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This dataset contains the regression parameters derived by ana-
lyzing segmented brain MRI images (gray matter and white
matter) from a large population of healthy subjects, using a mul-
tivariate adaptive regression splines approach. A total of 1919 MRI
datasets ranging in age from 1–75 years from four publicly avail-
able datasets (NIH, C-MIND, fCONN, and IXI) were segmented
using the CAT12 segmentation framework, writing out gray matter
and white matter images normalized using an affine-only spatial
normalization approach. These images were then subjected to a
six-step DARTEL procedure, employing an iterative non-linear
registration approach and yielding increasingly crisp intermediate
images. The resulting six datasets per tissue class were then ana-
lyzed using multivariate adaptive regression splines, using the
CerebroMatic toolbox. This approach allows for flexibly modelling
smoothly varying trajectories while taking into account demo-
graphic (age, gender) as well as technical (field strength, data
quality) predictors. The resulting regression parameters described
here can be used to generate matched DARTEL or SHOOT templates
for a given population under study, from infancy to old age. The
dataset and the algorithm used to generate it are publicly available
at https://irc.cchmc.org/software/cerebromatic.php.
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ubject area
 Neuroscience

ore specific sub-
ject area
Computational Neuroscience
ype of data
 Statistical regression parameter set

ow data was
acquired
This dataset is based on high-resolution T1 3D structural MR imaging data of
1919 subjects acquired at 1.5 and 3 T from four publicly available datasets
(NIH, C-MIND, fCONN, and IXI)
ata format
 Analyzed dataset in Matlab ® datafile format (*.mat, v7.3)

xperimental
factors
While employing a multivariate adaptive regression splines, demographic
(age and gender) as well as technical (field strength and data quality) factors
were taken into account
xperimental
features
Images were segmented using the CAT12 toolbox and spatially normalized
therein using an affine-only spatial normalization approach
ata source
location
All source data is available from the contributing studies (NIH, C-MIND,
fCONN, and IXI) at their respective websites
ata accessibility
 The dataset as well as the algorithms used are freely available at https://irc.
cchmc.org/software/cerebromatic.php
Value of the data

� Segmentation and spatial normalization of brain MR imaging data routinely makes use of refer-
ence, or template brains, which have to be appropriate for the dataset under study

� Instead of simply averaging participant's data, template creation can also be achieved using sta-
tistical regression approaches, which allow for taking into account key demographic and technical
predictors of the dataset

� For high-dimensional warping approaches such as the popular DARTEL or SHOOT algorithm, a large
population is needed to create high-quality templates, which is not always available especially for
“unusual” populations such as infants and older participants

� This dataset is the result of analyzing a large population of healthy subjects using a multivariate
adaptive regression splines approach, allowing for the customized creation of high-quality sets of
brain templates to be used within the DARTEL/SHOOT framework

� Such externally-generated but matched templates are particularly useful when only a small and/or
“unusual” dataset is available for study
1. Data

This regression parameter dataset is based on high-resolution T1 3D structural brain MR imaging
data of 1919 healthy subjects aged 13–900 months [1–75 years]. Images were acquired at 1.5 and 3 T
and were selected from four publicly available datasets (NIH, C-MIND, fCONN, and IXI). The dataset
contains regression parameters from 6 DARTEL iterations for GM and WM each and can be used
within the CerebroMatic toolbox to generate matched DARTEL/SHOOT templates for a researcher's
own population.
2. Experimental design

The aim of this article is to describe a set of regression parameters which can be used within the
CerebroMatic toolbox [1]. The general approach of this toolbox is as follows: instead of simple
averaging a large number of subject's brain MRI data (usually following tissue segmentation) to

https://irc.cchmc.org/software/cerebromatic.php
https://irc.cchmc.org/software/cerebromatic.php


Fig. 1. Overview of the intermediate steps of the image data processing pipeline: each whole brain T1 3D datasets was first
bias-corrected (1) and, using CAT12, segmented into GM (2) and WM (not shown). Then, an iterative non-linear registration
(3–8) to the respective group mean tissue map was applied, resulting in ever crisper tissue maps (upper row) and corre-
sponding deformation fields (lower row, illustrated here by their Jacobian determinants). This results in conventional DARTEL
templates (see Figs. 2 and 4, top rows). The tissue maps were also submitted to the CerebroMatic toolbox, resulting in synthetic
DARTEL templates (see Figs. 2 and 4, bottom rows).
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generate a reference brain/template, the data is instead analyzed statistically. The main advantage is
that this approach is able to take into account the dominating demographic (such as age and gender
[2]) and technical factors (such as field strength and data quality [3,4]). As opposed to the previous
application of this idea (and its implementation within the Template-O-Matic toolbox [2]), the Cer-
ebroMatic now uses a much more flexible statistical approach, namely multivariate adaptive
regression splines [5]. This allows modeling smooth trajectories of change with much higher flex-
ibility and accuracy, especially in the context of an inhomogeneous group (see [1], Fig. 1, for an
illustration). The result of this modeling is a regression parameter set for each voxel, and each tissue
class. From these parameters, a synthetic tissue class can then be generated as the predicted values
are linear combinations of the original response values. Hence, the resulting tissue class can be
described based on (and thus, matched to) the demographics of a new and independent input
population.

A shortcoming of this approach, however, was that more current (and computationally intense)
high-dimensional warping approaches such as the commonly-employed DARTEL- [6] or SHOOT-
approach [7] use an iterative self-registration scheme. Hence, a single tissue prior is not appropriate
anymore as these approaches require an increasingly crisp set of tissue priors to register to. The
DARTEL-approach has shown great accuracy when compared with other non-linear spatial defor-
mation approaches [8] and was later refined [7].1 To generate such high-quality tissue maps, however,
large populations are required [1] which may not always be available, especially in the case of an
“unusual” population such as children or elderly subjects. The here-described parameter set is the
result of using the CerebroMatic toolbox to statistically generate such tissue prior sets for ultimate use
within the DARTEL/SHOOT framework, based on a large population of healthy infants, children, and
young as well as older adults.
3. Subjects and methods

For this data in brief article, the same initial datasets as already described in [1] were used, all of
which are available from public repositories. Four large datasets with rigorous quality control
mechanisms were selected, two for imaging data from children (the National Institute of Health's
1 For this latter (SHOOT) approach, the resulting multi-volume tissue prior needs to be modified in that an additional
volume is added that ensures that tissue probabilities sum to one [9], which can be done post-hoc. Hence, the same regression
parameters for the two main tissue classes can be used for both approaches.



Table 1
Demographic information about all 4 contributing and the full dataset; n¼number; T¼Tesla. Values are described as sums or
mean7SD. See text for details.

n Age [months] Voxel volume [µl] Image quality [%] 1.5 T [n] 3 T [n]

NIH 414 122.41752.15 0.997 .08 76.47710.39 414 0
C-MIND 206 99.87755.8 0.997 .06 79.2379.27 0 206
fCONN 757 331.767156.35 1.187 .32 82.7272.87 15 742
IXI 542 571.847187.54 1.057 .03 83.8171.98 178 364
Full Dataset 1919 329.517228.03 1.087 .22 81.3176.7 607 1312

Table 2
DARTEL processing options used for each iteration. The penalizing energy term (linear elastic energy), the number of inner
iterations (3), the Levenberg-Marquardt regularization (0.01), the number of cycles for the full multi-grid matrix solver (3) and
the number of relaxations in each multi-grid cycle (3) as well as the third regularization parameter id (0.000001) were kept
constant over iterations.

Time steps Regularization parameter [µ] Regularization parameter [λ]

Iteration 1 1 4 1
Iteration 2 1 2 1
Iteration 3 2 1 .5
Iteration 4 4 .5 .25
Iteration 5 16 .25 .125
Iteration 6 64 .25 .125
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Study of Normal Brain Development [10] and the Cincinnati MR Imaging of Neurodevelopment study
[11]) and two for imaging data from adults (The 1000 functional connectome study [12] and The
Information eXtraction from Images study [13]). Following additional local quality control, a total of
1919 high-resolution 3D T1 images could be included. See Table 1 for demographic and imaging
details of all included subjects. Further details on all subjects as well as respective credits, sponsors,
and disclaimers can be found in the Supplementary material S1.

Image data preprocessing was described in detail in [1] and is therefore only briefly summarized
here. All data processing and analysis steps were performed in Matlab (Mathworks, Natick, MA), in
part using functionality available within the spm12 software package (rev. 6906; University College
London, UK). A 7th degree B-spline interpolation algorithm was used when writing images [14], but
all other parameters were left at their default values unless specified otherwise. Initially, all images
were reoriented and bias-corrected, using functionality provided within the unified segmentation
framework [15]. Tissue segmentation was then achieved using the cat12 toolbox (r1092 [16]) which is
a priorless modification and extension of the SPM12 “new segment” approach [17]. Tissue probability
maps (for gray matter [GM] and white matter [WM] only) were spatially normalized using an affine
registration scheme [18] to allow for an initial overlap of large structures. We opted for an affine
approach here (instead of the usually recommended rigid-body procedure [6]) as the overall size
difference between the subjects included here (between infancy and old age [1,19]) must be expected
to otherwise pose insurmountable challenges for the ensuing non-linear deformation steps (see
below). Visual quality control was also performed as previously described [1], using individual
inspection of each map at the level of the basal ganglia and the cerebellum to identify overt failure of
spatial normalization or tissue segmentation.

The DARTEL approach performs an iterative but highly integrated spatial normalization scheme, in
that all images in a population initially contribute to a straight mean to which then again all images
are iteratively registered to. The images resulting from this first round are then again used to create a
second average image, to which the images are again registered, and so on. Hence, in a first step, the
standard DARTEL procedure (SPM12 batch module “DARTEL, create template”) was applied to the full
dataset, yielding an initial set of six conventional templates for GM and WM each. In a second step



Fig. 2. Top row: Illustration of the conventionally generated DARTEL GM templates, from the whole dataset (n¼1919). Bottom
row: Illustration of synthetically-generated DARTEL GM templates, generated by the CerebroMatic toolbox based on the here-
presented regression parameter set (settings: age¼330 months, field strength¼3 T, gender¼male, data quality¼best).

Fig. 3. Top row: difference image of the conventionally generated and the synthetic DARTEL GM templates (cf. Fig. 2), showing
voxels where the intensity difference exceeds 5% (in red) or −5% (in blue). Note overall only minor and decreasing differences.
Bottom row: boxplot of all voxelwise differences, with the mean voxelwise intensity difference listed at the bottom (in %).
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(SPM12 batch module “Run DARTEL with existing template”), all images were then iteratively
registered to these initial templates. However, the intermediate steps (reflecting the registration of
each individual image to the first, second, third… template from the first step) are only computed
internally, iteratively building on the results from the previous step. In order to obtain these inter-
mediate images, the second processing job was therefore split into six successive jobs. The settings
used correspond to the defaults and are listed in Table 2. After completing each iteration, the resulting
intermediate deformation fields were copied before they were updated in the next iteration. See Fig. 1
for an overview. This ensures that each iteration builds upon the results from the previous step, in line
with the original DARTEL approach. These twelve sets of deformation fields (two tissue classes per
subject, times six iterations) were then used to write out corresponding sets of increasingly crisp
tissue probability maps, six sets for GM and six sets for WM. These twelve sets of 1919 images each
were then submitted for data analysis.

Image data analysis was performed within the CerebroMatic toolbox which employs a multivariate
adaptive regression spline approach as available within the ARESLab toolbox [20]. The data analysis
settings were left at the defaults described in [1]. Due to their dominating influence, we used age and
gender [2,21,22], as well as field strength [4] and data quality [3] as predictors. The latter was here



Fig. 4. Top row: Illustration of the conventionally generated DARTELWM templates, from the whole dataset (n¼1919). Bottom
row: Illustration of synthetically-generated DARTEL WM templates, generated by the CerebroMatic toolbox based on the here-
presented regression parameter set (settings: age¼330 months, field strength¼3 T, gender¼male, data quality¼best).

Fig. 5. Top row: difference image of the conventionally generated and the synthetic DARTEL WM templates (cf. Fig. 4), showing
voxels where the intensity difference exceeds 5% (in red) or −5% (in blue). Note overall only very minor and decreasing differ-
ences. Bottom row: boxplot of all voxelwise differences, with the mean voxelwise intensity difference listed at the bottom (in %).
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described by the cat12 overall image quality measure, a combined parameter with contributions from
spatial resolution, image noise, and image inhomogeneity [16]. Processing each iteration required
about 12 hours per tissue class on a current PC workstation. The resulting regression parameters can
now be used to generate a set of six increasingly crisp tissue maps (see Figs. 2 and 4 for an illustration
of the tissue maps, and Figs. 3 and 5 for an illustration of their respective differences), matched to the
demographic and technical details of a population under study, with regard to age (in the range of
13–900 months [1–75 years]), gender (male or female), and field strength (1.5 or 3 T). Tissue quality
will automatically be set to “best”. These tissue maps can then serve as appropriately matched targets
for spatial normalization within the DARTEL/SHOOT framework even for smaller studies, or studies of
“unusual” populations.
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