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SICT: automated detection and 
supervised inspection of fast Ca2+ 
transients
Roberta Mancini1, Tobias van der Bijl1, Quentin Bourgeois-Jaarsma1, Rizky Lasabuda1 & 
Alexander J. Groffen  1,2

Recent advances in live Ca2+ imaging with increasing spatial and temporal resolution offer 
unprecedented opportunities, but also generate an unmet need for data processing. Here we developed 
SICT, a MATLAB program that automatically identifies rapid Ca2+ rises in time-lapse movies with low 
signal-to-noise ratios, using fluorescent indicators. A graphical user interface allows visual inspection 
of automatically detected events, reducing manual labour to less than 10% while maintaining quality 
control. The detection performance was tested using synthetic data with various signal-to-noise ratios. 
The event inspection phase was evaluated by four human observers. Reliability of the method was 
demonstrated in a direct comparison between manual and SICT-aided analysis. As a test case in cultured 
neurons, SICT detected an increase in frequency and duration of spontaneous Ca2+ transients in the 
presence of caffeine. This new method speeds up the analysis of elementary Ca2+ transients.

Ca2+ is a ubiquitous, conserved second messenger that regulates a range of cellular processes in all kingdoms 
of life1–3. In excitable cells, such as muscle cells and neurons, Ca2+ triggers contraction and neurotransmission, 
respectively4,5. Fluorescence microscopy allows the spatial and temporal measurement of intracellular Ca2+ 
dynamics in living cells6,7. Research questions linked to Ca2+ pathways are widespread in science and require 
different tissues or cell types, Ca2+ reporters and imaging hardware.

Neuronal Ca2+ transients
While classical neurotransmission is long known to be governed by action potential (AP)-evoked Ca2+ transients, 
there is growing interest in various other types of Ca2+ signals and their putative role in synaptic plasticity and 
spontaneous neurotransmission8–11. In contrast to AP-evoked transients, smaller amplitude signals - referred to 
as Ca2+ sparks, Ca2+ puffs, Ca2+ syntillas or spontaneous Ca2+ transients (SCTs) - occur locally in restricted sub-
cellular compartments and are relatively difficult to detect. Ca2+ sparks/sparklets are local Ca2+ transients that are 
commonly observed in skeletal and cardiac muscle cells. By definition, they originate from single Ca2+ release 
units in the sarco- or endoplasmic reticulum where each unit represents a cluster of Ca2+ release channels such 
as ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), or a combination of both12,13. These 
receptors are also expressed in nervous tissues and sparks have been observed in hippocampal and dorsal root neu-
rons14,15. So-called Ca2+ puffs are thought to represent cytosolic Ca2+ rises released from intracellular Ca2+ stores, 
again with a contribution of IP3Rs16. Ca2+ syntillas are defined as Ca2+ sparks in presynaptic terminals, for instance 
in hypothalamic neurons, where they occur spontaneously in the absence of APs and extracellular Ca2+ by a 
RyR-dependent mechanism17. Finally, spontaneous Ca2+ transients (SCTs) occur in the absence of AP and involve 
RyRs. They were observed in cerebellar Purkinje cells18 and hippocampal neurons8,11. The recurrent role of intracel-
lular Ca2+ channels in Ca2+ sparks, puffs, syntillas and SCTs suggests a shared mechanism for these types of events. 
Alternatively, spontaneous Ca2+ transients can also originate from the spontaneous opening of voltage-dependent 
Ca2+ channels at resting membrane potential, as demonstrated in cultured hippocampal neurons10. For simplic-
ity, we will here collectively refer to all types of events as SCTs. The local and short-lived nature of SCTs (dura-
tion in the range of 40–260 ms depending on the reporter used), together with their low amplitude (ΔF/F0  
typically in the 0.3–1 range) and frequency (0.005–0.7 Hz) make the detection of these events challenging8,14,15,18.
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Cytosolic Ca2+ concentrations can be monitored with both chemical and genetically-encoded Ca2+ indicators 
(GECI), each with their own advantages and limitations19–22. In the latter class, the GCaMP family23 has been 
improved by altering its Ca2+ affinity, brightness, and subcellular localization24–26 to yield variants with high 
Ca2+ affinity and fast kinetics, including GCaMP6f27. Another key factor for the detection of intracellular Ca2+ 
fluctuations is related to imaging hardware. For optimal temporal resolution and light sensitivity, high-quality 
oil-immersion objectives offer high numerical apertures. Vacuum-cooled electron multiplying CCD (EM-CCD) 
cameras detect photons with quantum efficiencies above 90% while maintaining reasonable noise levels. 
Inevitably, there is a trade-off between the image capture time (accumulating enough photons to retrieve a good 
signal-to-noise ratio) and time resolution (the framerate needed to capture fast biological events)19.

Image processing
High quality real-time Ca2+ imaging yields valuable datasets, but the large file sizes and the short duration of tran-
sient signals in noisy image data pose a challenge in data processing and storage. Considering the need to com-
pare conditions in many cells per groups, manual processing of Ca2+ imaging data is laborious and sensitive to 
human bias by gradual changes in decision-making. Many good programs have been developed to detect changes 
in Ca2+ imaging data. Most are open source and available for widely used platforms as ImageJ28,29, MATLAB30–39, 
Python38,40 and R29 or can be run as a desktop application41. Many excellent tools, such as SeNeCA30,NeuroCa31 
and FluoroSNNAP32, were designed for the optical analysis of neuronal circuits or high-throughput analysis of 
cell cultures, typically reporting Ca2+-based activity patterns of single or multiple neuronal cell bodies detected 
in vivo, ex vivo or in vitro30–32,36,37,39,41. Other tools like PeakCaller35 and SamuROI40 analyse Ca2+ signals in prede-
fined regions (ROIs), offering accurate detection of biological signals in noisy data on the macro- to micro-scale, 
as small as dendritic spines. Automated detection of micro-scale Ca2+ signals in spatiotemporal (x,y,t) datasets 
has been achieved with xySpark in cardiomyocytes loaded with Fluo-4-AM (short duration with halftimes in 
the 10–50 ms range; spatial halfwidth of 1–5 µm)28 and with CaSCaDe in astroglia expressing GCaMP3 (mean 
duration of 9 s, size range 6–22 µm)33. For our purpose of studying spontaneous synaptic Ca2+ signals how-
ever, we were prompted to develop an algorithm combining all of the following features: (a) the ability to detect 
low-amplitude signals in noisy data with a small type II error (i.e. with a good detection rate of biological events); 
(b) analysing full images without user-defined ROIs; (c) the ability to process large movies (typically 10 GB in 
size); (d) analysing events in micro-scale subcellular compartments rather than somatic oscillations or patterns 
in neuronal ensembles; (e) the ability to visualize spatiotemporal signals and categorize the resulting events; and 
(f) tools to report descriptive parameters of the detected events including amplitude, frequency and kinetics.

In general, automated detection methods employ four steps. First, data are filtered to reduce noise. The stand-
ard deviation of a Gaussian filter is typically implemented as a user controlled setting and can be applied to the 
spatial or temporal dimension of a signal, or both. Second, a threshold is set based on data characteristics, such as 
the mean and the standard deviation of the spatial and/or temporal dimension of the data. Data are then divided 
into super threshold and sub threshold pixels, where super threshold pixels are considered to contain relevant 
biological signal whereas sub-threshold pixels are excluded from further analysis. Third, super-threshold pix-
els that are directly adjacent in the spatial or temporal dimension are grouped into individual segments, which 
can be further analysed as distinct units of the data (‘regions of interest’). A widely used method for grouping 
is connected-component analysis. Other strategies such as spatio-temporal independent component analysis 
(ICA)32,36, non-negative matrix factorization (NMF)37 and constrained non-negative matrix factorization and 
deconvolution38 exist but were not evaluated in our study.

Here we report SICT, an open source program that automatically detects low amplitude SCTs in noisy 
time-lapse imaging data. SICT allows to visually inspect each Ca2+ event and classify events for further analysis. 
The validity and sensitivity of the methods were confirmed using both simulated and experimental data.

Results
Automated detection of SCTs. Cultured neurons expressing the fluorescent Ca2+ indicator GCaMP6f 
were studied by time-lapse imaging at ≈29 Hz. Exploiting repeated measurements in the time dimension, a 3D 
Gaussian filter effectively reduced noise as illustrated in Fig. 1a,b. To optimize the detection of sudden increases 
of Ca2+, occurring within less than 5 frames (0.17 s in our experiments), ΔF/F0 values were calculated using a 
moving average for F0 (see methods for details). Note that this definition of F0 is unsuitable to detect slow fluctu-
ations. A threshold was set at the median plus 3 times the interquartile range for each frame (Fig. 1c, right panel). 
All pixels exceeding the threshold were grouped together with neighbours in space or time, resulting in 3D ROIs 
containing various numbers of pixels. Each ROI thus corresponds to a putative Ca2+ event.

To reduce false positive detections, the ROIs were subsequently filtered based on two criteria. First, ROIs 
consisting of only a single pixel were excluded because these events typically originate from ‘hot pixel noise’ gen-
erated in the EM-CCD camera, and are inconsistent with the instrument’s point spread function. Second, ROIs 
occurring outside the neuronal cell structure can optionally be excluded. For this purpose, an inclusion mask 
was defined as all image regions with above-average pixel intensities (Supplementary Fig. 1). The latter criterion 
reduced the number of ROIs twofold. In 14 cells analysed, 98,4% of all SCTs (interpreted as true events after 
visual inspection) occurred within the neuronal inclusion mask, suggesting that this filter has a minor effect on 
detection sensitivity (Supplementary Fig. 1). All ROIs meeting the inclusion criteria were saved for later visual 
inspection and downstream analysis together with their properties (see Supplementary Table 1).

Performance of automated detection in noisy data. To test the performance of SICT in the presence 
of increasing noise levels, simulated datasets were produced at different SNRs by mixing synthetic Ca2+ signals 
with realistic background noise. Figure 2a illustrates simulated events with identical background noise in a range 
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of SNRs. At maximum performance, 89% of the generated events were correctly detected. Of this maximum 
performance, 99% was reached at a SNR of 3.64. Half/maximal performance was reached at 1.91 SNR (Fig. 2b).

Assisted inspection. To allow visual inspection of the ROIs generated by automated detection, we developed 
a graphical user interface which is explained in detail in the Supplemental Manual. During the manual selection, 
ROIs can be sorted for descending quality scores which helps to identify true events (see Supplementary Fig. 6). 
Manual selection further allows to categorize different classes of Ca2+ signalling events. The graphical interface 
shows each event, both after signal processing and as raw data. Relevant sections of the time-lapse movie can be 
played using shortcut keys, allowing to distinguish putative biological events from various potential artefacts like 

Figure 1. Spatiotemporal effects of filtering. As an example, the Ca2+ indicator GCaMP6f was expressed in 
hippocampal neurons and recorded by live epifluorescence microscopy. Three stages of signal processing are 
illustrated from top to bottom. For each stage, a single 2D image is depicted as grayscale image (left), as surface 
graph (middle) or as quantitated signal over time (right). In the right graph, the red area indicates the maximal 
and minimal signal of a 2D ROI consisting of 372 pixels in a region where a Ca2+ transient occurred. The grey 
area indicates the maximal and minimal signal in a background region (defined as all other 261772 pixels). A 
Ca2+ transient peak occurred at (x, y, t) = (166 µm, 157 µm, 3.48 s). (a) The raw signal demonstrates the difficulty 
of identifying Ca2+ events in raw data. (b) A 3D Gaussian filter with a standard deviation of 3 and 2 pixels 
respectively in the spatial and temporal dimension was applied to remove high-frequency spatial and temporal 
noise. (c) The ‘ΔF/F0’ transformation highlights pixels that have increased intensity values compared to the 
previous frames (left, middle). The ΔF/F0 signal exceeds the background, allowing peak detection in noisy data 
(right). The threshold used for automated event detection is defined as the median pixel intensity of each frame 
plus three times the interquartile range (blue dashed line).
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moving structures, focus drift, hot pixel noise or any other possible sources of false event detection. We defined an 
event as true if the identified peak is consistent with the appearance of Ca2+ fluctuations in living cells.

After inspection, ROIs scored as true events were analysed for their properties such as the event frequency, 
amplitude, rise time, decay time, and FWHM (full width at half maximum; Supplemental Manual, step 3). Common 
properties are shown in Supplementary Fig. 2. Optionally, the user can label events in 9 classes based on their kinet-
ics. Different types of Ca2+ kinetics were observed in our experiments, summarized in Supplementary Fig. 3 and 
Supplementary Table 2. In 14 cells analysed, fast isolated Ca2+ transients (‘FastSingle’) represented the most abundant 
class of events (59.69%). Other events appeared as a combination of fast and slow Ca2+ rises (‘SlowFastComplex’; 
18.86%), included multiple fast Ca2+ transients (‘FastComplex’; 9.59%) or were classified as slow isolated Ca2+ tran-
sients (‘SlowSingle’; 5.95%). Other event types had minor contributions (Supplementary Fig. 3).

Figure 2. Program performance. True positive detection rate as a function of SNR in simulated noisy datasets. 
(a) Example traces of simulated raw data for a range of SNR. A pixel was chosen randomly and simulated 
with a SNR from 0 to 4 in steps of 0.5, using the same simulated background noise and example event. (b) The 
performance of automated detection was measured as the fraction of accurately detected events in simulated 
datasets with different SNRs. Each blue dot represents a separate test. The red line indicates a sigmoid fit of the 
aggregate data. Half-maximal performance was observed at SNR 1.91 with a true positive rate of 0.43. Optimal 
performance (99% of the maximum rate of 0.88) was reached at SNR 3.64 and higher.
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Human observer comparison. To evaluate the effect of differences between individual users during event 
inspection, four human observers were instructed to select all fast-isolated Ca2+ transients based on experience 
and a list of guidelines: the Ca2+ event should be isolated (and therefore not surrounded by other Ca2+ events), 
spatially localized in the neuronal structure and short-lived (in the order of ms). The same four recordings were 
processed by each observer. Before inspection, ROIs were sorted from high to low amplitude. Observers were 
instructed to continue searching for Ca2+ transients until no single transients were detected in the last examined 
320 events.

Between the four human observers, of all 612 unique events scored by at least one observer (average trace ± SD 
shown in Fig. 3a), 158 events were scored by each of the four observers. One observer selected over 250 unique 
events that were not scored by other users (Fig. 3c). The average trace per observer did not show meaningful 
differences (Fig. 3b). We also compared the number of events, frequency, amplitude, FWHM, rise time and decay 
time (Fig. 3d–i). Collectively, the results show that the frequency of Ca2+ transients scored by different observers 
varies significantly. A similar difference was found for the amplitude, although with a small effect size. It is thus 
advisable that different experimental groups are analysed by the same person.

Manual versus assisted image processing. To validate the assisted image processing method, we com-
pared the results from manual and assisted processing obtained from the same 14 time-lapse movies (Fig. 4). A 
key difference is that in manual processing, the ROIs are defined a priori by the user and do not change over time. 
In contrast, the assisted method includes all pixels with detectable fluorescence signals, creating a ROI that can 
change over time. High-intensity Ca2+ events produce more pixels with detectable signals, yielding larger ROI 
sizes from which the ΔF/F0 signal is averaged. Thus, the amplitude of a Ca2+ event is not directly proportional to 
the fluorescence intensity of the raw signal.

In line with this idea, the assisted procedure reported significantly lower peak ΔF/F0 amplitudes of 0.064 com-
pared to 0.112 after manual detection (p < 0.001; Fig. 4a,b and Supplementary Fig. 4). The number of detected 
events was higher after assisted detection (frequency of 0.174 Hz compared to 0.091 Hz; Fig. 4d,e) but this differ-
ence was not significant. Furthermore, the peak duration tended to be longer after assisted detection (FWHM of 
0.278 s compared to 0.175 s; Fig. 4c and Supplementary Fig. 4).

To verify if the ROI area was an important determinant of the reported SCT amplitudes, the ROI areas in the 
x, y dimension were compared for the same SCTs detected by the manual vs. the assisted method. The mean area 
of automatically identified ROIs was more than three-fold bigger (35.5 ± 1.6 µm2 compared to 10.8 ± 0.3 µm2; 
n = 8 events from 1 cell, Fig. 5a). To further test the effect of the different ROI definition on event amplitude and 
duration (Fig. 5b–d), we processed the same 8 Ca2+ transients in three different ways: (1) with ROIs generated by 
assisted processing as before; (2) with ROIs that were manually drawn as before; and (3) with ROIs identical to the 
manual method, but further processed by the assisted method. As expected, the lower amplitude of automatically 
processed ROIs (0.089 ± 0.012 ΔF/F0 for group 1 and 0.188 ± 0.035 for group 2; p = 0.018) was restored to a sim-
ilar amplitude when the ROIs were made identical (group 3, 0.162 ± 0.036 ΔF/F0; p = 0.068 compared to group 
1). Differences in the reported peak duration were not statistically significant between the three groups (Fig. 5d). 
To confirm the effect of the ROI area in the amplitude output, we calculated the integrated amplitude (area times 
amplitude), which shows a significantly higher value for the assisted processing (3.21 ± 0.51 ΔF/F0 × µm2 for 
group 1 and 2.08 ± 0.41 for group 2; p = 0.012) and even higher differences when the ROIs were made identical 
(group 3; 1.81 ± 0.42 ΔF/F0 × µm2; p < 0.001; Fig. 5e). By including all pixels with above-threshold signal, the 
automated ROI definition was more suitable for Ca2+ event detection in noisy data than the manual ROI defini-
tion. Thus, while the larger ROI size precludes a direct comparison of ΔF/F0 amplitudes, an optimal measure of 
peak intensity was obtained by integrating ΔF/F0 signal over ROI size.

Caffeine effect on Ca2+ transients. To address if the assisted program is able to detect biological dif-
ferences, we tested the effect of caffeine on SCT properties. Caffeine sensitizes RyRs, which in turn triggers 
Ca2+ release from intracellular stores42. The effect of caffeine on intracellular Ca2+ stores has been studied 
in many cell types, such as smooth and skeletal muscle cells, chromaffin cells, PC12 cells and different types 
of neurons. Generally, caffeine application increases intracellular Ca2+ concentration in a cell type- and 
concentration-dependent manner43–46. The effect of caffeine on SCTs is well studied in excitable cells such as 
smooth muscle cells, in which caffeine increases the frequency of SCTs12. Caffeine also increases the frequency of 
SCTs in magnocellular hypothalamic neurons17 and superior cervical ganglion neurons47.

To investigate the effect of caffeine on SCTs in our hippocampal neurons, time-lapse images were recorded first 
for 3 min in the absence and then for 3 min in the presence of 10 mM caffeine. AP propagation in the neurons was 
blocked by TTX throughout the experiment. Ca2+ transients were analysed for the second minute of each condi-
tion to exclude image drifting artefacts and long-lasting events that were mostly noticed in the first minute after 
the application of caffeine (Fig. 6b). The number of SCTs was significantly increased by caffeine (from 13.8 ± 3.9 
to 22 ± 3.6 events, corresponding to frequencies of 0.23 and 0.36 Hz respectively; p = 0.006, n = 22 cells, N = 3 
independent experiments). The peak duration also increased from 185 ± 14 to 240 ± 36 ms (p = 0.003). A trend 
towards an increase was observed for the integrated peak intensity, from 1.89 ± 0.21 to 3.47 ± 0.5 ΔF/F0 × µm2  
(p = 0.012; accepted α significance <0.01 for multiple parameters testing). The ROI area in presence of caffeine 
was 1.53-fold bigger than in its absence (Fig. 6h). In summary, these results show that SICT successfully identifies 
biological differences. Furthermore, we confirm that caffeine evokes complex, long-lasting Ca2+ events especially 
immediately after the drug application, and show that the frequency and FWHM of SCTs are increased one min-
ute after caffeine application.
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Discussion
In the last years, several programs have been developed for (semi)-automatic Ca2+ signalling analysis in different 
software environments. For the purpose of our study, we aimed to develop a program that speeds up the detection 
of small-amplitude Ca2+ elevations in noisy data.

Figure 3. User-dependence of Ca2+ event inspection. Four human observers inspected ROIs from the same 
dataset and selected ‘FastSingle’ Ca2+ events (Supplementary Fig. 3). (a) Average ΔF/F0 trace ± SD of 612 
unique events selected by one or more observers. (b–i) Each colour (orange, yellow, blue and purple) marks a 
different observer. (b) Average ΔF/F0 trace of all events selected by each observer. (c) Number of events selected 
by one or multiple (1–4) observers. (d–i) Comparison of event parameters after scoring by different observers 
is shown in box plots. Open circles show mean value per cell; closed circle represent the mean ± SEM of n = 4 
cells, N = 1 independent experiment. Statistical analysis was performed with (1)one-way repeated measures 
ANOVA; (2)Friedman test, (3)one-way repeated measures ANOVA with Greenhouse-Geisser correction (dashed 
line); pairwise comparison (line). (d) Number of events. (e) Frequency. (f) Amplitude. (g) FWHM. (h) Rise 
time. (i) Decay time.
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Events detected by the SICT algorithm still require manual curation. This was a deliberate decision and a 
key feature which distinguishes SICT from other excellent tools28–35,40,41, such as FluoroSNNAP32, xySpark28 and 
NeuroCa31. All are able to detect SCTs. When adjusting parameters to strictly filter out true biological signals, we 
found that such filtering inevitably reduces the detection sensitivity, leading to false negatives. In addition, we did 
not want to make strict assumptions regarding the signal waveforms to be detected. Thus, we aimed to make the 
manual curation very fast by building a convenient graphical interface. Importantly, the automatically detected 
events are sorted for their likeliness to represent a biological signal. Various sorting methods can be chosen as 
explained in the section ‘ROI sorting methods’ of the SICT user manual (see Supplemental information). Events 
with the highest scores are shown first, typically representing convincing biological events, whereas later in the 
list, true events will be accompanied by more and more false positive hits. At some point, when biological signals 
are scarce and noise becomes predominant, the user can decide to stop the manual curation process. This decision 
can also be seen as a ‘filtering threshold’, but it is not a blind choice because the user is aware of the signal and 
noise patterns specific for the experiment.

The assisted method was validated by testing its detection sensitivity using experimental data and simulated 
experiments with various SNRs. The program performance reached a maximum true positive rate (TPR) of 0.89, 

Figure 4. Comparison of manual and assisted image processing. (a) Average ΔF/F0 trace ± SEM of all detected 
Ca2+ peaks after manual (red) or assisted image processing (black). Traces were first averaged to calculate 
the mean trace per cell, and then averaged to calculate the mean ± SEM from n = 14 cells, N = 1 independent 
experiment. (b–e) Box plots show Ca2+ transient parameters resulting from assisted and manual image 
processing. Open circles represent averaged value per cell; closed circles show mean ± SEM from 14 cells, N = 1 
independent experiment. Statistical significance was tested with (1)paired samples t-test; (2)Wilcoxon signed-
rank test. (b) Amplitude. (c) FWHM. (d) Frequency.
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thus leaving 11% of true events undetected even at high SNRs. As a possible cause, local pixel noise may contrib-
ute to mislocation of peak signals in the x, y or time dimension. In another study, localization errors between 
0 and 1 μm were reported48 whereas our criterion for effective detection was set to 0.4 μm. Half-maximal per-
formance with our program required SNRs of 1.91. Other published programs have claimed high performance 
(>98%) with SNRs as low as 0.2 albeit calculated differently49. However, the method in that study used predefined 
ROIs as input, and furthermore used manually selected example events to train a classifier. We avoided such 
conditions to be able to analyse large numbers of time-lapse movies. Furthermore, as illustrated by the example 
events in Fig. 2a, it may be acceptable to exclude events at SNRs below 1.5. A balance between true and false pos-
itive detection rates is an inherent dilemma in all Ca2+ imaging experiments and should be reconsidered for each 
individual experiment. This dilemma underlines the value of visual event inspection to aid data interpretation.

Figure 5. Effect of ROI definition on Ca2+ event parameter measurement. (a) Automatically identified ROIs 
(black) had a bigger 2D area than manually drawn ROIs (dark blue). (b–e) Each parameter was calculated using 
the fully assisted (black) and the manual method (dark blue), or a combination where the ROIs were manually 
defined and further processed by the assisted method (light blue). (b) Average ΔF/F0 trace ± SEM of 8 Ca2+ 
transients of 1 cell. (c–e) Box plots show Ca2+ event parameters. (c) Amplitude. (d) FWHM. (e) Integrated 
amplitude. Statistical significance was assessed with (1)Wilcoxon signed-rank test, (2)one-way repeated measures 
ANOVA or (3)one-way repeated measures ANOVA with Greenhouse-Geisser correction (dashed line); pairwise 
comparison (line; n = 8 Ca2+ events, N = 1 cell).
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Figure 6. Caffeine affects the frequency and duration of SCTs. (a) Representative image of a neuron labelled 
with GCaMP6f. Red squares indicate five ROIs for which the ΔF/F0 intensity over time is shown in b. (b) 
Each neuron was perfused for three minutes in 1 μM TTX followed by three minutes in 1 μM TTX and 10 mM 
caffeine. Only the second minute of each perfusion was used to analyse the properties of SCTs (red circles). 
(c–k) SCT event parameters in absence (black) and presence (green) of 10 mM caffeine. (c) Average ΔF/F0 
trace ± SEM of all averaged SCTs per cell. (d–m) Box plots show averaged SCTs parameter values per cell (open 
circles) and their overall mean (closed circles). Statistical significance was tested using (1)paired samples t-test; 
(2)Wilcoxon signed-rank test (n = 22 cells, N = 3 independent experiments). (d) Number of SCTs. (e) Frequency. 
(f) Integrated amplitude. (g) Amplitude. (h) ROIs area 2D. (i) FWHM. (j) Rise time. (k) Decay time.
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Compared to manual processing, the SICT-assisted method readily detected Ca2+ elevations with at least a 
similar sensitivity. SICT uses dynamic ROIs (i.e. changing over time) which are automatically generated instead 
of being user-defined. Higher Ca2+ signals yield larger ROIs. Therefore, the best measure of peak intensity is 
obtained by integrating the ΔF/F0 signal over ROI size. In contrast, ΔF/F0 amplitudes without integration should 
not be used as a direct measure of Ca2+ signal amplitude. For the same reason, the SICT method typically reports 
lower ΔF/F0 amplitudes (0.05–0.1) than manual methods (0.3–1)8,14,15,18. These lower ΔF/F0 amplitudes do not 
reflect lower Ca2+ peak concentrations but are a consequence of calculating the ΔF/F0 from a larger ROI, which 
helps to average out noise and improves the sensitivity of detection.

The SICT code is open source, allowing versatile downstream data processing in MATLAB. Both raw and 
analysed data are stored in a structure which allows easy data retrieval and event inspection. Overall, using the 
assisted processing and visual event inspection we could analyse 10 times more recordings compared to the man-
ual method in the same amount of time. As may be expected, visual inspection by different users was a significant 
source of variation in the analysis, mostly affecting the event frequency. To avoid systematic differences, event 
inspection should be performed by the same user for all experimental groups.

As a test case, our program readily detected the expected increase in the frequency and duration of SCTs 
in paired recordings from hippocampal neurons after caffeine application. At the same caffeine concentration, 
Ca2+ syntillas in chromaffin cells previously showed a 1.73-fold frequency increase, without effect on the ampli-
tude50. Nerve terminals stimulated with 20 mM caffeine exhibited a 2-fold frequency increase while the amplitude 
increased 1.18 fold17. Other studies on hippocampal neurons, which focused on SCTs, generally altered the SCTs 
using 30 μM ryanodine, which reduced the frequency of SCTs by blocking RyRs11. Finally, Llano and colleagues 
assessed SCTs in Purkinje cells after application of an agonistic concentration of ryanodine (5–10 μM), which 
induced a 3.8-fold frequency increase18. Our results thus agree with previous reports and demonstrate that SICT 
is well applicable to detect changes in SCT frequencies.

In conclusion, SICT-assisted image processing can be widely applied to investigate Ca2+ transients or other 
fast local fluorescence increases in live cell imaging data, providing a new tool to accelerate the discovery of fast 
local signalling pathways in living systems.

Methods
Primary neuron culture. Animals were housed, bred and experimentally used according to institutional 
guidelines and Dutch and U.S. governmental laws. Prior approval was obtained from the animal ethical commit-
tee of the VU University and VU Medical Centre, named ‘Dier ethische commissie (DEC)’, approval license FGA 
11-03. Hippocampal neurons were obtained from C57BL/6 mouse brain at embryonic day E18. Unless specified 
otherwise, all chemicals were from Invitrogen (The Netherlands). After removal of the meninges, the hippocampi 
were dissected in Hank’s balanced salt solution (HBSS; Sigma), which was buffered with 10 mM HEPES. Cells 
were dissociated with 0.25% trypsin for 20 min at 37 °C. After washing 5 times in HBSS, the cells were suspended 
in Neurobasal medium, supplemented with 2% B-27, 1.8% HEPES, 0.25% glutamax and 0.1% Pen-Strep. Cells 
were triturated by three passes through fire-polished Pasteur pipettes and counted using a Fuchs-Rosenthal 
chamber. High density continental cultures were created by seeding 25k neurons on a layer of 25k rat glia per 
well on 18 mm coverslips in 12-well plates or 50k neurons on 50k glia on 25 mm coverslips in 6-well plates. Glass 
coverslips were pretreated by washing in ethanol and sprayed with 0.1 mg/ml Poly-D-lysine, 0.2 mg/ml rat tail 
collagen (BD Biosciences) in 10.2 mM acetic acid. Cultures were kept in a humidified incubator at 37 °C and 5% 
CO2. After 8 days, half of the medium was replaced. Neurons were infected with lentiviral particles encoding 
GCaMP6f27 at 7 days in vitro (DIV) and analysed between DIV14-18.

Ca2+ imaging. Ca2+ imaging was performed using a custom-built epifluorescence setup called FAINT (for 
Flash activation of Action potential-Independent NeuroTransmission). It uses an inverted microscope (IX73, 
Olympus) illuminated by a polychromeV monochromator (TILL Photonics) with a 150 W Xenon high stability 
lamp in combination with a suitable GFP filter set (GFP filterset 49002, Chroma). Coverslips were placed in the 
imaging chamber with artificial cerebrospinal fluid (ACSF) as extracellular solution containing (in mM): 140 
NaCl, 2.4 KCl, 10 HEPES, 10 glucose, 4 CaCl2, 4 MgCl2 (pH 7.3, 300 mOsm). 1 μM of tetrodotoxin (TTX, Ascent) 
and 10 mM caffeine were added when specified. GCaMP6f was excited at a wavelength of 480 nm. Imaging was 
performed using a 40x-oil immersion objective (Olympus UAPON40xO340-2, NA 1.35) at RT (22–24 °C). Images 
were acquired by Live Acquisition software (LA; FEI) at a frequency of 28.77 Hz for 3–5 minutes using an Andor 
Ixon Ultra 897 electron-multiplying CCD (EM-CCD) camera with the following settings: vacuum cooling to 
−70 °C, EM gain of 200, pre-amplification of 2, 40% lamp intensity, 30 ms exposure. Images had a spatial resolu-
tion of 512 × 512 pixels each calibrated to cover 0.16 μm2 of the specimen. Intensity values were recorded in 16-bit 
unsigned integer format, producing roughly 10 gigabytes per time-lapse movie. Data were exported in ‘.raw’ for-
mat using the ‘Offline Analysis’ data streaming option in Live Acquisition software, together with its associated 
‘.mtd’ file which contains all metadata of the experiment. To investigate the effect of caffeine on SCTs, the same 
cell was first perfused in presence of 1 µM TTX for 3 min, followed by 3 min in 1 μM TTX and 10 mM caffeine.

Automatic event detection. Source code is accessible in the Supplemental Software. All computations 
were performed in MATLAB version 2016b51 unless specified otherwise. The automatic detection of ROIs is run 
by a graphical user interface (see Supplemental Manual, step 1). Data was imported as a 3D matrix (x, y, time) of 
unsigned 16-bit integer numbers indicating GCaMP6f fluorescence intensity. Instead of the often used 2D filter48 
we used a 3D Gaussian filter (imgaussfilt3) to reduce high-frequency noise by weighted averaging each pixel with 
its neighbours, using a standard deviation (sigma) of 3 pixels for spatial, and 2 frames for temporal filtering. To 
calculate ΔF/F0 for each pixel, the baseline intensity (F0) was determined as a moving average of 15 to 5 time 
points prior to the current data point. The ΔF/F0 was then calculated as (F − F0)/F0. For an example of typical raw 
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and calculated data values, see Supplementary Fig. 8. The threshold to select Ca2+ transients was calculated for 
each frame by taking the median plus three times the interquartile range. The interquartile range is an effective 
measure of noise levels because it is not affected by the occurrence of Ca2+ fluctuations or baseline drift.

The above-threshold data points were clustered into 3-dimensional ROIs using the bwconncomp func-
tion. The resulting ROIs (each a collection of voxels in the x,y,t dimension) represent putative Ca2+ elevations. 
Information for each ROI was saved to an output file for further analysis, including raw intensity values, the peak 
x, y and t coordinates and the weighted centroid (for a full list of properties see Supplementary Table 1).

Assisted event inspection. Kinetic parameters for single events are calculated as detailed in the 
Supplementary Table 3. In short, these included the baseline and amplitude of the ΔF/F0 trace; the 10–90% rise 
time, 90-10% decay time and the full width at half maximum (FWHM). For kinetic parameters, time values were 
estimated beyond framerate resolution by linear interpolation. To report descriptive parameters of selected SCTs, 
the parameters were first calculated per event, averaged per cell and then averaged to get the overall mean.

Manual image processing. For comparison, we also performed manual processing by opening the image 
stack in ImageJ (NIH). The first 500 frames (17s) were removed to allow removal of a bleaching component by 
subtraction of a mono-exponential curve fitted to the average frame intensity over time. ROIs were manually 
drawn, together fully covering visible neuronal structures in the image. Average pixel intensities of each ROI were 
calculated for each frame, graphed and visually inspected. The ΔF/F0 was calculated using a F0 value calculated 
as the average from the last 25 data points of the trace. Peak amplitude was calculated as maximum ΔF/F0 during 
the peak minus a baseline value (averaged value from the 10 data points of the same ΔF/F0 trace, 50 frames before 
the peak). The FWHM was calculated as the time of the closest data point between the half-maximal signal in the 
rising and decay phase of the peak. The frequency of events was calculated as the total number of events divided 
by the total imaging time in each experiment. The parameters were calculated per event, averaged per cell and 
then averaged to get the overall mean.

Simulations of algorithm performance in noisy data. To assess the detection performance, a range 
of signal-to-noise ratios (SNRs) was tested using simulated data. Background noise was simulated by taking raw 
data frames and calculating mean and standard deviation. These values were used to generate a matrix with the 
same spatial dimensions. To reduce processing time, a decreased time dimension was used. Per simulation, 100 
Ca2+ events at 10 Hz (on average 0.35 per imaging frame) were generated by adding values of 1 at random loca-
tions within a cell mask in a matrix of all zeros. The mask corresponded to all pixels that had, on average in the 
time dimension, a higher-than-average intensity compared to the whole field of view (likely corresponding to a 
fluorescently labelled cell). The events were then spread out in the spatial dimension using a 2D Gaussian filter 
with a standard deviation of one pixel in both the x and y direction. Subsequently, the signal was convoluted in 
the time dimension with a normalized example event, for which we used the Ca2+ signal from a neuron firing a 
single action potential. This example event was multiplied by the standard deviation of the corresponding pixel 
and multiplied with a SNR factor. Finally, the matrix that contained background noise was summated with the 
matrix that contained simulated events and saved in the same format as experimental data files.

This procedure was repeated with SNRs varying from 0.01 to 7 in 0.01 increments. The files were automatically 
processed by SICT and the output automatically analysed to determine how many events had been detected, using 
the criterium that SICT detected a ROI with a spatial accuracy of 1 pixel (0.4 µm) and a temporal accuracy of 10 
frames (±348 ms).

Data analysis. Statistical analysis was performed using SPSS v.23.0 (IBM Corp., Armonk, NY, USA). Data 
are reported as mean ± SEM, except when specified otherwise. Data were checked for normality using the 
Shapiro-Wilk or Kolmogorov-Smirnov test. When required, other assumptions were tested: homogeneity of the 
variance was assessed with Levene’s test; the sphericity assumption was tested with Mauchly’s test. For normally 
distributed data, a parametric test was run; otherwise a non-parametric test was performed. If the sphericity 
assumption was not met, the Greenhouse-Geisser correction was used to adjust the degrees of freedom. For 
two groups, a paired samples t-test or Wilcoxon signed-rank test was performed. In case of more than 2 groups, 
one-way repeated measures ANOVA or Friedman test was used.

Where necessary, the alpha significance threshold was adjusted for multiple testing. In case of more than 2 
groups, a Bonferroni correction was used to adjust the p-value for pairwise comparison, keeping the alpha signif-
icance threshold at 0.05. The effect size was calculated for the paired samples t-test as = +r t /(t df)2 2 , for 
Wilcoxon signed-rank test as = √r Z/ N , for one-way repeated measures ANOVA as = ηr 2  and, for Friedman 
test as = χ χ +r /( N)2 2 . The effect size is reported for all p-values lower than 0.05. Statistical details for each 
figure are reported in Supplementary Table 4. In box plots, open circles represent individual measurements and 
filled circles depict mean ± SEM. The central line shows the median and statistical outliers are marked by red 
‘plus’ symbols.

Code availability statement. MATLAB code can be retrieved without restrictions from the VU Institutional 
Research Data Management system (Groffen, AJA, 2018, “Replication data for: SICT: automated detection and super-
vised inspection of fast Ca2+ transients”, https://hdl.handle.net/10411/UA6UZG, DataverseNL). An instruction is 
included in the Supplementary Information.

https://hdl.handle.net/10411/UA6UZG
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Data Availability Statement
Replication data are deposited in the VU Institutional Research Data Management system (Groffen, AJA, 2018, 
“Replication data for: SICT: automated detection and supervised inspection of fast Ca2+ transients”, https://hdl.
handle.net/10411/UA6UZG, DataverseNL).
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