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INTRODUCTION 
 

Thyroid cancer (TC) is the most prevailing endocrine 

cancer globally; as its main subtype, papillary thyroid 

cancer (PTC) occupies over 90% of all TCs [1, 2]. PTC 

morbidity has rapidly increased over the past decades, 

which has raised substantial concern [3]. While PTC  

is usually indolent, some patients still develop 

recurrence and metastasis even after radical surgical 

resection, resulting in cancer-related death [4, 5]. Early 
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ABSTRACT 
 

As a key mechanism, alternative splicing (AS) plays a role in the cancer initiation and development. However, in 
papillary thyroid cancer (PTC), data for the comprehensive AS event profile and its clinical implications are lacking. 
Herein, a genome-wide AS event profiling using RNA-Seq data and its correlation with matched clinical 
information was performed using a 389 PTC patient cohort from the project of The Cancer Genome Atlas (TCGA). 
We identified 1,925 cancer-associated AS events (CASEs) by comparing paired tumors and neighboring healthy 
tissues. Parent genes with CASEs remarkably enriched in the pathways were linked with carcinogenesis, such as 
P53, KRAS, IL6-JAK-STAT3, apoptosis, and MYC signaling. The regulatory networks of AS implied an obvious 
correlation between the expression of splicing factor and CASE. We identified eight CASEs as predictors for overall 
survival (OS) and disease-free survival (DFS). The established risk score model based on DFS-associated CASEs 
successfully predicted the prognosis of PTC patients. From the unsupervised clustering analysis results, it is found 
that different clusters based on AS correlated with prognosis, molecular features, and immune characteristics. 
Taken together, the comprehensive genome-wide AS landscape analysis in PTC showed new AS events linked with 
tumorigenesis and prognosis, which provide new insights for clinical monitoring and therapy for PTC. 
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recognition of high-risk patients will benefit precise 

individual therapy and avoid overtreatment in low-risk 

patients. Therefore, the biomarkers must be determined 

to recognize patients with PTC for effective early 

prevention and clinical treatment.  

 

The rapid development of next-generation sequencing 

technologies contributed to improvement in cancer 

genomics research [6]. Using a multi-omics approach in 

recent years, the molecular characteristics of PTC have 

been extensively studied in the aspects of genomics, 

transcripts, and proteins [7–11]. Despite this, 

comprehensive analysis of the variations in alternative 

splicing (AS) of PTC is rarely performed. Being a 

common physiological process, AS can splice a pre-

mRNA in distinct models to generate structurally and 

functionally different transcripts and protein variants [12, 

13]. Through these extensively applied mechanisms, 

proteome diversity has been shown to regulate various 

physiological processes [14, 15]. Considering the 

profound effect of AS on biological processes, 

disruptions in AS could contribute to the development of 

human diseases such as cancer [16–18]. For instance, 

when some precursor mRNAs which are functionally 

linked encounter AS dysregulation, the whole protein 

structure could be altered, which facilitates tumor 

carcinogenesis [19]. Moreover, incremental evidence has 

revealed that the dysregulated splicing isoform 

expression or the imbalance in the correct isoform 

expression is a common cancer phenotype [20]. Hence, 

cancer-specific AS can be a potential diagnostic and 

prognostic predictor and a new target for precise therapy.  

 

Currently, profiling of the AS landscape in different types 

of cancer is available using RNA sequencing data and 

matched clinical information from the project of The 

Cancer Genome Atlas (TCGA). Recently, increasing 

evidence showed that AS plays an active part in tumor 

carcinogenesis in various types of cancer [21–25]. Hence, 

it is feasible to explore the clinical significance of AS 

events related to PTC using relatively massive 

sequencing data. Teng et al. profiled the transcriptomic 

signature in PTC which were linked with carcinogenesis 

and aggressiveness [26]. Differential AS events and their 

potential regulatory mechanisms were also identified, 

which contributed to a transcriptome-wide understanding 

of PTC [26]. However, the correlation between 

dysregulation of splicing patterns and clinical prognosis 

in PTC is still poorly understood. 

 

To explore the landscape of abnormal AS and its 

clinical significance in PTC, the relationship between 

integrated AS profiles and complete TCGA clinical 
information was examined. In this study, AS events 

which were genome-wide were comprehensively 

profiled and the cancer-associated AS events (CASEs) 

in PTC were recognized. The underlying biological 

functions and potential regulatory mechanisms of these 

CASEs were further investigated. To this end, a 

regulatory network was constructed between splicing 

factors (SFs) and CASEs. Survival-associated CASEs 

were identified and a risk model was thus established 

for predicting PTC patients’ prognosis. Moreover, we 

identified the distinct clusters of PTC-associated AS 

events and explored the relationship between clusters 

based on AS and clinical pathological variables and 

tumor microenvironment (TME). 

 

RESULTS 
 

Summary of AS event profiling in PTC cohort from 

the TCGA database 

 

395 PTC patients were recognized in the TCGA 

database. Among them, 389 patients, for whom RNA-

seq data and complete clinical information were 

securable, were enrolled in the next analysis. 

Meanwhile, 6 patients without histological diagnosis, 

complete clinical information, or corresponding RNA-

seq data were excluded. Table 1 presents the baseline 

demographic features and histopathological charac-

teristics of the 389 enrolled patients. 440 samples (389 

tumor samples and 51 matched adjacent normal tissues) 

were included. In the follow-up months ranging from 0 

to 178.1, the median was 31.3 months; 38 (10.1%) 

patients experienced recurrence/progression and 15 

(3.8%) patients deceased. The 3-year OS rate was 

96.8% and 3-year DFS rate was 88.7%.  

 

We used these enrolled patients’ RNA-Seq data to set 

up integrated profiling of AS events. After downloading 

the percent spliced index (PSI) values for AS events in 

PTC from the databank of TCGA SpliceSeq [27] 

(http://bioinformatics.mdanderson.org/TCGASpliceSeq/

), we initially identified 34,773 AS events from 10,219 

genes after applying the most stringent filters (percent 

of samples with ≥75 PSI values; mean PSI value: 

≥0.05). These AS events were divided into seven 

splicing types: 14,630 exon skipping (ES) events from 

6,281 genes, 6,181 alternate promoters (AP) from 3,641 

genes, 5,916 alternate terminators (AT) from 3,744 

genes, 2,469 alternate donor (AD) sites from 1,842 

genes, 3,032 alternate acceptor (AA) sites from 2,236 

genes, 166 mutually exclusive exons (ME) from 162 

genes, and 2,379 retained introns (RI) from 1,672 genes 

(Figure 1A). In these splicing types, the ES occurrence 

was the most frequent (42.1%), followed by AP 

(17.8%), AT (17.0 %), and AA (8.7%) (Figure 1A). 

Considering a single gene may have multiple splicing 

modes, we quantitatively visualized the interactive sets 

of each AS type by generating Upset plots. Most AS 

events were from one gene; meanwhile, an individual 

http://bioinformatics.mdanderson.org/TCGASpliceSeq/
http://bioinformatics.mdanderson.org/TCGASpliceSeq/
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Table 1. Clinical characteristics of enrolled papillary thyroid cancer patients. 

 NO. 
OS DFS 

Hazard rations (95%CI) P value Hazard rations (95%CI) P value 

Age      

    ≥60 92 
55.284 (7.253–421.414) 0 2.215(1.132–4.336) 0.02* 

    <60 297 

Gender      

    Male 107 
2.018(0.715–5.698) 0.185 1.285(0.648–2.547) 0.473 

    Female 282 

TNM stage      

    Stage I-II 249 

9.32(2.621–33.139) 0.001* 2.459(1.298–4.658) 0.006*     Stage III-IV 139 

    NA 1 

Tumor stage      

    T1-2 231 

3.607(1.147–11.344) 0.028* 2.082(1.093–3.967) 0.026*     T3-4 156 

    NA 2 

  Lymph node metastasis      

    N0 159 

1.113(0.363–3.41) 0.852 1.824(0.897–3.708) 0.097     N1 204 

    NA 26 

Distant metastasis      

    M0 245 

8.771(1.846–41.686) 0.006* 3.585(0.472–27.246) 0.217     M1 3 

    NA 141 

Tumor status      

  Tumor free 309 

33.189(6.866–160.444) 0 8.287(4.32–15.895) 0   With tumor 44 

    NA 36 

NA, not available; CI, confidence interval; *, P<0.05. 

gene may have four distinct splicing types, and most of 

the genes showed multiple AS events (Figure 1B), 

implying the biggest possible process for the 

transcriptome diversity enrichment. Moreover, we 

created Circos plots to show the details of PTC AS 

event profiling (Figure 1C).  

 

Identification of CASEs in PTC 

 

To identify the CASEs during PTC carcinogenesis, we 

compared each AS event’s PSI values between 50 

paired tumors and adjacent normal tissues. 1,925 

CASEs from 1,298 genes were screened with the 

threshold set to |log2
FC| >0.1 and with a modified P-

value of <0.05 (BH correction) (Figure 2A). Using 

CASE-based unsupervised hierarchical clustering, the 

tumor samples and healthy tissue samples were 

obviously divided into two distinct groups, suggesting 

that CASEs accurately distinguished the tumors from 

the normal tissues in PTC (Figure 2B). Among these 

CASEs, there were 687 APs, 585 ESs, 366 ATs, 102 

RIs, 97 AAs, 76 ADs, and 12 MEs (Figure 2C). 

Although a significantly larger number of ES events 

were detected in all AS events, similar proportions of 

ES and AP events were recognized as CASEs, 

followed by AT CASEs (Figure 2C). These 

inconsistent distributions between CASE patterns and 

all AS events indicated that each AS type may play 

different parts in development of cancer. Accordingly, 

some genes (like HMGA2, MYO5B, and PAK6) had 

the opposite roles of AS events from the same 

parental gene in tumor and healthy tissues (Figure 

2D). To validate the recurrence of identified CASE 

events in another independent cohort, we analyzed the 

CASEs in head and neck squamous cell carcinoma 

(HNSC) and colon adenocarcinoma (COAD) which 

have alternative splicing information from TCGA 

SpliceSeq datasets. Interestingly, among the 1,925 

CASEs in PTC, 97 were differentially expressed in 

HNSC and COAD (Supplementary Figure 1A). For 

example, AT of exon 5.2 in CXCL12 was remarkably 

upregulated, while AT of exon 3.3 in CXCL12 was 

downregulated in PTC, HNSC and COAD 

(Supplementary Figure 1B). These findings suggested 

that AS events we identified were shared in tumori-

genesis among various cancers. 
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Abnormal AS events can alter its parental RNA 

expression straightway, and AT/AP events were more 

preferred for this phenomenon. Consistent with this 

notion, 57.9% of CASEs in the corresponding 

differentially expressed gene (DEG) in PTC were AT 

(26.4%) and AP (31.5%). To illustrate the potential 

effect of CASEs on DEGs, we analyzed the relationship 

between CASEs and DEGs. We observed an overlap 

between CASEs and DEGs by intersection analysis 

(Figure 2E). The intersection analysis showed that 

AT/AP events had a relationship with parental gene 

dysregulation (Figure 2F), implying that CASEs may 

promote tumor development by aberrantly regulating 

the gene expression. Collectively, these evidences 

suggested that PTC-related AS events may play a 

functional role in PTC carcinogenesis. 

 

Tumor carcinogenesis-related signature enriched by 

CASEs in PTC 

 

To reveal the molecular signatures of parent genes with 

CASEs, the enriched pathways of CASEs were 

analyzed using the biological function enrichment 

analysis. These parent genes with CASEs substantially 

enriched in GO pathways had a close relationship with 

the extracellular matrix, such as cell morphogenesis 

regulation, cell-substrate adhesion regulation, and focal 

adhesion (Figure 3A). Moreover, some molecular 

functions were highly enriched, such as Ras 

guanyl−nucleotide exchange factor activity, guanyl-

nucleotide exchange factor activity, and Ras GTPase 

binding (Figure 3A). Additionally, several KEGG 

pathways linked with carcinogenesis were enriched, 

such as homologous recombination, base excision 

repair, inositol phosphate metabolism, p53 signaling 

pathway, and PPAR signaling pathway (Figure 3B). 

Consistent with these findings, the GSEA showed that 

AS events which were differentially expressed in PTC 

were remarkably enriched in the oncogenesis pathways, 

such as P53, epithelial mesenchymal transition, KRAS, 

IL6-JAK-STAT3, apoptosis, and MYC signaling 

(Figure 3C). Interestingly, immune-related pathways, 

such as interferon gamma response, negative regulation 

of immunoreaction, regulation of B cell receptor

 

 
 

Figure 1. Overview of AS event profiling in the TCGA PTC cohort. (A) Number of each AS event type and their parent genes in PTC 
patients. Blue bars represent the AS events, while red bars represent their parent genes. (B) Interactive sets among seven types of AS events 
(n = 34,773) shown in an UpSet plot. (C) Circos plot shows the details of each AS event and their parent genes in the chromosome. The outer 
circle represents the chromosome ideogram. The intermediate circle represents the genes with filtered AS events. The inner circle shows the 
genes with differentially expressed AS events between tumor and normal tissues. The ribbons represent the potential interaction between AS 
events and their parent genes. ES, exon skipping; AP, alternate promoter; AT, alternate terminator; AD, alternate donor; AA, alternate 
acceptor site; ME, mutually exclusive exons; RI, retained intron. Mulity-AS, gene contains multiple types of AS. 
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signaling pathway, positive mast cell activation 

regulation, chemokine production, and negative 

regulation of immune effector process, were also 

enriched (Figure 3D).  

 

Given that AS could inevitably affect protein translation 

and produce various amino acid sequences, we 

investigated the PPI network of CASEs to determine the 

possible influence of AS events on the whole network 

(Figure 4A). Based on the PPI network, ubiquitin 

conjugating enzyme E2C (UBE2C) and aurora kinase B 

(AURKB) were identified as hub genes (Figure 4B). By 

analyzing the protein features, two PPI network modules 

were identified. In agreement with the outcomes in the 

enrichment analysis, CASEs in the first one were enriched 

in the carcinogenesis’s biological process (Figure 4C). 

The other module comprised CASEs enriched in the 

extracellular matrix (Figure 4D). Collectively, these 

results implied that the parental gene of CASEs plays 

significant roles in carcinogenesis and in the tumor 

immune microenvironment formation in PTC. 

 

Network of CASEs and SFs 

 

SFs are the main AS event regulators by bonding to pre-

mRNAs and influencing the exon selection or intron

 

 
 

Figure 2. Identification of CASEs in PTC. (A) Volcano plot of CASEs identified in PTC (log2
FC > 0.1, adjusted P < 0.05). (B) Heatmap of the 

CASEs between matched tumor and adjacent normal tissues of 50 PTC patients. (C) Interactive sets among seven AS types of CASEs (n = 
1,925) shown in an UpSet plot. (D) The representative CASEs, derived from the same parent gene and exhibited the opposite preference 
between tumor and adjacent normal tissues, were shown. Student’s t-test was used. (E) Venn diagram of CASEs and DEGs. (F) Interactive sets 
of AP/AT events and DEGs shown in UpSet plot. ES, exon skipping; AP, alternate promoter; AT, alternate terminator; AD, alternate donor; AA, 
alternate acceptor site; ME, mutually exclusive exons; RI, retained intron. 



 

www.aging-us.com 23154 AGING 

removal [28]. SFs can facilitate dysfunctional splicing 

patterns in tumors in comparison with healthy tissues, 

leading to the pro-tumorigenic isoform production [29, 

30]. Hence, to illustrate how SFs regulate CASEs in 

PTC is of significance. The relationship between the 

expression of seventy-one experimentally validated SFs 

in a previous study [31] and CASEs’ PSI values was 

analyzed; a regulatory network on splicing among the

 

 
 

Figure 3. Signature enrichment by CASEs in PTC. (A) GO analysis of CASEs. (B) KEGG analysis of CASEs. (C, D) GSEA analysis of all AS 
events. 
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significant associations was constructed. As shown in 

Figure 5A, 27 upregulated CASEs (pink dots) and 64 

downregulated CASEs (blue dots) were associated 

with 27 SFs (red dots). Notably, the majority of SFs 

were remarkably linked with multiple AS events. 

Furthermore, a single AS event can be regulated by as 

many as nine different SFs; hence, transcripts can 

produce diverse splicing isoforms due to the 

competition of a few factors only. Some 

representative correlations of highly correlated SFs 

and CASEs are shown in Figure 5B. For  

instance, the CELF1 expression had a positive 

correlation with AT exon16 87402 of PHF19,  

but it was negatively correlated with AT exon5.2 

87401 of PHF19.  

Survival-associated CASEs in PTC 

 

As most CASEs do not play a functional role during 

carcinogenesis, we examined CASEs associated with 

PTC patient prognosis to identify CASEs involved in 

tumor biological processes. Before investigating the 

prognostic values of CASEs, the univariate survival 

analysis was performed to assess the correlation 

between the clinical pathological characteristics and 

PTC patients’ outcome in the TCGA cohort (Table 1). 

Table 1 shows that, age (hazard ratio [HR] = 2.215, 

95% CI: 1.132–4.336; P = 0.02), American Joint 

Committee on Cancer TNM stage (HR = 2.46, 95% CI: 

1.298–4.66; P = 0.006), tumor stage (HR = 2.08, 95% 

CI: 1.093–3.97; P = 0.026), and tumor status  

 

 
 

Figure 4. Interaction analysis of CASEs. (A) PPI network analysis of CASEs generated by Cytoscape. Nodes indicate parent genes with 
CASEs, while edges represent the potential interactions between the corresponding proteins. The shape, size, and color of nodes denote AS 
types, the value of log2

FC, and change patterns, respectively. ES, exon skipping; AP, alternate promoter; AT, alternate terminator; AD, 
alternate donor; AA, alternate acceptor site; ME, mutually exclusive exons; RI, retained intron. (B) Hub genes ranked by MCC. (C) Module 1 
was correlated with tumorigenesis. (D) Module 2 was correlated with extracellular matrix. 
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Figure 5. Representative plots of regulatory splicing network in PTC. (A) The correlation analysis between the expression levels of 71 

SFs and the PSI values of CASEs. The shape, color, and size of node denote AS types, changes in the pattern (upregulated or downregulated), 
and the value of log2

FC, respectively. The breadth of each line represents the extent of interaction strength. (B) Representative dot plots 
indicate the correlations between the expression of SFs and PSI values of CASEs. 
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(HR = 16.566, 95% CI: 9.361–29.314; P < 0.001) were 

significantly associated with the DFS of PTC. 

Meanwhile, age (HR = 55.284, 95% CI: 7.253–421.414; 

P < 0.001), tumor stage (HR = 3.61, 95% CI: 1.147–

11.34; P = 0.028), M stage (HR = 8.77, 95% CI: 1.846–

41.69; P = 0.006), TNM stage (HR = 9.32, 95% CI: 

2.621–33.14; P = 0.001), and tumor status (HR = 8.287, 

95% CI: 4.32–15.895; P < 0.001) had a significant 

association with OS. These preliminary results indicated 

that the survival data of the TCGA PTC cohort were full 

of information and suitable for use in subsequent 

survival analysis. 

 

We then studied the correlation between our recognized 

CASEs and the PTC patients’ prognosis., PTC patients 

were separated into two groups on the basis of the 

median PSI value as per CASE. Based on the univariate 

survival analysis results, 90 AS events were remarkably 

linked with OS, and 113 AS events were significantly 

associated with DFS. Among these CASEs associated 

with survival, eight CASEs were linked with OS and 

DFS at the same time (Figure 6A, 6B). As presented in 

Figure 6C, 6D, the patients could be stratified according 

to the PSI value to form an obvious Kaplan-Meier curve 

in the OS and DFS survival analyses. Taken together, 

the above-mentioned results straightway implied that 

CASEs are not only biologically significant, but are also 

involved in PTC development.  

 

PTC feature gene selection and prognosis model 

construction 

 

To verify the combined AS events’ predictive effect, the 

PTC feature genes were selected and a prognosis model 

was constructed. Using the LASSO Cox analysis 

following the univariate Cox analysis, nine CASEs with

 

 
 

Figure 6. Survival-associated CASEs in PTC. (A, B) Forest plots of hazard ratios for eight CASEs simultaneously associated with OS (A) and 

DFS (B). (C, D) Kaplan-Meier curves of representative genes associated with OS (C) and DFS (D). 
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an upregulated parent gene were chosen to construct 

the ultimate prognostic model (Figure 7A). These nine 

gene signatures displayed good prognosis 

classification effects in the TCGA cohort (Figure 7B). 

The AUC curves of the 3- and 5-year DFS were 0.782 

and 0.757, respectively, suggesting that these nine 

genes can function as prognostic markers of PTC 

(Figure 7C). To validate the prognostic association of 

identified CASEs in another independent cohort, we 

analyze our established prognostic model in HNSC 

and COAD. We observed the risk score associated 

with DFS in patients with HNSC and COAD, 

respectively (Supplementary Figure 2). These events 

indicate the prognostic association of our identified 

CASEs can be validate in HNSC and COAD, which 

mean our established prognostic model could be 

applied in other cancer types. We randomly divide the 

TCGA SpliceSeq data in PTC into test cohort (70%) 

and validate cohort (30%), and establish the nomo-

gram with the test cohort (Figure 7D). Calibration 

curves confirm the accuracy of our nomogram for 

predicting 3- and 5-year DFS in both test and validate 

cohort (Supplementary Figure 3A). Decision curve 

analysis curves validate the value of clinical 

application of our nomogram in both test and validate 

cohort (Supplementary Figure 3B). 

 

 
 

Figure 7. Selection of PTC feature genes and construction of a prognosis model. (A) Identification capability of the prognostic 

model of the low-risk and high-risk groups. (B) Kaplan-Meier curves of prognostic model for DFS of PTC patients. (C) ROC curves of prognostic 
model for the 3- and 5-year DFS of PTC patients. (D) Nomogram for predicting PTC patient’s 3- and 5-year DFS. 
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AS-based clusters are remarkably linked with 

prognosis, molecular characteristics, and immune 

characteristics 

 

To identify the distinct molecular subtypes correlated 

with prognosis and immune response, a consensus 

unsupervised analysis of all PTC tumor samples was 

performed. By adjusting the optimal parameters, four 

CAS-based molecular subtypes were identified (Figure 

8A). Next, we explored the clinical values of the 

identified CASE-based clusters. The correlation 

between cluster and prognosis was evaluated using 

Kaplan-Meier analysis. Clusters were linked with 

different patterns of prognosis; cluster 1 was linked with 

favorable OS and DFS (Figure 8B, 8C). Cluster 4 was 

associated with shorter OS, while cluster 2 was 

associated with shorter DFS (Figure 8B, 8C). As shown 

in Figure 8D, the whole distribution of different 

molecular characteristics, such as TNM stage, BRAF, 

tumor mutation burden (TMB), and survival status 

(DFS and OS) in PTC samples between clusters, was 

significantly different. For instance, tumors classified as 

C4 had less BRAF mutants and lower TMB. 

 

The tumor microenvironment participates in cancer 

progression; the immune microenvironment differen-

ces among clusters based on CASE were investigated. 

Immune cell composition analysis revealed that C4 

was linked with higher CD8 T cells, lower 

macrophage M0, and dendritic resting cells (Figure 

9A). We computed the immune and stromal scores by 

the ESTIMATE algorithm, so as to quantify the

 

 
 

Figure 8. AS-based clusters significantly associated with prognosis, molecular characteristics, and immune features. (A) 

Consensus clustering analysis identified four clusters. The white (consensus value = 0, samples never clustered together) and blue (consensus 
value = 1, samples always clustered together) heatmap display sample consensus. (B) Kaplan-Meier curves show the OS for four AS-based 
clusters. (C) Kaplan-Meier curves show the DFS for four AS-based clusters. (D) Heatmap shows the molecular characteristics associated with 
clinical, molecular, and immune features among the four clusters. 
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stromal cell enrichment and immune cell infiltration 

in tumor tissues. Interestingly, cluster C4 was 

associated with low immune score, while C1 was 

correlated with higher stromal score (Figure 9B, 9C). 

Additionally, immune cytolytic activity analysis 

showed that C4 had lower cytolytic activity than that 

showed by other clusters (Figure 9D). We also 

observed lower expression of immune inhibitory 

molecules, like CTLA4, TIGIT, and HAVCR2, in 

cluster 4 than that in other clusters (Figure 9E). These 

results indicated the potential low immune response of 

cluster 4, which could explain the poor prognosis of 

cluster 4. Taken together, these results indicated that 

PTC showed different AS patterns. Clusters based on 

AS may function both as a prognostic indicator and as 

a promising index to find molecular targeted therapies 

and immunotherapeutic strategies for PTC. 

 

DISCUSSION 
 

AS provides a mechanism for cells to diversify the 

proteome; however, AS also plays a critical part in the 

initiation or maintenance of malignancy [13, 32]. 

Exploration of AS patterns will broaden the under-

standing on the transcriptome molecular mechanisms in 

PTC. In this study, we integrated the AS event profiles 

and TCGA clinical information of patients with PTC, 

and identified PTC-related AS events and molecular 

signatures. The SF-AS network was also constructed  

to deepen our understanding of the regulatory 

 

 
 

Figure 9. AS-based clusters significantly associated with immune features. (A) Bar plots of the relationship between AS-based 

clusters and infiltrate immune cell types. (B–D) Immune score, stromal score, and cytolytic activity between AS-based clusters. Data were 
analyzed using Kruskal-Wallis tests. (E) Expression level of immune inhibitory molecules among the four clusters. 
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mechanisms. We set up a prognostic model that 

successfully predicted the survival of PTC patients. 

Through CASE clustering, the PTC patients were 

stratified into subgroups with different survival results 

and immune features. 

 

With the help of next-generation sequencing method, 

the analysis of the whole-genome sequence data and 

genome splicing data has been made possible. 

Recently, some studies have performed SpliceSeq 

analyses to form AS profiles and construct prognostic 

signatures for various cancers, including HNSC, 

colorectal cancer, non-small cell lung cancer, as well 

as pancreatic cancer [33–36]. However, the number of 

studies related to PTC is limited. We first identified 

the differentially expressed AS events between PTC 

tumors and adjacent healthy tissues. Results of 

functional enrichment analyses suggest that CASEs 

are enriched in pathways associated with tumor 

carcinogenesis, such as P53, epithelial mesenchymal 

transition, KRAS, IL6-JAK-STAT3, apoptosis, and 

MYC signaling. Our findings indicate that AS events 

play their biological roles in the tumor development. 

To explore the downstream mechanism of these 

CASEs, we performed a PPI network analysis. 

UBE2C and AURKB were recognized as hub genes. 

Notably, they both play crucial parts in tumor 

development, metastasis, and drug resistance [37–41]. 

For example, UBE2C can be increased by estrogen 

and accelerates epithelial-mesenchymal transition 

through p53 in endometrial cancer [41]. AURKB is a 

novel drug target for patients with non-small cell lung 

cancer with gained resistance to the therapy against 

EGFR [39]. These findings suggest the novel targets 

for PTC and pave the way for future clinical 

applications.  

 

As the main upstream regulator of AS events, SF is 

crucial in cancer progression by mediating the AS 

process. A regulation network between SFs and 

CASEs was established and SFs CELF1 was observed 

as central in the regulatory network. CELF1 is in the 

RNA-binding protein family participating in multiple 

aspects concerning RNA processing (splicing and 

mRNA stability) [42]. CELF1 was involved in 

tumorigenesis and metastasis. By targeting ETS2 in 

colorectal cancer, it enhanced cell migration, 

invasion, as well as chemoresistance [43]. Wu et al. 

reported that siRNA-mediated knockdown of the 

CELF1 gene inhibited the multiplication of lung 

cancer cells [44]. Teng et al. profiled the 

transcriptomic signature in PTC which were linked 

with carcinogenesis and aggressiveness. Our study 

further broadens the understanding on the alterations 

in transcriptomes and the mechanisms underlying 

these alterations.  

Considering the heterogeneity of malignant cells and 

the complexity of TME in PTC, the molecular markers 

of AS are still urgently needed. A risk score model was 

established and patients with different survival rates 

were effectively divided. A nomogram was also 

constructed to clearly predict the patients’ clinical 

prognosis. This study identified the CASE-based 

molecular subtypes to stratify the PTC patients’ 

prognosis. We identified four clusters with distinct 

prognoses and molecular characteristics. High levels of 

immune infiltration and immune inhibitory molecules 

were considered as biomarkers for better prognosis and 

reaction to immune checkpoint blockade therapy [45–

47]. PTC samples classified as cluster 4 have lower 

immune and cytolytic activities. The immune inhibitory 

molecule expression, like PDCD1, CTLA4, and TIGIT, 

was lower in cluster 4 than in other clusters, implying 

that they may not respond to immune therapy. Cluster 4 

has a shorter DFS than that of other clusters. These 

results imply that there is much variability in the 

property of the CASEs that have clinical significance.  
 

Taken together, the current study established a global 

profile based on the differentially expressed AS events 

in patients with PTC, which is significant in decoding 

the AS events’ functional contribution in PTC. Our 

findings should promote continuous efforts to find new 

genomic molecules for clinical cancer treatment. 

Additionally, the further recognition of CASE-

associated subtypes and establishment of the SF-AS 

network can provide new understanding to the in-depth 

investigation of splicing-related mechanisms. 

 

MATERIALS AND METHODS 
 

AS events curation process 

 

The clinical data, gene expression, and corresponding 

mutation annotation files were downloaded from the 

databank of TCGA (https://portal.gdc.cancer.gov/) in 

thyroid cancer (THCA). The PSI values for THCA AS 

events were downloaded from the databank of 

TCGASpliceSeq (http://bioinformatics.mdanderson.org/ 

TCGASpliceSeq/). Only patients with (1) PTC, (2) 

corresponding gene expression data, and (3) relatively 

complete clinical information on age, sex, TNM stage, 

and survival were retained. We utilized the ESTIMATE 

algorithm to compute the immune and stromal scores so 

as to count the percentage of stromal and immune cells in 

tumor samples [48]. The CIBERSORT method was used 

to characterize the composition of complex tumor tissues, 

including seven T-cell types, naïve and memory B cells, 

plasma cells, natural killer (NK) cells, and myeloid 

subsets [49]. The maftools (version 2.6.05) were used to 

assess the tumor mutational burden (TMB) of a tumor 

genome. 

https://portal.gdc.cancer.gov/
http://bioinformatics.mdanderson.org/TCGASpliceSeq/
http://bioinformatics.mdanderson.org/TCGASpliceSeq/
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Systematic presentation of AS events profiling 

 

PSI values were processed by TCGA SpliceSeq, rating 

from zero to one, which was a typical, intuitive ratio to 

quantify splicing events. To obtain reliable AS events, 

strict filtering conditions were used (percent of samples 

with ≥75 PSI values, mean PSI value of ≥0.05). The 

UpSet plots drawn using the UpSetR (v1.4.0) package 

was utilized to show the interactive sets between 

different AS types [50]. Circos plots drawn using 

Circlize (v0.4.10) package were used to show the details 

of filtered AS events, CASEs, and their parental genes 

in the chromosomes [51]. 

 

Cancer-associated AS event identification and 

functional enrichment analysis 

 

The limma (v3.42.2) package was utilized to conduct a 

paired differential expression analysis of the PSI value 

of AS events between PTC and corresponding healthy 

tissues to identify CASEs [52]. AS events with |log2
FC| 

of ≥0.1, adjusted P of <0.05 (adjusted by Benjamini and 

Hochberg (BH)) were selected as CASEs for further 

analysis. The clusterProfiler (v3.14.3) package was 

utilized to conduct Kyoto Encyclopedia of Genes and 

Genomes (KEGG) and Gene Ontology (GO) pathway 

function enrichment analysis on the CASE’s parent 

genes [53]. To identify the differences between PTC 

and paired normal tissues in pathways and biological 

functions, a gene set enrichment analysis (GSEA) was 

performed using the fgsea (v1.12.0) package. In 

addition, the Search Tool for the Retrieval of Interacting 

Genes/Proteins (STRING, v11.0) was applied to predict 

the protein-protein interaction (PPI) network between 

the CASE’s parent genes. The interaction network was 

visualized using Cytoscape (v 3.7.0) [54]. At the same 

time, cytoHubba and MCODE were utilized to 

recognize the module hub genes according to the 

STRING results in the Cytoscape. 

 

Build splicing correlation network  

 

Data of 71 human RNA-binding splicing regulatory 

proteins were obtained from the SpliceAid-F database 

[31], which was retrieved by screening literature and 

databases manually. The relationship between the AS’s 

PSI value and SF’s expression was calculated to 

determine whether SF was significantly correlated with 

CASEs (|R| > 0.5, adjusted P < 0.01, adjusted by BH). 

We visualized the correlation network using Cytoscape 

(v 3.7.0) [54]. 

 

Survival analysis 

 

According to the PSI value of each CASE (median 

cut), patients with PTC were separated into two 

groups. HRs and the corresponding 95% CIs of 

various CASEs based on OS and DFS were calculated 

using univariate Cox regression analysis to search for 

differentially expressed and prognostic AS. Patients’ 

survival between the two groups was compared using 

Kaplan-Meier analysis. The differences were tested 

using the log-rank test. 

 

Construction of the risk score prognosis model 

 

To explore the correlation between CASEs and DFS, 

some AS events were screened from the DFS-associated 

CASEs in the univariate regression analysis, in which 

parent genes were also significantly upregulated, and 

the least absolute shrinkage and selection operator 

(LASSO) and multivariate Cox regression analyses 

were conducted. The Glmnet R package (v4.0-2) was 

utilized to perform LASSO Cox regression analysis on 

candidate AS events. To assess the contribution of each 

AS event to DFS, a multivariate Cox regression analysis 

was performed. Finally, nine AS events were chosen to 

set up a risk score prognosis model. The predictive 

performance of this model was assessed through an 

ROC analysis which was time-dependent. 

 

Nomogram construction and validation 

 

To predict the prognosis of PTC, the rms package (v6.1-

0) was used to generate a nomogram according to the 

independent prognostic factors recognized by the 

multivariate analyses to explore the 3- and 5-year DFS 

of PTC patients. 

 

Assessment of the correlation with clinical and 

immunological characteristics 

 

To make sure the PTC cohort was clustered in 

unbiasedly and unsupervised, the R package 

Consensus Cluster Plus (v1.50.0) was used to perform 

hierarchical consensus clustering (utilizing Kmdist 

and Pearson correlation coefficient distance) [55]. We 

made an analysis on the correlations between clusters, 

clinical pathological variables (TNM stage,  

T stage, N stage, and M stage), survival status (OS 

and DFS), molecular alteration (BRAF mutation),  

and immune characteristics (stromal score, immune 

score, immune cytolytic activity, and tumor 

mutational burden). 

 

Statistical analysis 

 

All statistical analyses were conducted using the R 

software (v3.6.1), with a significance level set of 0.05 
(unless otherwise stated). We used Pearson’s R to 

compute the correlation between the two continuous 

variables. The data with normal distribution were 
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compared via analysis of variance test and student’s t-

test; Wilcoxon signed-rank test and Kruskal-Wallis tests 

were applied to analyze data with abnormal distribution 

(*P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, or **** P ≤ 

0.0001). To make a comparison between categorical 

variables, Fisher’s exact test and Pearson’s chi-square 

test were utilized. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Shared CASEs in PTC, HNSC and COAD. (A) Venn gram of CASEs in PTC, HNSC and COAD. (B) Representative 

common CASEs in PTC, HNSC and COAD. AS events with |log2
FC| of ≥0.1, adjusted P of <0.05 (adjusted by Benjamini and Hochberg (BH)) were 

selected as CASEs. ****, P < 0.0001. CASEs, cancer-associated AS events; AS, alternative splicing; PTC, papillary thyroid cancer; HNSC, head 
and neck squamous cell carcinoma; COAD, colon adenocarcinoma. 

 

 
 

Supplementary Figure 2. Validation the established prognostic model in HNSC and COAD. (A) Kaplan-Meier curves of prognostic 
model for DFS of HNSC patients. (B) Kaplan-Meier curves of prognostic model for DFS of COAD patients. DFS, disease free survival; HNSC, 
head and neck squamous cell carcinoma; COAD, colon adenocarcinoma. 
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Supplementary Figure 3. Validation the accuracy and clinical application of established nomogram. (A) Calibration curves 

confirm the accuracy of our nomogram for predicting 3- and 5-year DFS in both test and validate cohort. (B) Decision curve analysis curves 
validate the value of clinical application of our nomogram in both test and validate cohort. 

 
 


