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Background: Epidemics of infectious diseases have a great negative impact

on people’s daily life. How it changes over time and what kind of laws it obeys

are important questions that researchers are always interested in. Among the

characteristics of infectious diseases, the phenomenon of recrudescence is

undoubtedly of great concern. Understanding themechanisms of the outbreak

cycle of infectious diseases could be conducive for public health policies to

the government.

Method: In this study, we collected time-series data for nine class C notifiable

infectious diseases from 2009 to 2021 using public datasets from the National

Health Commission of China. Oscillatory power of each infectious disease was

captured using the method of the power spectrum analysis.

Results: We found that all the nine class C diseases have strong oscillations,

which could be divided into three categories according to their oscillatory

frequencies each year. Then, we calculated the oscillation power and the

average number of infected cases of all nine diseases in the first 6 years

(2009–2015) and the next 6 years (2015–2021) since the update of the

surveillance system. The change of oscillation power is positively correlated

to the change in the number of infected cases. Moreover, the diseases that

break out in summer are more selective than those in winter.
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Conclusion: Our results enable us to better understand the oscillation

characteristics of class C infectious diseases and provide guidance and

suggestions for the government’s prevention and control policies.
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Introduction

The epidemic of infectious diseases has a significant impact

on all aspects of people’s lives, such as people’s daily activities

(1, 2), education (3–6), diet (1, 7), mental health (8–13), and

even countries’ economies and development (14, 15). Three

types of infectious diseases (class A, B, and C) were defined

by the Chinese government using the country’s infectious

disease surveillance system after the epidemic of Severe Acute

Respiratory Syndrome (SARS) in 2003 (16). The large-scale

epidemic in China is mainly caused by class B and class C

infectious diseases, since the rate of infection of class A notifiable

diseases such as the plague and cholera has been controlled

at a very low level in China. Besides, the mechanisms of the

class B disease epidemic have been well systematically studied

in both temporal and (17, 18) and spatial scales (19). However,

although it is more likely for ordinary people to be infected

with class C infectious diseases (such as influenza), very few

studies tried to systematically understand the class C infectious

diseases together in the mainland of China (20), especially from

the oscillatory perspective.

Recrudescence of infectious disease causes the oscillatory

phenomenon of epidemics (21). This periodic recurrence has

been a common feature (22–24) of infectious diseases around the

world (25–34). Currently, the oscillatory properties of infectious

diseases are thought to be driven by two main factors: natural

and human factors. The natural factors include the seasonal

temperature (21, 35), rainfall (21, 36) and natural disasters

(37), and the human factors include the school terms (38, 39),

economic migration (40, 41), vaccination coverage (42), habitat

disruption (43), or some other government epidemic prevention

policies (21, 44). Understanding the oscillatory properties of the

infectious disease could provide essential information for the

forecast and avoid economic loss and harm to the people’s health

(8, 45–47).

Therefore, in the present study, we aimed to fill the gap

of insufficient studies in the oscillatory property of class C

diseases. To be more specific, we attempted to categorize

the diseases based on their oscillatory frequencies; then, we

investigated the relationship between the oscillation strength

and the number of infected cases; based on this, we narrowed

the time scale to 1 year and inspected the seasonal selectivity.We

collected time-series data for the monthly reported confirmed

cases of nine class C notifiable infectious diseases from 2009

to 2021 and calculated their power spectrums by multi-taper

methods. We also calculated the oscillation power and the

average number of infected cases of all nine diseases in the

first 6 years (2009–2015) and the next 6 years (2015–2021)

and their correlation. In addition, we conducted the correlation

analysis between the preferred month and the selectivity of the

infectious diseases.

Materials and methods

Data and sources

Available time-series data for the monthly reported and

confirmed cases of nine class C notifiable infectious diseases

in China’s mainland, from June 2009 to September 2021, was

obtained from the National Health Commission of China

(http://www.nhc.gov.cn/). The monthly dataset is open to the

public, reported by the Chinese Center for Disease Control

and Prevention (CDC) (See Supplementary materials). These

diseases are Flu (Influenza), Mumps, Rubella (German measles),

Acute hemorrhagic conjunctivitis (Apollo disease), Leprosy

(Hansen’s disease), Scrub Typhus (Bush typhus), Leishmaniasis

(Black fever, or Kala-Azar), Echinococcosis (Hydatid disease),

and Hand, foot, and mouth disease (Table 1). The data sampling

rate is number of cases per month (12 time points per year)

by the monthly report of the National Health Commission

of China.

Spectrum analysis

The spectrum analysis was used to better quantify the

oscillatory property of each infectious disease. Similar methods

have been used in classic and modern studies in the field of

infectious diseases (23, 25, 27, 48, 49). Spectrum analysis is a

technique for decomposing complex signals into simpler signals

based on the Fourier transform. Most biological signals could

be expressed as the summation of the various simple signals

of different frequencies and produce information of a signal at

different frequencies (such as amplitude, power, intensity, or

phase, etc.) (50–53).
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TABLE 1 Summary of the main finding in nine class C infectious diseases in mainland China.

Name of infectious

diseases

Type Preferred

month

Selectivity Changes in the number of

infected cases from first 6

years to second 6 years

Changes in the power of

infected cases from first 6

years to second 6 years (log)

Flu (Influenza) 1 Jan 0.79 0.22 0.03

Mumps 2 Jun 0.65 1.58 4.07

Rubella (German measles) 1 May 0.88 3.92 6.00

Acute hemorrhagic conjunctivitis

(Apollo disease)

1 Sept 0.62 0.98 2.77

Leprosy (Hansen’s disease) 1 Mar 0.50 1.66 3.81

Scrub Typhus (Bush typhus) 1 Oct 0.71 1.90 2.39

Leishmaniasis (Black fever, or

Kala-Azar)

1 Dec 0.35 1.18 1.11

Echinococcosis (Hydatid disease) 3 Dec 0.47 0.81 0.82

Hand, foot and mouth disease 1 Jun 0.92 1.06 1.39

FIGURE 1

Representative class C infectious disease with clear oscillation pattern. First row shows the time series of monthly infected cases from 2009 to

2021 for nine class C infectious diseases. Second row shows the average number of infected cases every month in a year. Third row illustrates

the power spectrum calculated from the data of first row (data in the figure could be found in Supplementary materials).

The power spectral density (PSD) for each infectious disease

during these 12 years was computed using the multi-taper

method using the Chronux toolbox (54) [an open-source, data

analysis toolbox (Chronux) available at http://chronux.org]. The

multi-taper method attempts to reduce the variance of spectral

estimates by pre-multiplying the data with several orthogonal

tapers, yield a more reliable ensemble estimate of noisy data.

Power spectra of the time-series data of infected cases of each

disease was calculated from 2009 to 2021 (Figure 1 graphs on

the bottom), which has been used in the earlier work of our lab

(2, 17).

Classification of di�erent clusters of
diseases

We used two oscillatory features to classify the different

clusters of infectious diseases: the power ratio (Ratio 1) between

once a year and twice a year, and the power ratio (Ratio 2)

between once a year and three times a year. The definition of

power ratio is the ratio between the powers corresponding to

two different frequencies (times per year).We then set two linear

thresholds (Ratio 1 = 1; Ratio 2 = 1) that precisely separated

them into three clusters.
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Tuning curves for monthly infected cases

The tuning curve was computed by taking the monthly

average number of infected cases- during all 12 years, which is

under the assumption that all infectious diseases included in this

study have a similar trend each year.

Preferred month and selectivity of the
epidemic outbreak

Two indices were defined to better capture the property of

oscillations for infectious diseases in a year: preferred month

and infection selectivity. The preferred month is defined as the

month in a year that has the most cases of infections. The

infection selectivity index is defined as 1 minus the ratio of the

minimum and the maximum number of infected cases in a year.

If the selectivity index is closer to 1, then the shape of the tuning

curve is sharper, and vice versa.

selectivityindex = 1−
min(mean infected cases in a year)

max(mean infected cases in a year)

Correlation analysis

We used the Pearson correlation to measure the relationship

between the change in infected cases and the change in

oscillation power of the infectious diseases on all nine infectious

diseases. The Pearson correlationwas also used in the correlation

analysis between the selectivity index and the preferred month.

Results

The oscillatory patterns in infectious diseases’ time series in

mainland China is clear over the past 12 years (Figure 1, graphs

on the top). According to the 12-year historical data of class C

infectious diseases, six out of nine diseases showed a diseasing

trend of the infectious number of people, and three of them still

increased (Table 1). From the view of the change of the infection

oscillation, seven out of nine diseases showed a diseasing trend

(Table 1). The sampling rate of the data for each disease is 12

data points per year, with one data point representing 1 month.

Three clusters of the oscillatory patterns
of the class C infectious diseases

The time-series data of nine class C infectious diseases were

shown in the first row of Figure 1. It is obvious that the epidemic

of all nine diseases shows a strong oscillatory phenomenon. To

better interpret the periodic properties throughout a year, the

average of all 12 years’ data was calculated (number of infected

cases are represented in the second row of Figure 2). From

the infection tuning curve of each disease, they have different

preferred months to outbreak. Different infectious diseases also

have different numbers of outbreak peaks during 1 year, which

suggests the frequency of the outbreak of an epidemic disease

in a year. We then calculated the power spectrum of the nine

diseases using 12 years’ time series data. Each infectious disease

in this study has a tuning curve, and the oscillatory pattern

within a year is clear. As predicted by the tuning curve (second

row of Figure 1), multiple frequency peaks were shown in

the spectrum.

Next, we quantified the oscillatory properties of different

diseases, and found they could be classified as three distinct

clusters, which are illustrated in Figure 2. The horizontal axis

of this panel denotes the power ratio between twice a year

and once a year, and the vertical axis denotes the power ratio

between three times a year and once a year. The larger the

value of the horizontal axis is, the more probable the oscillation

is twice a year. The larger the value of the vertical axis is,

the more probable the oscillation is three times a year. Then

we set two thresholds that precisely separated them into three

clusters (dashed line in Figure 2). In total, seven out of nine

diseases belong to Type I (Influenza, Rubella, AHC, Leprosy,

Scrub Typhus, Kala-Azar, and HFMD), one out of nine diseases

belong to Type II (Mumps), the remaining one disease (Hydatid)

belongs to Type III (Figure 2).

Positive correlation between the change
of infected cases and change of
oscillatory power

Next, we split the 12-year dataset into two parts: the first

6 years (2009–2015) and the last 6 years (2015–2021). In these

12 years, the number of infected cases of six (Mumps, Rubella,

Leprosy, Scrub Typhus, Leishmaniasis, HFMD) out of nine

infectious diseases decreased over time (Figure 3A for a typical

example), and others (Flu, AHC, and Echinococcosis) remained

unchanged or increased (Figure 3A for a typical example of the

unchanged case). This information is summarized in the 5th

column of Table 1.

We then explored the relationship between the change in

the number of infected cases and the corresponding strength

of oscillatory power. To this end, we calculated the power

spectrums in two time periods (2009–2015 and 2015–2021) for

all nine infectious diseases. The change in the number of infected

cases is defined as the ratio of the mean infected cases each

month between 2009 and 2015 (Figures 3A,B, blue curve) and

2015–2021 (Figures 3A,B, red curve), and the change in the

oscillatory power is defined as the ratio of the average power

spectrum between 2009 and 2015 (Figures 3C,D blue curve)

and 2015–2021 (Figures 3C,D red curve). We then performed

a correlation analysis between the change in infected cases
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FIGURE 2

Three oscillatory types of class C infectious diseases. The figure illustrates three clusters (denoted by red, black, and blue dots). The X-axis

denotes the power ratio of occurrence between twice a year and once a year. The Y-axis denotes the power ratio of occurrence between three

times a year and once a year. The dashed line is the criteria that separates them. The dots in the lower left depict diseases classified as Type I.

The dots in the lower right corner depict diseases classified as Type II. The dots in the upper left corner are classified as Type III. The preferred

month of each disease was marked by the arrow.

and the change in oscillation power of the infectious diseases

on all nine class C infectious diseases. We found that there

is a strong positive correlation (Figure 3E) (r = 0.88, p =

0.002, Pearson correlation). This illustrates that the increase

in oscillation strength often accompanies the increase in the

number of infected cases.

Discussion

In this study, we systematically explored the oscillatory

properties of the nine class C infectious disease in the mainland

of China. All the nine class C diseases were found to have

strong oscillations, which could be divided into three categories

according to their oscillatory frequencies each year. We also

found a strong positive correlation between the change of

oscillation power and the change in the number of infected cases.

Comparison with previous works

To our knowledge, this is the first work to directly investigate

the oscillatory properties of the nine class C infectious diseases

together in mainland China. Previous studies mostly targeted

one specific disease [Influenza (55), Mumps (56–60), Rubella

(61–63), AHC (64–68), Leprosy (69–72), Typhus (73–76),

Leishmaniasis (77, 78), Hydatid disease (79–81), HFMD (82–

86)], more in a statistical description sense on the numbers,

ratios, or dissecting multiple components to fit the data.

These studies seldom investigated these diseases directly from

the oscillatory view, but we focused more on the ubiquitous

oscillatory property of these class C diseases together to find

some common laws as a whole. The prior work on the oscillatory

property of the class B diseases (17) has shown that the

oscillatory phenomenon is widely found. Similar to the results

in this work, we also found that the oscillation is universal in

class C infectious diseases.

Multiple types of the class C infectious
diseases

Another issue is the classification of the class C infectious

diseases. Generally, people distinguish them by the transmission

mode (through respiratory tract, digestive tract, blood sucking

insects, and contact transmission). It is noticeable that we
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FIGURE 3

Relationship between the infection and its oscillatory strength. Plot (A,B) are two examples of disease’s time series monthly infected cases from

2009 to 2021. The blue curve shows the time series of the first 6 years (2009–2015) and the red curve shows the time series of the last 6 years

(2015–2021). Plot (C,D) show the power spectrum calculated in the first 6 years (blue curve) and the last 6 years (red curve) corresponding to

the time-series data of (A,B). Plot (E) shows the scatter plot of change in mean infected cases and change in oscillatory power.

proposed a new method to make the clusters through the

oscillatory frequency of each infectious disease. Clearly, we

found that three clusters were dependent on their outbreak

frequencies in a year, which is also consistent with the results

in the class B diseases (17). This new classification method

could help us better understand the epidemical features on their

periodic properties. We also found that most of the diseases

(including both class B and C diseases) belong to the first type,

which means it outbreak once a year, and the proportion of Type

II and III diseases is relatively smaller. The specific mechanism

to illustrate their significant difference should be a question that

to be answered in the future work.

Relationship between selectivity and the
time of outbreak preference of the
infectious diseases

The tuning curves of the infectious diseases were always

shown up in previous research (20, 28, 30), but the relationship

between the infection selectivity and the preferred outbreak

month of the infectious diseases were seldom analyzed. The

higher selectivity of the disease means that it only outbreak in

some specific month but rarely outbreak at other times.

Current trend of class C infectious
diseases in China

Majority of the class C diseases showed a diseasing trend

of the infectious number of people and change of the infection

oscillation (Table 1). Combining the results of the change of

infection and its oscillation, we could draw conclusions that

the infection number is always accompanied by its oscillatory

strength for the class C diseases (class B diseases also obeyed

with this law), which is consistent with the hybrid model (17).

Besides, the oscillatory properties (frequency, preferred month)

of a disease remains similar, hence the cluster would be stable

using the current method.

Our results precisely describe the oscillatory properties of

class C infectious diseases in China, which might help us

better understand their fluctuation characteristics, and provide

guidance and suggestions for government prevention and

control policies. From the oscillatory view to recheck the

information related to the infectious diseases helps us better

understand the time and extent of their outbreak. In the future,

the number of people infected with all infectious diseases might

not decrease to zero, but the ultimate goal of prevention is

to minimize as much as possible the losses caused by the

infectious diseases.
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