been shown highly effective to patients who
have never undergone an antiretroviral therapy [146]. Owing to its low toxicity, trifle side effects,
and subtle drug resistance compared to other antivirals, Tenofovir is thereby frequently used as a
member of combined drugs against HBV to ensure stronger antiviral activity and a more favorable
safety profile [147,148]. It is worth noting that while therapy with Tenofovir is commonly used to
treat Hepatitis B, life-long therapy is needed, which often increases the risk of relapse. In this respect,
the combination of other viable drugs with Tenofovir may have a chance to improve the therapeutic
effect and shorten the course of therapy.
Taken together, by administering the proposed multiple-molecule drug, an up-regulation of NFKBIA,
EIF4EBP1, HDAC6, STAT1, and TP53 accompanied by the down-regulation of AKT1 and STAT3 can
plausibly be attained, yielding encouraging results for the treatment of HBV-infected patients.

4. Discussion

Traditional drugs commonly used for treatment in patients afflicted with HBV are interferon and
nucleoside analogues. However, the low therapeutic response of patients to interferon and the inevitable
development of drug resistance to nucleoside analogues render the clinical treatment challenging [149].
In addition, serious toxic accumulation of the nucleoside analogues during long-term therapy for HBV
infection is nonnegligible as well. Therefore, great efforts have been placed into seeking highly specific
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ligands affecting single target to alleviate HBV replication and to treat HBV-related complications. Yet,
in view of the prohibitive development costs and timeline of a newly designed drug as well as the
frequent failure of monotherapy due to drug resistance, growing interest has centered on discovering
effective combinations of drugs for HBV treatment.
In this study, we develop a medicine discovery and repositioning procedure in terms of system
identification approaches via two-side RNA-seq data and deep learning-based framework considering
drug design specifications to find a possible drug combination for the treatment of HBV infection.
Through investigation of core HPI-GEN annotated with KEGG pathways, the core signaling pathways
responsible for the abnormally regulated cellular functions were extracted and unified in Figure 4.
However, distinct cooperation between these pathways sparks diversified implication. Consequently,
further discussion of the integrated effect is conducive to the selection of potential biomarkers in
relation to the remedy of HBV infection.

4.1. Apoptosis in HBV Infection

As a fundamental and highly regulated biological process, apoptosis is a form of programmed cell
death that participates in cell resistance to viral infection. Although mounting evidence shows that HBx
is uniquely endowed with the capability to regulate apoptosis, its dual role as an apoptotic mediator
raises the difficulty to elucidate the pathological mechanism [150].
Caspase-3 is the typical hallmark of apoptosis [110]. Numerous studies have shown that HBx abrogates
the activity of caspase-3 [151–153], resulting in resistance to assorted apoptotic stimuli. In Figure 4,
HBx-mediated inhibition activity of caspase-3 was chiefly through both activating XIAP, the inhibitor
of caspase-3, and directly or obliquely regulating transcription factors such as NF-κB and p53 to
affect the expression of their downstream anti-apoptotic target, e.g., BCL3 and Bax. Further, even if
previous researches did not specifically indicate the paramount downstream anti-apoptotic genes of
NF-κB [154,155], BCL3, which hampers DNA damage-induced apoptosis and serves as a transcriptional
coregulator of NF-κB [78,79], counted for NF-κB -mediated anti-apoptosis a lot in the pathogenic
mechanism. Furthermore, inhibition of caspase-3 not only abrogated apoptotic killing triggered by the
pathways in response to TNF-α, FasL, and TRAIL stimulation, but also contributed to the activation
of autophagy, leading towards alleviated apoptosis coming from caspase-3 loss of its function to
cleave Beclin-1.
Asides from that, Fas, indispensable for the FasL-induced pathway that gives rise to the activation
of caspase-3, was downregulated during HBV infection. Negative-expression of Fas might impede
the sustainable anti-viral response of death ligand stimulus-specific apoptotic pathway. In contrast,
as a target gene relevant to execution and completion of apoptosis, the overexpressed CDKN1A
triggered by HBx-induced HDAC4 inhibition was concordant with the earlier research that HBx can
relieve a block on CDKN1A expression and prolong G1→S transition in human hepatoma cells [156,157].
Even though p21, the protein encoded by CDKN1A, is treated as a cyclin-dependent kinase inhibitor
capable of inhibiting all cyclin/CDK complexes, it often promotes the assembly of type-D cyclins with
CDK4 and CDK6 and arrests cell cycle progression in the G1 phase [156,158], which not only protects
cells against apoptosis but also enhances the chance of tumorigenesis.

4.2. Autophagy in HBV Infection

Autophagy is a catabolic mechanism known to engulf long-lived proteins and damaged organelles via
a lysosomal degradative pathway. Previous studies have suggested that HBV can hijack components in
the autophagic regulatory pathways to promote its survival through augmentation of autophagosomes
formation and inhibition of autolysosome maturation [159,160], which indicates the possibility of
targeting the autophagic pathway for the treatment of Hepatitis B.
HBx-catalyzed autophagic response, which is crucial for the formation of autophagosomes as well
as intensification of viral replication, resided mainly in the increased activity of the Beclin-1/Vps34
complex accompanied by the unchanged mTOR activity and positive regulation of LC3 during HBV
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infection, which has also been reported in several research [159,160]. The phagophores undergo
nucleation and elongation with Beclin-1/Vps34 complex and LC3 lipidation to form double-membraned
autophagosomes [161], and the autophagic membranes generated during infection are used for
viral envelopment [162]. However, rather than Beclin-1, only PI3KC3 was activated by the
direct interconnection with HBx, which is in agreement with the study that the need for HBx to
also induce the expression of Beclin-1 is redundant [163]. Moreover, although emerging study
revealed that HBx efficiently impedes autophagic degradation by disturbing lysosomal acidification
relevant to its degradative capacity without influencing on the fusion of autophagosomes and
lysosomes [160], HBx-induced reduction of HDAC6 regulation ability might lead to autophagosome
maturation failure [103]. Despite the necessity of further validation through biological experiments,
this discovery provides possible mechanistic insight into the overall observation of HBV infection.
Firstly, the intrinsic ability of HDAC6 to deacetylate NF-κB, having been detected to hamper the
invasion of cancer [164,165], was destructed by HBx through transrepression, which might gradually
create a potent microenvironment favorable to the malignant transformation of cells. Meanwhile,
the negative-regulation of HDAC6 in human HCCs and consequential loss of its tumor suppression
ability supported by previous research [166] apparently advocate the hypothesis.

4.3. Inflammation and Innate Immune Response in HBV Infection

Inflammation and innate immune response represent a highly coordinated process aimed at fighting
infection or tissue injury. When cells are subject to foreign invasion, the inflammatory response can
ensure successful resolution of the condition and the restoration of tissue homeostasis. However,
inappropriately controlled natural defense mechanisms will eventually lead to the progression of
chronic diseases [167]. In general, innate immunity counts for a great deal in governing infection right
after contact with the pathogen to limit the spread of the virus [168]. However, the exploitation of
immune and inflammatory signaling pathways enables viruses to subvert antiviral immunity and
replicate in the hostile environment [169].
Of all the proteins involved in the activation and execution of inflammation response, NF-κB
stands out as being crucial for this process in diverse metazoan organisms. During HBV infection,
NF-κB-dependent transcription accelerated by HBx not only triggered the anti-apoptosis mechanism
in favor of viral persistence as mentioned earlier but also augmented the inflammatory response
leading to hepatitis and cell transformation in accordance with the indication of previous study [170].
Concurrently, emerging research has also uncovered that the dysregulated continual synthesis
of IL-6, an identified target of NF-κB, plays a pathological effect on chronic inflammation and
autoimmunity [167], which obliquely emphasizes the magnitude of the correlation between abnormally
regulated NF-κB and excessive inflammation. Besides, regarding viral immunoregulation, even though
it is contradictory that HBx on one hand sensitized cells to inflammatory stimuli, but on the other
positive-regulated PD-L1 through transactivation of c-Jun and activation of STAT3, the findings are
consistent with the idea that production of PD-L1 transcripts pertained positively to the intensity of
liver inflammation to prohibit and thereby evade the host immune response [171,172].
Moreover, unlike other proteins in their family which typically share common characteristics and
functions, STAT1 and STAT3 poles apart and the mutual functional antagonism of them in T-cell-induced
inflammation has also been elucidated [173]. Despite both serving as the target of miR-122, SOCS1
was regulated by miR-122 and thus transactivated by HBx in the identified mechanism during HBV
infection, while SOCS3 did not. Therefore, we suggest that the abrogation of STATs activity by HBx
to attenuate the interferon-mediated suppression of infection depends on STAT1 instead of STAT3.
Meanwhile, blockades of IL-6- and IFNs-stimulated immune signaling pathways by viral proteins
were through STAT1 rather than STAT3, which also supports the idea from another perspective. In
addition, activation of STAT3 mediated by HBx also bolstered its unshakeable status on maintaining
viral persistence. Likewise, inactivation of STAT1 mediated by HBV proteins counteracted its effects
on the provocation of the innate antiviral system. Such phenomena have also been revealed in the
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evidence of numerous studies [174]. It is worth noting that the reported capacity of HBx to block STAT1
nuclear import by means of affecting its methylation status was partially through the communication
with CBP in the identified host/pathogen cross-talk. In such a way, that STAT1 lost its ability to block
cell cycle progression and hinder hepatoma cell transformation in a course of prolonged inflammatory
injury. This led to continuous destruction and regeneration of hepatocytes, increasing the chances of
genetic alterations.

4.4. Discovery of Potential Drug Combination

Based on the significant biomarkers including AKT1, NFKBIA, EIF4EBP1, HDAC6, STAT1, STAT3,
and TP53, the combination of agreeable multi-target drugs, i.e., Sorafenib, Nutlin-3, and Tenofovir,
was eventually recommended as a potential treatment for later clinical researches of the multi-drug
therapy treating HBV-infected patients. Meanwhile, to gain deeper insight into the discovery of
promising drugs, in silico profiling using deep learning-based DTI model was performed to predict
interactions (dockings) between available drugs and the identified biomarkers. Additionally, deciding
whether a drug is ready for clinical trials greatly pertains to preclinical studies that yield preliminary
efficacy, toxicity, safety, etc., information. Therefore, to further narrow down the scope and improve the
reliability of the predicted drugs, the general pharmacological specifications for drug design including
regulation ability, toxicity, and sensitivity were additionally adopted to evaluate the efficacy.
However, the entire process of moving a drug to clinical trials is actually a long way to go. Better
preclinical preparation and assessment can be beneficial to the approval of a new medicine or drug
combination. Considering the common reasons for withdrawal of an approved drug, e.g., hepatotoxicity
and adverse events as well as the safety and tolerability assessment of a drug such as HLA
(human leukocyte antigen) test, is conducive to better finding an agreeable option for drug combination.
Repositioning drugs to treat with both common and rare disease is gradually becoming an attractive
proposition. Taking advantage of drug repositioning avenues provides a faster discovery and translation
of clinically relevant drug combinations. Furthermore, aided with the expediting development
of computational technology and low-cost sequencing approaches, mounting publicly accessible
data will certainly open up a broad spectrum of drug discovery and repositioning. Consequently,
by systematically integrating more extensive data and information for both drugs and targets, a more
appropriate drug combination out of the scope of original medical indication can be unveiled to bring
new hope to HBV therapeutics.

5. Conclusions

The advent of the genomic eras has presented researchers with a myriad of high throughput biological
data, which spark the interests in diverse biology applications. In this study, to investigate the
pathogenetic mechanism under HBV infection, we constructed candidate host/pathogen interspecies
genetic and epigenetic interaction network (HPI-GEN) by big data mining. Then, with the help of
the two-side RNA-seq data, system identification strategies were applied to trim the false positives
from the candidate HPI-GEN to obtain the real HPI-GEN. Thereafter, based on the extraction of PNP
and the annotation of KEGG pathways, interspecies cross-talk signaling pathways are investigated
from the real HPI-GEN for pathogenic mechanism under HBV infection to identify significant
biomarkers. Moreover, in order to discover promising drugs for the identified drug targets, we trained
a deep learning-based DTI model to predict possible drug-target interactions. Eventually, with the
consideration of general drug design specifications including regulation ability, toxicity, and sensitivity,
a combination of multi-target drugs as a potential multiple-molecule drug was selected to abate HBV
infection. It is worth pointing out that although only pathogenesis for HBV infection was investigated
in this work, our unique workflow can also be utilized on a wide variety of disease in view of systems
biology, holding utility to aid in diversified drug discovery and repurposing process. Meanwhile,
along with the development of NGS (Next-Generation Sequencing) technology, additionally integrating
analysis from available genomics data into our pipeline can reinforce better downstream analysis and
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perform more exact biological interpretation. As more extensive genomic and pharmacological data
being considered, the proposed pipeline could help reveal a more exhaustive host/pathogen offensive
and defensive mechanism under HBV infection and facilitate the development of optimal therapy
ensuring greater therapeutic outcome.

Author Contributions: Conceptualization, S.C. and B.-S.C.; Methodology, S.C. and B.-S.C.; Software, S.C.
and B.-S.C.; Validation S.C. and B.-S.C.; Formal Analysis, S.C. and B.-S.C.; Investigation, S.C. and B.-S.C.;
Data Curation, S.C.; Writing-original Draft Preparation, S.C.; Writing-Review and Editing, S.C., L.H.-C.W.,
and B.-S.C.; Visualization, S.C.; Supervision, B.-S.C.; Funding Acquisition, B.-S.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Ministry of Science and Technology grant number
MOST 107-2221-E-007-112-MY3.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In order to avoid overfitting in the parameter estimation process, the cubic spline interpolation
method was employed to interpolate 4 time points into 1440 points. Even if the cubic interpolation
couldn’t increase the information for the parameter estimation, it could indeed prevent the parameters
estimation in Equations (13) and (14) and (27)–(30) from overfitting during the identification process.
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