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Abstract

In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial
‘‘Excitatory Amino Acid Transporters’’ (EAATs) together with an excess glutamate-release by invading immune cells causes
excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory
CNS damage, we assessed the effects of a b-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in
‘‘Myelin Oligodendrocyte Glycoprotein’’ (MOG)-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of
murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on
EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary
glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the
clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while
dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake
upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the
glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFc and IL17
secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs) e.g. dendritic cells (DCs)
and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a b-lactam antibiotic attenuates
disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation
by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than
or modulation of central glutamate homeostasis.
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Introduction

Multiple sclerosis (MS) is considered a paradigmatic autoim-

mune inflammatory disorder of the central nervous system (CNS)

[1,2]. Its animal model, experimental autoimmune encephalomy-

elitis (EAE), mimicks several aspects of the human disease [3].

Peripherally activated autoreactive T- and B-lymphocytes together

with granulocytes and macrophages cross the blood-brain-barrier

and migrate into the CNS parenchyma. This is followed by

formation of inflammatory plaques in the CNS, that are mainly

but not exclusively located in white matter [1]. The autoimmune

attack against the myelin-sheath and oligodendrocytes (ODC)

causes inflammatory demyelination accompanied by early neuro-

nal cell death [4].

Within the inflamed CNS, proinflammatory cytokines such as

TNFa und IFNc are believed to cause an extracellular

accumulation of glutamate: down-regulation of both, the predom-

inant glial ‘‘Excitatory Amino Acid Transporter 2’’ (EAAT2) and

glutamate metabolizing enzymes glutamine synthetase and

glutamate dehydrogenase, impair the glial glutamate uptake

capacity [5,6]. Moreover, invading macrophages and T cells as

well as resident microglia up-regulate glutaminase and secrete

massive amounts of glutamate via different release-mechanisms

[7,8,9]. Resulting excessive extracellular glutamate levels cause

prolonged activation of calcium-permeable ionotropic glutamate

receptors on neuronal and glial cells leading to excitotoxic CNS-

tissue damage [10,11]. Consistently, ionotropic glutamate receptor

antagonists have proven to be effective in ameliorating the clinical

course and CNS-tissue damage in EAE [10,11,12], thus making

glutamate-mediated excitotoxicity an attractive target for future

therapy of MS [13].

Rothstein et al. reported a pronounced long-term functional up-

regulation of the glial glutamate transporter EAAT2 by b-lactam

antibiotics thereby protecting neurons and glial cells from

excitotoxicity in a variety of neurodegenerative disorders without

interfering with regular synaptic transmission [14]. In order to

develop strategies to dampen excitotoxic CNS damage in

autoimmune CNS inflammation, we challenged the potential

CNS-protective effect of ceftriaxone in MOG-induced murine

EAE [15].
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Results

A b-lactam antibiotic profoundly attenuates the clinical
course of murine MOG-induced EAE

WT C57BL/6 mice were immunized with recombinant human

MOG35–55 to induce EAE and injected daily with ceftriaxone

(200 mg/kg/d i.p.) starting either from the day of immunization

(MOG+ceftriaxone; n = 8; permanent treatment) or from the onset

of neurological symptoms (MOG+ceftriaxone; n = 8; therapeutical

treatment). MOG-immunized control mice (MOG; n = 8) injected

daily with an equal volume of saline starting from the day of

immunization developed a clinical course typical of EAE with an

onset of neurological symptoms about day 10, a peak-clinical score

of 7.460.4 at day 17 and a residual score of 4.660.9 (Fig. 1A,

Tab. 1). Mice injected with ceftriaxone from the day of

immunization showed a dramatically attenuated EAE course.

Disease maxiumum was delayed, the peak score was significantly

reduced (d 22: 2.260.5, p,0.001 ***) and the residual score

significantly lowered (d 50: 0.860.3 (p,0.001 ***; Fig. 1A,

Tab. 1). Mice treated with ceftriaxone from the onset of

symptoms had a similar peak-clinical score of 6.360.7 (p = 0.23)

17 days post-immunization, but showed faster recovery of

symptoms with a significantly lower residual score of 2.060.0 at

day 50 (p = 0.04 *; Fig. 1A, Tab. 1). Non-immunized mice

treated with ceftriaxone on a daily basis were used as an additional

control. They neither developed any neurological symptoms nor

any weight loss (Tab. 1). The mean cumulative clinical score was

highly significantly different between the experimental groups

(control vs. permanent: p,0.001 ***; control vs. therapeutical:

p = 0.05 *; permanent vs. therapeutical: p,0.01 **; Fig. 1B,

Tab. 1).

Ceftriaxone does not influence total EAAT2 protein
expression levels in the murine CNS

We next tested whether upregulation of EAAT2 and subsequent

reduction of inflammation-induced glutamate excitotoxicity was

responsible for the beneficial effects of ceftriaxone in EAE. To

assess the regulation of EAAT2 protein expression levels in the

CNS in response to ceftriaxone treatment, non-immunized

C57BL/6 mice were injected daily with ceftriaxone (200 mg/

kg/d), sacrificed after 5, 10 or 15 days of treatment, and the

EAAT2 protein content of several brain areas was assessed by

western blot. During the experiment mice did not exhibit any

neurological impairment (data not shown). Whole protein samples

from the cortex, hippocampus, optic nerve and spinal cord were

separated by SDS-page and EAAT2 protein was detected in an

approximately 50 kDa band using an antibody specifically

directed against the n-terminal amino acids 16–31 of the EAAT2

protein (Fig. 2A, B). Ceftriaxone-injection did not alter the

protein expression level of EAAT2 in the brain areas examined.

EAAT2-mediated glutamate uptake capacity in a rat
primary mixed glial cell culture is not augmented by
ceftriaxone

Unchanged EAAT2 protein expression as revealed by western

blot analysis does not rule out a posttranslational effect of

ceftriaxone on the number of functional transporters and the

Figure 1. A b-lactam antibiotic profoundly attenuates the clinical course of MOG-induced EAE in mice. (A) Time course of neurological
symptoms after immunization of WT C57BL/6 mice with a MOG peptide (MOG35–55). Mice were treated with ceftriaxone (200 mg/kg/d i.p.) either from
the day of immunization (MOG+CTX permanent; filled squares) or from the individual onset of symptoms (MOG+CTX therapeutic; empty circles).
MOG-immunized control mice (MOG) were injected with an equivalent volume of saline (MOG; filled circles). The degree of neurological impairment
was assessed using a 10-point scoring system. (B) Mean cumulative score of MOG immunized mice treated with saline (control; n = 8) and with
ceftriaxone from the day of immunization (permanent; n = 8) or from the individual onset of symptoms (therapeutical; n = 8). Differences between the
3 experimental groups are significant (control vs. permanent: p,0.001 ***; control vs. therapeutical: p = 0.05 *; permanent vs. therapeutical: p,0.01
**).
doi:10.1371/journal.pone.0003149.g001
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transport capacity of a single transporter protein in the plasma

membrane.

To assess the impact of ceftriaxone on the functional surface

membrane expression level of EAAT2, we used radioactive

glutamate uptake in a rat mixed primary glial cell culture. In a

first set of experiments, glutamate uptake was determined after 5

days of incubation with 0 mM or 10 mM ceftriaxone using either a

NaCl-based extracellular solution in the absence and the presence

of 1 mM dihydrokainate or a sodium-free NMDG Cl-based

extracellular solution to confirm the sodium-dependence of the

transporter-mediated uptake (Fig. 3A). A ceftriaxone concentra-

tion of about 10 mM is usually reached in the cerebrospinal fluid of

mice injected with 200 mg/kg/d i.p. and humans treated for

infectious CNS disorders [16,17]. Under all experimental

conditions, 10 mM ceftriaxone caused no significant increase of

glial glutamate uptake. However, with external NMDG, a

profoundly reduced uptake could be observed in the absence as

well as in the presence of 10 mM ceftriaxone (0.2260.02 and

0.2760.02, respectively; n = 3 trials consisting of 2 samples each;

p,0.001 ***), demonstrating the sodium-dependence of the

secondary-active glutamate uptake process. Moreover, with the

EAAT2 specific inhibitor, dihydrokainate [18], present in the

external NaCl-based solution, glutamate uptake was lowered to

0.4760.03 in the absence and 0.5560.08 in the presence of

ceftriaxone (n = 3 experiments performed in duplicates; p,0.001

***), indicating that glutamate uptake in the mixed glial cell

Table 1. Clinical parameters of the EAE course.

Number of
C57BL/6 Mice Immunization Treatment (i.p.)

Day of Onset/Day
of peak Score

Peak Score/Residual
Score Cumulative Score

8 200 mg MOG saline 10/17 7.460.4/4.660.9 200624

8 200 mg MOG CTX (permanent) 10/22 2.260.5/0.860.3 51612

8 200 mg MOG CTX (therapeutical) 10/17 6.360.7/2.060.0 11966

8 - CTX 0/0 0.060.0/0.060.0 060

6 200 mg MOG saline 10/17 7.060.7/3.860.3 153618

6 200 mg MOG saline+DHK 10/17 6.560.9/5.560.6 210617

6 200 mg MOG CTX 10/17 3.060.6/1.560.5 7263

6 200 mg MOG CTX+DHK 10/17 2.861.4/1.260.2 53615

6 - DHK 0/0 0.060.0/0.060.0 060

Disease incidence was 100% in all experimental groups of the experiments shown in Fig. 1 (white) and Fig. 5 (grey). CTX denotes ceftriaxone, DHK denotes
dihydrokainate.
doi:10.1371/journal.pone.0003149.t001

Figure 2. Ceftriaxone does not alter EAAT2 protein expression in several brain areas in mice. (A) Non-immunized mice were treated for
15 day either with ceftriaxone (CTX; 200 mg/kg/d i.p.) or an equal volume of saline (NaCl). No alteration of EAAT2 protein (50 kDa) expression levels
could be observed in cortex, hippocampus, optic nerve and spinal cord after 5, 10 and 15 days of treatment assessed by western-blot analysis. (B)
Specificity of antibody binding to the EAAT2 protein was confirmed using the immunogenic peptide to block the antibody (lower lane) that was used
to detect the EAAT2 protein in the different brain areas after 5 day of treatment (upper lane). With the peptide-blocked antibody the 50 kDa band
was virtually absent in samples from all brain areas tested, demonstrating specific binding of the antibody to the solubilized EAAT2 protein during
western blotting. b-actin (43 kDa) was used as protein loading control.
doi:10.1371/journal.pone.0003149.g002
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culture is essentially mediated by EAAT2. Assuming the

radioactivity measured after incubation in a sodium-free external

solution to be due to unspecific background activity, the

dihydrokainate-sensitive fraction of the total glutamate uptake is

0.8060.05 in the absence and 0.8560.1 in the presence of

ceftriaxone, closely matching previous results [18,19,20,21].

To rule out a considerable effect of higher ceftriaxone-

concentrations, we measured glial glutamate uptake after incuba-

tion with ceftriaxone concentrations up to 500 mM (Fig. 3B).

However, even at these concentration levels (very unlikely to be

reached therapeutically in the CNS), we observed no significant

alteration of radioactive uptake (p([ceftriaxone] = 0 mM vs.

[ceftriaxone] = 500 mM) = 0.19).

Electrical glutamate uptake currents are unaffected by
ceftriaxone in transfected cells

In line with the lack of an effect of ceftriaxone on EAAT2-

mediated glutamate uptake in our primary glia-cell culture

experiments, we were unable to detect any increase of the

electrical glutamate uptake current mediated by hEAAT2

expressed in a mammalian cell line. EAAT glutamate transporter

mediate a secondary-active, stoichiometrically coupled and

electrogenic transport process involving the inward translocation

of three sodium ions and one proton and the outward

translocation of one potassium ion per molecule of glutamate

[19,22,23]. This results in a net inward transfer of two positive

charges per transport cycle, that can be measured using whole-cell

patch-clamp recording (Fig. 4).

We expressed hEAAT2 heterologously in tsA201 cells and

performed whole cell patch-clamp recording using a KCl-based

internal and a NaCl-based external solution in the absence and

presence of 500 mM glutamate to allow for transporter cycling.

Before experimentation, cells were incubated in ceftriaxone-free

medium or in medium containing 1 mM ceftriaxone overnight for

at least 12 h to assure detection of a rather long-term effect by

covalent binding of ceftriaxone to the transporter protein.

Moreover, ceftriaxone (1 mM) was also present in the recording

solution of cells previously incubated with it to assure detection of

a fast non-covalent binding effect of ceftriaxone.

Activation of the electrogenic glutamate transport by applica-

tion of 500 mM external glutamate caused a current increase in the

negative but not in the positive voltage range and a shift of the

current reversal potential to more positive values (Erev-shift

1464 mV at [ceftriaxone] = 0 mM; 1063 mV, at [ceftriaxo-

ne] = 1 mM; p = 0.49; n = 6 cells, respectively) (Fig. 4A, B, C).

The relative glutamate-induced current increase in the negative

voltage range was indistinguishable in cells previously incubated

for at least 12 h with 1 mM ceftiaxone and untreated cells

(I([glu] = 0 mM)/I([glu] = 500 mM) at 2200 mV = 0.3460.05

without ceftriaxone (Fig. 4B, D); (I[glu] = 0 mM)/

I([glu] = 500 mM) at 2200 mV = 0.3560.05 with 1 mM ceftria-

xone (Fig. 4C, D); p = 0.87; n = 6 cells, respectively) (Fig. 4D).

The clinical effect of ceftriaxone is preserved in the
presence of the EAAT2-specific transport inhibitor
dihydrokainate

The lack of an effect of ceftriaxone on the in vivo EAAT2 protein

expression level in mice as well as on the glial glutamate uptake

capacity and the electrical uptake current in vitro, suggests a

molecular target of ceftriaxone other than the glutamate

transporter. To further test this assumption as well as to

demonstrate the relevance of glutamatergic mechanisms in CNS

inflammation we followed the course of EAE in the presence and

absence of the EAAT2-specific transport inhibitor dihydrokainate

(Fig. 5) [19]. In this setting, animals were also treated with

ceftriaxone. MOG35–55-immunized mice were treated either with

Figure 3. Dihydrokainate-sensitive radioactive glutamate uptake in a rat primary mixed glial cell culture is not influenced by
ceftriaxone. (A) [3H]-glutamate (60 mM) uptake was measured in a rat primary mixed glial cell culture after 5 day of incubation with (white bars) or
without (black bars) 10 mM ceftriaxone using either a NaCl-based external solution in the absence (left) or the presence (right) of 1 mM
dihydrokainate or using a sodium-free NMDG-Cl-based external solution (middle). Substitution of external sodium by NMDG significantly reduced the
uptake in the absence as well as in the presence of ceftriaxone (0.2260.02 and 0.2760.02, respectively; n = 3 trials consisting of 2 samples each;
p,0.001 ***). Dihydrokainate lowered glutamate uptake to 0.4760.03 in the absence and 0.5560.08 in the presence of ceftriaxone (n = 3 trials
consisting of 2 samples each; p,0.001 ***). (B) A ceftriaxone concentration-dependence of the [3H]-glutamate uptake could not be observed after 5
days of incubation with concentrations between 0 and 500 mM (p([ceftriaxone] = 0 mM vs. [ceftriaxone] = 500 mM) = 0.19; n = 3 trials consisting of 6
samples).
doi:10.1371/journal.pone.0003149.g003
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ceftriaxone (200 mg/kg/d) or an equal volume of saline from the

day of immunization. In both groups a subset of mice (n = 6,

respectively) received the EAAT2-specific transport inhibitor

dihydrokainate at a concentration of 10 mg/kg/d i.p.

Treatment with dihydrokainate in MOG-immunized mice

(MOG+DHK) alone neither changed the onset of symptoms nor

the peak clinical score (6.560.9) at day 17 as compared to control

animals (MOG; 7.060.7; p = 0.69). However, the residual score of

the animals was significantly increased in dihydrokainate treated

animals (5.560.6) compared to control mice (3.860.3; p = 0.05 *;

Fig. 5A; Tab. 1). Of note, non-immunized mice treated with

dihydrokainate (10 mg/kg/d) on a daily basis as control did not

develop any neurological symptoms (data not shown). This clearly

demonstrates the relevance of glutamatergic mechanisms for the

permanent CNS damage and neurological disability in EAE.

In case ceftriaxon exerts its action via functional EAAT2

expression regulation, co-application of dihydrokainate will impede

its clinical effect. MOG-immunized mice treated with ceftriaxone

(MOG+ceftriaxone) again displayed a significantly attenuated clinical

EAE course with a reduced peak score of 3.060.6 (p,0.01 **) 17

days after immunization and a residual score of 1.560.5 (p = 0.01 *;

Fig. 5A; Tab. 1). However, mice co-injected with dihydrokainate

(MOG+ceftriaxone+DHK) exhibited an indistinguishable clinical

course with a peak score of 2.861.4 (p = 0.80) and a residual score of

1.260.2 (p = 0.51; Fig. 5A; Tab. 1).

The mean cumulative clinical score showed similar differences

(Fig. 5B). Treatment with dihydrocainate alone significantly

exacerbated the score but did not alter the beneficial effects exerted

by ceftriaxone treatment (MOG vs. MOG+ceftriaxone: p = 0.004

**; MOG vs. MOG+ceftriaxone+dihydrokainate: p = 0.004 ** ;

MOG vs. MOG+DHK: p = 0.05 *; Fig. 5B, Tab. 1).

Immunological effects of b-lactam treatment: ceftriaxone
reduces CD4+ T cell migration into the CNS

Ceftriaxone treatment delayed disease onset and ameliorated

disease severity in EAE animals. We asked whether this b-lactam

antibiotic might influence lymphocyte trafficking and entry of T

cells into the CNS, an effect that could at least partially explain the

observed findings and has been described for tetracyclines [24].

To directly test the impact of ceftriaxone on T cell penetration

into the CNS in vivo, we performed an adoptive transfer of

activated MOG-reactive CD4+ T cells obtained from TCR-

transgenic 2D2 mice [25]. After incubation of 2D2 splenocytes

with MOG (20 mg/ml) in the presence or absence of 500 mM

ceftriaxone in vitro, splenocytes were adoptively transferred into

WT C57BL/6 recipient mice (36106 splenocytes/mice) pre-

treated for 5 days with or without ceftriaxone (200 mg/kg i.p.). 4

days post-transfer, numbers of CNS-invasive T cells were analysed

using whole-brain FACS analysis (Fig. 6). Adoptive transfer of

Figure 4. Ceftriaxone exerts no effect on the EAAT2-mediated electrical uptake current in a mammalian cell line. (A) Representative
current traces recorded from a tsA 201 cell heterologously expressing hEAAT2 in the absence and the presence of 500 mM glutamate. The cell was
held a 0 mV and 10 ms voltage-steps to potentials between 2200 mV and 100 mV were applied. (B, C) Voltage-dependence of hEAAT2 mediated
currents in the absence (filled circles) and the presence (empty circles) of 500 mM after pre-incubation with 0 mM (B) and 1 mM (C) ceftriaxone. (D)
Inverse of the glutamate-induced current increase determined at 2200 mV after pre-incubation with 0 mM (black bar) and 1 mM (white bar)
ceftriaxone. Current ratios are not significantly different (p = 0.87; n = 6 individual cells, respectively).
doi:10.1371/journal.pone.0003149.g004
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untreated splenocytes into untreated mice resulted in a roughly 40

to 50fold increase in the number of CD4+ T cells (about 6600/

brain) compared to naı̈ve WT mice (about 150/brain, data not

shown). Surprisingly, presence of ceftriaxone during in vitro

activation of T cells caused a 6 to 7fold reduction in the number

of T cell in the CNS of untreated mice (about 1000/brain). Pre-

treatment of mice with ceftriaxone before transfer of untreated T

cells reduced CD4+ T cell numbers in the CNS to levels of naı̈ve

animals as did both, treatment of T cells and pre-treatment of mice

together (about 150/bain). These findings indicate a considerable

lasting effect of ceftriaxone on the T cell invasion into the CNS.

However, we cannot completely rule out an effect of ceftriaxone

on peripheral T cell re-stimulation after transfer due to pre-

treatment of mice in vivo similar to that observed upon in vitro

activation of T cells in the presence of ceftriaxone (Fig. 6).

Ceftriaxone impairs T cell activation and antigen-specific
cytokine production via modulation of antigen-
presentation by APCs

Next, we asked, whether ceftriaxone exerts direct effects on

immune cells thus explaining the beneficial effects in preventing

EAE, ameliorating recovery and reducing the number of CNS

invasive T cells in vivo.

First, we performed immunophenotyping of peripheral CD11b+

CD11c+ antigen-presenting cells (APCs; Fig. 7A) and CD4+ and

CD8+ T cells (Fig. 7B) derived from spleens of MOG-immunized

mice treated permanently with ceftriaxone (200 mg/kg/d) or

saline at the disease maximum (day 17). APCs from both groups

displayed similar expression of various markers of maturation and

antigen-presentation (CD40, CD80, CD86 and MHC II; Fig. 7A).

Figure 5. Ceftriaxone attenuates the clinical EAE course in mice in the presence of the EAAT2 transport inhibitor dihydrokainate.
(A) Time course of neurological symptoms after immunization of WT C57BL/6 mice with human recombinant MOG. Mice were treated from the day
of immunization with ceftriaxone alone (MOG+CTX; filled triangles; 200 mg/kg/d i.p.) or in combination with dihydrokainate (MOG+CTX+DHK;
10 mg/kg/d i.p.; empty triangles). MOG-immunized control mice were injected with an equivalent volume of saline alone (MOG; filled circles) or
together with dihydrokainate (MOG+DHK; empty circles). The degree of neurological symptoms was assessed using a 10-point scoring system. (B)
Mean cumulative score of mice from the different experimental groups. Differences between the experimental groups are significant (MOG vs.
MOG+ceftriaxone: p = 0.004 **; MOG vs. MOG+ceftriaxone+dihydrokainate: p = 0.004 **; MOG vs. MOG+DHK: p = 0.05 *).
doi:10.1371/journal.pone.0003149.g005

Figure 6. CNS invasion of neuroantigen-specific T cells is impaired by ceftriaxone. Splenocytes from TCR-transgenic 2D2 mice were
stimulated for 5 days with MOG peptide (20 mg/ml) in the presence or absence of 500 mM ceftriaxone in vitro and adoptively transferred into WT
C57BL/6 mice (36106 splenocytes/mice) pre-treated for 5 days with or without ceftriaxone (200 mg/kg i.p.). Dot plot show numbers of CNS invasive
CD4+ T cells analysed 4 days after transfer using whole-brain FACS analysis. Mean absolute numbers of T cells/brain calculated from 3 to 4 mice
pooled per experimental group are indicated in each histogram.
doi:10.1371/journal.pone.0003149.g006
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Furthermore, distribution of T cell subsets (CD4: 18% vs. 13%;

CD8: 11% vs. 12%; Fig. 7B) and their immunophenotype in

terms of CD44 and CD62L cell surface expression (Fig. 7B) were

similar between untreated and ceftriaxone-treated animals.

However, both ceftriaxone treatment-groups showed a signifi-

cantly reduced production of the proinflammatory cytokine IFN-c
in response to MOG-peptide in specific recall experiments at the

disease maximum (Fig. 7C) and the residual state (Fig. 7D). In

this set of experiments, splenocytes from treated and untreated

MOG-immunized mice were isolated, re-incubated with MOG in

vitro in the absence of ceftriaxone and supernatant IFNc-levels

were assessed (Fig. 7C, D). MOG-specific IFNc-levels were

significantly reduced relative to antigen-independent CD3/CD28

bead-stimulation in samples from MOG-immunized mice treated

with ceftriaxone as compared to untreated MOG-immunized mice

at the disease maximum (p (permanent) = 0.02 *; p (therapeu-

tical),0.01 **) and the residual state (p (permanent),0.01 **; p

(therapeutical),0.01 **; n = 3 samples out of 3 animals, respec-

tively). There was no difference whether mice were treated

permanently or only after disease onset (Fig. 7C, D).

MOG-antigen-specific cytokine-secretion depends both on the

efficacy of antigen-presenting cells (APCs) as well as on the

activation of T cells. To dissect whether the observed effects by

ceftriaxone are operative at the levels of modulated antigen-

presentation or directly targets T cells we firstly examined the effect

of ceftriaxone on T cell proliferation independent from APCs.

CD4+ T cells were isolated from untreated, non-immunized mice

and stimulated in vitro using CD3/CD28 bead-stimulation in the

absence and presence of various ceftriaxone concentrations (up to

500 mM; Fig. 8A). Ceftriaxone concentrations used resemble those

found in human and rodent blood serum after intravenous

application [16,17]. Stimulated cell proliferation assessed by

radioactive thymidine uptake of murine T cells was not influenced

by ceftriaxone (p([ceftriaxone] = 0 mM vs. [ceftriaxone] = 500 mM):

murine p = 0.12; human p = 0.70; n = 6 respectively; Fig. 8A).

To investigate the potential influence of ceftriaxone on antigen-

presentation, we incubated cultured dendritic cells (DCs) with

MOG peptide (50 mg/ml) in the absence and presence of various

ceftriaxone concentrations for 12 h, washed and re-incubated

them for 3 days with CD4+ T cells from MOG-immunized mice at

the disease maximum. Afterwards, T cell proliferation (Fig. 8B)

and supernatant levels of IFNc, IL17 (Fig. 8C), IL2 and IL4 were

determined. MOG-antigen presentation by DCs was altered in the

presence of ceftriaxone and subsequently hampered T cell

Figure 7. Ceftriaxone does not modulate phenotypical but functional properties of peripheral immune cells. (A) FACS-analysis of the
activation markers CD40 (upper left), CD80 (upper right), CD86 (lower left) and MHCII (lower right) on CD11b+ CD11c+ APCs from spleen of untreated
(thick lines) and ceftriaxone-treated (thin lines) MOG-immunized mice at the disease maximum. Geometric mean fluorescence intensities of all marker
were similar between experimental groups. (B) Immunophenotyping of CD4+ (upper panels) and CD8+ (lower panels) T cells from spleen of non-
immunized (left panels) as well as untreated (middle) and ceftriaxone-treated (right) MOG-immunized mice. Relative fractions of T cells as assed by
CD40 and CD62L expression were similar between experimental groups. (C, D) MOG-recall experiments performed with splenocytes from untreated
as well as permanently and therapeutically treated MOG-immunized mice at the disease maximum (C) and in the residual state (D) in the total
absence of ceftriaxone in vitro. MOG-specific supernatant IFNc-levels were significantly reduced relative to antigen-independent CD3/CD28 bead-
stimulation in samples from MOG-immunized mice treated with ceftriaxone as compared to untreated MOG-immunized mice at the disease
maximum (p (permanent) = 0.02 *; p (therapeutical),0.01 **) and the residual state (p (permanent),0.01 **; p (therapeutical),0.01 **; n = 3 samples
out of 3 animals, respectively). There was no difference whether mice were treated permanently or only after disease onset.
doi:10.1371/journal.pone.0003149.g007
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proliferation (p([ceftriaxone] = 0 mM vs. [ceftriaxone] = 500 mM):

p = 0.05 *; n = 6) and antigen-specific IFNc and IL17 cytokine

secretion (p([ceftriaxone] = 0 mM vs. [ceftriaxone] = 500 mM):

IFNc: p,0.001 ***, IL17: p,0.001 ***; n = 6 respectively) in a

dose-dependent manner. Levels of IL2 and IL4, however,

remained unaltered (data not shown). These experiments strongly

suggest that ceftriaxone dampens autoimmune CNS inflammation

by altering antigen-presentation and related activation of myelin-

specific T cells.

Discussion

Glutamate excitotoxicity is a dominant feature contributing to

lesion pathogenesis and neuronal degeneration in multiple sclerosis

[10,11,12]. In 2005 Rothstein et al. proposed that b-lactam

antibiotics such as ceftriaxone exert a profound neuroprotective

effect in pathological CNS conditions involving glutamate excito-

toxicity by functionally up-regulating glial glutamate transporter

expression [14]. We here challenged this mechanism by using

ceftriaxone i.p. for the treatment of EAE, a mouse model of multiple

sclerosis. In this model the pathological role of excitotoxicity has

been confirmed through the amelioration of the clinical course by

ionotropic glutamate receptor blockers [10,11,12]. We show that

ceftriaxone exerted a profound attenuation of the clinical EAE

course when applied in a preventive manner from the day of

immunization. Furthermore, ceftriaxone also exerted beneficial

effects when applied therapeutically after the onset of neurological

symptoms. Mechanistic and functional experiments demonstrated

that the beneficial effect of ceftriaxone was preserved in vivo in the

presence of dihydrokainate, a EAAT2 specific transport inhibitor,

indicating a key target mechanism of cetriaxone other than

glutamate transporter expression regulation. Dihydrokainate alone

caused a substantial aggravation of the clinical EAE course thereby

demonstrating the need for sufficient glial glutamate uptake during

an autoimmune inflammatory challenge and indirectly confirming

the role of glutamate excitotoxicity in EAE pathogenesis. However,

ceftriaxone did neither affect total EAAT2 protein expression levels

in several brain regions in vivo, nor dihydrokainate-sensitive

glutamate uptake in a primary glia cell culture and electrical uptake

currents mediated by hEAAT2 in a heterologous expression system.

Moreover, ceftriaxone had no direct effect on T cell

proliferation and their transendothelial migration in a blood-

brain-barrier model. However, it indirectly hampered their

proliferation and proinflammatory INFc and IL17 secretion

through modulation of myelin-antigen presentation by antigen-

presenting cells. These observations explain the tremendous effects

of ceftriaxone in modulating disease course and accelerating

recovery in a model of autoimmune CNS inflammation.

Rothstein et al. reported the long-lasting, functional up-

regulation of both EAAT2a and its c-terminal splice variant

GLT1b [14,26] in astrocytes from rats treated with ceftriaxone

through binding to the EAAT2 promoter even after 3 months of

treatment. In a recent study Lee et al. reported an augmented

transcription in human astrocytes through NF-kB-mediated

activation of the EAAT2 promoter by ceftriaxone [27], whereas

Tian et al. reported EAAT2 translation to be increased by penicillin

and ampicillin [28]. Ceftriaxone prevented neuronal cell death

upon oxygen-glucose deprivation, an in vitro model of cerebral

ischemia [14]. Furthermore, motoneuron loss induced by glutamate

transporter inhibitors in spinal cord slice cultures was diminished by

drug treatment and ceftriaxone caused motoneuron preservation

associated with prolonged survival in G93A SOD1 mice [14]. In

this mouse model of ALS glutamatergic excitotoxicity through

altered expression of glutamate transporters and protection by

glutamate receptor blockade has been demonstrated, similar to

studies in the EAE model for multiple sclerosis [29,30,31,32].

Moreover, regulation of EAAT2 expression and function by

ceftriaxone has also been described by others in models of cerebral

ischemia [33,34,35] and Huntington’s disease [36].

Our study clearly demonstrated, that ceftriaxone exerted

significant effects in attenuating autoimmune CNS inflammation

and confirmed the relevance of glutamate transporter systems for

permanent neural damage and neurological disability. Ceftriaxone

treatment however did not affect transporter translation, post-

translational trafficking to and from the plasma membrane and

transporter function within the membrane: we were unable to

detect any alteration of EAAT2 expression after 5, 10 and 15 days

of treatment refuting a time dependence of expression regulation

seen in the study by Chu et al. [33]. As EAAT2 expression

continuously increases during developmental CNS maturation and

Figure 8. Reduced T cell response is due to ceftriaxone-
induced modulation of cellular antigen-presentation. (A)
Ceftriaxone concentration-dependence of CD3/CD28 stimulation in-
duced proliferation of murine CD4+ T cells. Ceftriaxone does not inhibit
[3H]thymidine incorporation in T cells (p([ceftriaxone] = 0 mM vs.
[ceftriaxone] = 500 mM) = 0.12; n = 6 respectively). (B) Proliferation of
murine CD4+ T cells (TCs) cocultured with dendritic cells (DCs)
previously loaded with MOG peptide (50 mg/ml) in the absence and
presence of different ceftriaxone concentrations. MOG-preincubation of
dendritic cells in the presence of ceftriaxone impaired subsequent
proliferation of T cells (p([ceftriaxone] = 0 mM vs. [ceftriaxo-
ne] = 500 mM): p = 0.05 *; n = 6). (C) Ceftriaxone concentration depen-
dence of supernatant IFNc and IL17 levels from the experiment
described in (B). MOG-preincubation of dendritic cells in the presence
of ceftriaxone lowered IFNc and IL17 levels in a concentration
dependent manner (p([ceftriaxone] = 0 mM vs. [ceftriaxone] = 500 mM):
IFNc: p,0.001 ***, IL17: p,0.001 ***; n = 6 respectively).
doi:10.1371/journal.pone.0003149.g008
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is low in the early postnatal period [37], the missing effect of

ceftriaxone on glial uptake in the mixed glial cell culture obtained

from newborn rats may reflect reduced sensitivity of the EAAT2

promotor to b-lactam antibiotics. However, the vast majority of

glial uptake was dihydrokainate sensitive and therefore predom-

inantly mediated by EAAT2. Furthermore, adult mice were used

in the EAE experiment and for the regional expression study,

arguing against a developmental restriction of EAAT2 expression

regulation in our study. Lipski et al [34] suggested a direct

influence of ceftriaxone on the EAAT2 glutamate transport rate.

Hence, we closer examined the effect of cetriaxone on the

hEAAT2 electrical uptake current in a mammalian cell line, as all

b-lactams potentially modify the conformation of membrane

proteins by covalently binding to lysine or histidine residues

exposed to the outer surface after spontaneous hydrolysis of the

lactam ring [38,39]. However, glutamate-evoked, hEAAT2-

mediated inward currents, largely representing electrogenic

glutamate transport, were not changed after over-night incubation

with 1 mM ceftriaxone, refuting the idea of a slow covalent

binding of ceftriaxone to the transporter. As 1 mM ceftriaxone

was also present in the extracellular recording solution, a fast non-

covalent binding effect on the transporter function also seems

unlikely.

In search for other explanations than glutamate transporter

expression regulation, we considered a b-lactam effect on trafficking

of lymphocytes across the blood-brain-barrier, as demonstrated for

tetracyclines [24]. We observed a dramatic reduction in the number

of activated MOG-reactive CD4+ T cells that entered the CNS after

adoptive transfer into mice pretreated with ceftriaxone to levels of

naı̈ve mice. This points towards a substantially impaired T cell

trafficking into the CNS through the b-lactam. However, antigen-

stimulation of MOG-reactive CD4+ T cells in the presence of

ceftriaxone also considerably lowered the number of T cells

detected in the CNS after transfer into untreated mice. This argues

for a b-lactam effect on T cell activation and/or antigen

presentation, that might also contribute to the dramatic effect of

adoptively transferring untreated T cells into pretreated mice.

However a ceftriaxone effect on T cell activation and/or antigen

presentation due to systemic pre-treatment is expected to be modest

compared to the in vitro effect of ceftriaxone on T cell stimulation in

view of the short half-life time [17] and the fact that ceftriaxone

treatment of mice was terminated before transfer of splenocytes.

We investigated the effects of ceftriaxone on immune cells. We

found that ceftriaxone treatment in the EAE-model, caused a

suppression of the peripheral T cell response in addition to its

impact on lymphocyte trafficking. While distribution of peripheral

T cell subsets and CD11b CD11c APCs was unchanged,

ceftriaxone-treated mice displayed significantly lower MOG-

specific IFNc production upon antigen recall. Ceftriaxone altered

antigen-presentation by professional APCs, as assessed by antigen-

recall experiments measuring MOG-specific T cell responses after

stimulation with syngenic DCs pretreated with ceftriaxone.

Incubation of DCs with ceftriaxone lowered antigen-specific

proliferation and secretion of proinflammatory cytokines IFNc
and IL17. This effect was clearly dose-dependent and occurred at

concentrations found in humans treated with ceftriaxone intrave-

nously under clinical conditions [16,17]. After spontaneous

opening of the lactam ring b-lactam antibiotics are able to

covalently bind to soluble or membrane-bound proteins or

peptides such as the MOG-peptide used for immunization [39]

leading to processing and MHC-restricted presentation of b-

lactam modified peptides (processing-dependent pathway) [39].

Alternatively, ceftriaxone might bind directly to the immunogenic

peptide within MHC molecules (processing-independent pathway)

[39]. In both cases, MHC-restricted presentation of chemically

modified peptides by APCs might profoundly alter the subsequent

T cell response in a dose-dependent manner [40]. Moreover, b-

lactams have been reported to directly bind to IFNc and other

cytokines and inhibit their activity [41,42,43], an effect that might

contribute to attenuation of EAE by ceftriaxone in vivo. However,

all in vitro cytokine-assays have been performed from ceftriaxone-

free supernatants, excluding artificially altered cytokine levels

obtained from these experiments.

Clinical severity of MOG-induced EAE directly correlates with

the number and degree of activation of proinflammatory,

encephalitogenic T cells invading the CNS [15,44]. To enter the

CNS parenchyma naı̈ve T cells need to be primed in secondary

lymphatic organs and reencounter their cognate antigen presented

by DCs located in the perivascular Virchow-Robin spaces [45,46].

Hence, pathways or agents impeding T-cell activation and

proliferation in the pre-clinical phase delay disease onset or lower

severity of clinical symptoms, as observed in animals treated

permanently with ceftriaxone [13]. However, ceftriaxone was also

effective when applied in a therapeutic setting: animals treated

after the onset of disease show significantly improved recovery of

symptoms when treated with ceftriaxone. Ceftriaxone has a very

good penetration over the blood-brain-barrier, reaching optimal

concentrations in the CNS under therapeutic and non-toxic

conditions. It is thus safe to speculate that drug-induced alteration

of antigen-presentation and related reduction of T cell reactivation

is operative also in the CNS parenchyma under conditions of

ongoing autoimmune CNS inflammation where antigen-presen-

tation is largely provided by microglia [45,47,48].

In summary, we demonstrate that a b-lactam antibiotic

attenuates autoimmune encephalomyelitis, a model of multiple

sclerosis. Ceftriaxone obviously shows no significant modulation of

central glutamate homeostasis under the given experimental

conditions. However, ceftriaxone impairs invasion of myelin-

antigen specific T cells into the CNS parenchyma and reduces

their activation and cytokine production through modulation of

antigen-presentation by APCs. Antigen-presentation and T cell (re-

)stimulation by distinct APC populations is required repeatedly

during the initiation and perpetuation of autoimmune neuroin-

flammation, thus explaining the beneficial effects of ceftriaxone in

EAE under preventive and therapeutic treatment conditions. Our

findings contribute to the understanding of the mechanism of action

of b-lactam antibiotics and have implications for considering these

agents in attenuating T cell-mediated autoimmune disorders.

Materials and Methods

Induction, evaluation and treatment of EAE in C57BL/6
mice

Female WT C57BL/6 mice (Charles River Laboratories,

Sulzfeld, Germany) were kept under pathogen-free conditions

and had access to food and water ad libidum. All experiments

were conducted according to the German law of animal protection

and were approved by local authorities.

To induce EAE C57BL/6 mice between 6 to 8 weeks of age

were actively immunized using a peptide consisting of amino acids

35–55 of myelin oligodendrocyte glycoprotein (MOG35–55,

EVGWYRSPFSRVVHLYRNGK; synthesized and HPLC puri-

fied by R. Volkmer, Charité, Berlin, Germany). Mice were

injected subcutaneously with 200 mg of MOG35–55 peptide

emulsified with complete Freund’s adjuvant (CFA; Sigma-Aldrich,

München, Germany) containing Mycobacterium tuberculosis

(5 mg/ml; Difco, Detroit, MI, USA). Control animals were

immunized with an equivalent volume of CFA emulsion that did

A b-Lactam Antibiotic in EAE

PLoS ONE | www.plosone.org 9 September 2008 | Volume 3 | Issue 9 | e3149



not contain MOG35–55 peptide. Additionally, all mice were

injected intraperitoneally with pertussis toxin (400 ng; List

Biological Laboratories, Campell, CA, USA) at the time of

immunization and 2 days later.

Mice were evaluated on a daily basis for changes in body weight,

overt signs of illness, and clinical signs of EAE by two blinded

investigators using the following 10-point scoring system (Fig. 1, 5):

0, no neurological signs; 1, distal tail limpness; 2, full tail limpness; 3,

beginning broad-based gait with mild ataxia; 4, severely broad-

based gait and pronounced ataxia; 5, mild hind limb paraparesis; 6,

severe hind limb paraparesis; 7, hind limb paraplegia; 8,

tetraparesis; 9, tetraplegia, moribund; and 10, death attributable

to EAE. Mean cumulative clinical scores were determined as the

mean of the cumulative scores of all mice of a certain experimental

group (Fig. 1B, 5B, Tab. 1). Days of disease onset and peak clinical

score were determined from the time course of mean clinical scores

of a certain experimental group (Tab. 1).

Mice were treated in various combinations with ceftriaxone

(200 mg/kg/d i.p.; Fresenius, Bad Homburg, Germany) and/or

dihydrokainate (10 mg/kg/d i.p.; Sigma-Aldrich, München,

Germany) both dissolved in water as indicated in results.

Western blotting of whole mouse brain protein
Non-immunized WT C57BL/6 mice were treated with ceftria-

xone (200 mg/kg/d i.p.) or an equal volume of saline, sacrificed

after 5, 10 or 15 days of treatment and lysates from cortex,

hippocampus, optic nerve and spinal cord were used for western

blotting procedures. Brain tissue was washed with ice-cold PBS,

resuspended in lysis buffer (PBS containing 1% Triton X-100 and

protease inhibitor cocktail (Roche Diagnostics, Germany)) and

solubilized by sonification on ice. Cell lysates were centrifuged and

protein content in the clarified supernatant was measured using the

Bradford reaction. Samples containing equal amounts of protein

were subjected to 10% SDS-PAGE, followed by transfer to

nitrocellulose membranes. Protein transfer was visualized by

Ponceau S staining and membranes were then blocked with PBS

containing 0.05% Tween 20 and 5% dry milk. The membranes

were probed with rabbit anti-EAAT2 (1:50; Merck Chemicals,

Darmstadt, Germany) directed against n-terminal amino acids 16–

31 of the transporter to assure detection of both EAAT2a and –b

and rabbit anti b-actin (1:200; Santa Cruz Biotechnology,

Heidelberg, Germany) as protein loading control. The secondary

antibody was HRP-conjugated donkey anti-rabbit (1:3000; Amer-

sham, Buckinghamshire, UK). The antibody reaction was detected

by enhanced chemiluminescence reaction (ECL, Amersham,

Buckinghamshire, UK) (Fig. 2A). Specificity of the EAAT2

antibody binding was assessed by 5 hours incubation of the

undiluted antibody with the immunogenic synthetic peptide

corresponding to amino acids 16–31 of rat EAAT2 (Merck

Chemicals, Darmstadt, Germany) previous to western blotting

(Fig. 2B).

Preparation of rat primary mixed glia cell cultures
Primary cultures of mixed glial cells were prepared from

neonatal Sprague–Dawley rat cerebra as described [49,50].

Briefly, the brains were freed from meninges, and dissociated

mechanically and enzymatically with trypsin and DNAse (Sigma-

Aldrich, München, Germany). For mixed glial cell cultures,

16105 cells/well of the single cell suspension were plated directly

on poly-L-lysine-coated (Sigma, Deisenhofen, Germany) glass

coverslips in 6-well plates. Cells were cultured in standard-medium

consisting of DMEM supplemented with 10% fetal calf serum

(FCS), 2 mM glutamine, 50 U/ml penicillin, and 50 mg/ml

streptomycin (all Biochrom, Berlin, Germany). After 7 days, a

confluent astrocytic monolayer developed with both microglia and

oligodendrocyte-precursor-cells on top.

Radioactive glutamate uptake in rat primary mixed glia
cell cultures

Uptake of radioactive L-glutamate was measured in the rat

primary mixed glial cell culture after 5 days of incubation in

standard-media containing various ceftriaxone concentrations

(Fig. 3). Subsequent determination of uptake was performed using

solutions composed of (in mM) 140 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2,

5 HEPES, pH 7.4 supplemented with 60 mM L-glutamate and

6 nM L-[3H]glutamate (Amersham, Freiburg, Germany) according

to the known Km value of EAAT2 for glutamate [19] as well as

ceftriaxone at the respective concentration. To determine the

fraction of total glial uptake mediated by EAAT2, the EAAT2-

specific uptake inhibitor dihydrokainate (1 mM; Sigma-Aldrich,

München, Germany) was added. To determine the sodium-

dependence of the uptake, sodium-free solutions were prepared

by substituting sodium with N-methyl-D-glucamine (NMDG). L-

[3H]glutamate uptake was terminated after 5 min of incubation by

3 times washing with glutamate-free solution, cells were suspended

in 0.5% SDS and subjected to scintillation counting after lysis.

Uptake of L-[3H]glutamate was linear for at least 10 min (data not

shown) and pre-incubation with ceftriaxone did not change the

average number of cells per well (data not shown).

Whole cell patch-clamp
Standard whole cell patch-clamp recordings were performed

using an Axopatch 200B (Axon Instruments, Union City, CA)

amplifier. Borosilicate pipettes were pulled with resistances of 1.0–

2.0 megohms. More than 80% of the series resistance was

compensated by an analog procedure resulting in calculated

voltage errors ,5 mV. Currents were filtered at 5 kHz and

digitized with a sampling rate of 50 kHz using a Digidata (Axon

Instruments) AD/DA converter.

Transient transfection of tsA201 cells with pRCCMV hEAAT2

using the Ca3(PO4)2 technique was performed as previously described

[51]. To identify cells with a high probability of expressing

recombinant transporters, cells were co-transfected with a plasmid

encoding the CD8 antigen, incubated 5 min before use with

polystyrene microbeads precoated with anti-CD8 antibodies (Dyna-

beads M-450 CD 8, Dynal, Great Neck, NY, USA) and detected

through a Nikon Eclipse TS100 microscope. The CD8/hEAAT2

cDNA ratio was adjusted to ensure that almost every cell with beads

exhibited currents with characteristic properties (Fig. 4A).

Cells were clamped to 0 mV for at least 2 s between 10 ms test

sweeps to potentials between 2200 mV and 100 mV were applied.

Current amplitudes were determined 2 ms after the c-peak. The

composition of the standard solutions was as follows: extracellular

(in mM) 140 NaCl, , 4 KCl, 2 CaCl2, 1 MgCl2, 5 HEPES, pH 7.4;

intracellular (in mM) 115 KCl, 2 MgCl2, 5 EGTA, 10 HEPES,

pH 7.4. Substrate-containing external solutions were made by

adding 500 mM L-glutamate. Extracellular recording solutions

contained either 1 mM or 0 mM ceftriaxone and previous to

electrophysiological assessment, tsA201 cell transfected with

hEAAT2 were incubated over-night in standard-medium contain-

ing either 1 mM or 0 mM ceftriaxone as indicated (Fig. 4B, C).

Isolation of splenocytes
Spleens of mice were removed and single cell suspensions were

generated by mashing spleens through a 70 mm strainer and lysing

red blood cells with ACK buffer. Splenocytes were cultured in

DMEM (BioWhittaker, Verviers, Belgium) supplemented with 5%
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FCS (PAA Laboratories, Pasching, Germany), 10 mM HEPES

(Gibco, Invitrogen, Germany), 2 mM L-Glutamine (PAA Labo-

ratories, Pasching, Germany), 50 mM 2-Mercaptoethanol (Gibco,

Invitrogen, Germany), 1% Non Essential Amino Acids (BioWhit-

taker, Verviers, Belgium) and 25 mg/ml Gentamicin (Gibco,

Invitrogen, Germany). To obtain certain T cell subsets from

isolated splenocytes, T cells were isolated with the respective

MACS T cell isolation kit (Miltenyi, Bergisch Gladbach,

Germany) according to the manufacturer’s manual as indicated.

Assessment of T cell invasion into the CNS in vivo
Splenocytes of 2D2 TCR-transgenic mice [25] were plated at a

densitiy of 16107/well on a 12 well plate and primed by

incubation with MOG35–55 (20 mg/ml) on day 1 and 5 and IL-2

(500 IU/ml) on day 1 and 4. On day 3, supernatant medium was

taken, analysed for INFc release using mouse-IFNc-ELISA

according to the manufacturer’s protocol (Duoset, R&D Systems,

Wiesbaden, Germany) to control for appropriate cytokine release

(data not shown) and substituted by fresh medium.

For T cell proliferation analysis, [methyl-3H]-thymidine

(1.0 mCi/well; Amersham Biosciences, Buckinghamshire, UK)

was added to stimulated splenocytes transferred to 96-well plates

at a density of 56105 cells/well for 24 h on day 3 of in vitro culture.

Afterwards, cells were harvested and [methyl-3H]-thymidine

incorporation was measured using a liquid scintillation counter

(Packard BioScience, Meriden, USA) to control for appropriate

proliferation (data not shown).

After 5 days of in vitro culture 2D2 splenocytes were collected,

washed three times with PBS and 36106 cells/mice were adoptively

transferred via intravenous injection into recipient C57BL/6 mice

pre-treated for 5 days with and without ceftriaxone (200 mg/kg

i.p.). 4 days after the adoptive transfer, during which no ceftriaxone

treatment was performed, brains of recipient mice were removed

and the fraction of CNS-invasive cells was analysed via flow

cytometry (Fig. 6) of 3 to 4 pooled brains per experimental group.

Absolute numbers of CD4+ T cell per brain were calculated from

the absolute number of isolated leukocytes per brain and the

fraction of CD4+ T cells acquired during FACS analysis.

Immunophenotyping
For flow cytometric analysis (Fig. 7A, B) of lymphocytes

isolated from spleen of treated and untreated immunized mice at

the disease maximum, single cell suspensions were prepared as

described above. Flow cytometry was performed using standard

methods. For analysis of T cell subtype distribution cells were

stained for 30 minutes with appropriate antibodies or isotype

controls (all by BD Bioscience): rat anti-mouse CD4-PerCP

(No. 553052), rat anti-mouse CD8a-PE (No. 553033), rat anti-

mouse CD44-FITC (No. 553133), rat anti-mouse CD62L-APC

(No. 553152). Antigen-presenting cells (APCs) were analysed using

the following antibodies (all by BD Bioscience): rat anti-mouse

CD11b-PerCP (No. 350993), hamster anti-mouse CD11c-APC

(No. 550261), mouse anti-mouse MCHII-FITC (Serotec, No. M-

CA1501F), rat anti-mouse CD86-FITC (No. 553691), hamster

anti-mouse CD80-FITC (No. 553768), hamster anti-mouse

CD40-FITC (No. 553723). All antibodies were titrated for optimal

staining. Flow cytometry analysis was performed using a

FACSCaliburH system (BD Biosciences, Heidelberg, Germany)

and results were analyzed using CellQuest Pro (BD Bioscience,

Heidelberg, Germany) and FlowJo (Treestar, USA) software.

Generation of murine dendritic cells
Dendritic cells (DCs) from WT C57BL/6 mice were prepared as

described [52,53]. In brief, bone marrow cells were flushed out of

femur and tibia bones with PBS. Cells were incubated for 30 s with

ACK buffer (0.15 M NH4Cl, 10 mM KHC03, 0.1 mM EDTA) and

filtered through a 70-mm cell strainer. The single-cell suspension was

cultured in RPMI 1640 medium (BioWhittaker, Verviers, Belgium)

supplemented with 10% FBS, 2 mM L-glutamine (PAA Laborato-

ries, Pasching, Germany), 50 mM 2-mercaptoethanol, antibiotics

(100 U/ml penicillin/10 mg/mL streptomycin; Biochrom, Berlin,

Germany) and 20 ng/ml mGM-CSF (Peprotech, Hamburg,

Germany). On days 3 and 6 medium containing 20 ng/ml

mGM-CSF or 10 ng/ml mGM-CSF was added. Bone marrow-

derived dendritic cells were harvested on day 8 and characterized as

more than 85% pure CD11c+ cells. Cells were frozen, kept in liquid

nitrogen and thawn on demand.

T cell activation and antigen-recall assays
For antigen-recall experiments (Fig. 7C, D), 16106 spleno-

cytes/well from permanently and therapeutically ceftriaxone-

treated and untreated MOG-immunized mice were cultured on

24-well plates with 10 mg/ml MOG35–55-peptide for 72 h. As

control, splenocytes from the same mice were activated with anti-

CD3/CD28 beads (Dynal Biotech, Oslo, Norway) at a ratio of 1:1

or left untreated. After 72 h, IFNc-levels were determined in the

supernatants by mouse-IFNc-ELISA according to the manufac-

turer’s protocol (Duoset, R&D Systems, Wiesbaden, Germany).

For T cell proliferation analysis (Fig. 8A), isolated CD4+ T cells

from the spleen of non-immunized mice were stimulated with anti-

CD3/CD28 beads (Dynal Biotech, Oslo, Norway) for 72 h,

respectively, and 24 h before the end of incubation, [methyl-3H]-

thymidine (1.0 mCi/well; Amersham Biosciences, Buckingham-

shire, UK) was added. Cells were harvested and [methyl-3H]-

thymidine incorporation was measured using a liquid scintillation

counter (Packard BioScience, Meriden, USA).

To asses the effect of ceftriaxone on antigen-presentation

separated from T cell activation and proliferation (Fig. 8B, C),

dendritic cells (DCs; 26106/well on 24 well plates) isolated from

non-immunized mice were pulsed for 12 h with of MOG35–55

peptide (50 mg/ml) in the absence and presence of 100 and 500 mM

ceftriaxone. Subsequently, DCs were washed and 16105 DCs per

well were co-cultured for 3 days with 56105 syngeneic MOG-

reactive CD4+ T cells obtained from MOG-immunized mice at the

disease maxium on 48-well plates (ratio of TC/DC = 5:1). The

supernatants were analyzed for IL2, IFNc, IL4, and IL17

production by ELISA according to the manufacturer’s protocol.

All experiments were performed as triplicates.

Statistical analysis
All results are presented as mean6SEM. Statistical analysis was

performed using the student’s t-test modified for small samples

[54]. P-values #0.05 were considered significant (*). P-values

#0.01 and #0.001 were considered highly significant (** and ***,

respectively).
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