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Abstract: In this study, a laparoscopic imaging device and a light source able to select wavelengths
by bandpass filters were developed to perform multispectral imaging (MSI) using over 1000 nm near-
infrared (OTN-NIR) on regions under a laparoscope. Subsequently, MSI (wavelengths: 1000-1400 nm)
was performed using the built device on nine live mice before and after tumor implantation. The
normal and tumor pixels captured within the mice were used as teaching data sets, and the tumor-
implanted mice data were classified using a neural network applied following a leave-one-out
cross-validation procedure. The system provided a specificity of 89.5%, a sensitivity of 53.5%, and an
accuracy of 87.8% for subcutaneous tumor discrimination. Aggregated true-positive (TP) pixels were
confirmed in all tumor-implanted mice, which indicated that the laparoscopic OTN-NIR MSI could
potentially be applied in vivo for classifying target lesions such as cancer in deep tissues.

Keywords: laparoscope; InGaAs camera; multispectral imaging; near infrared; live imaging

1. Introduction

The number of cancer cases and deaths worldwide has been strikingly increasing
with the rapidly aging population [1]. Surgical resection is one of the most common
procedures used to treat cancers. As a minimally invasive surgery compared to laparotomy,
laparoscopic surgery has been in great demand because the need for such surgeries has
increased. Therefore, in order to perform laparoscopic surgery more safely and efficiently,
it is necessary to develop an image-guided surgical support system identifying cancer-
associated regions and anatomical structures such as blood vessels and nerves.

Recent advances in imaging technologies associated with machine learning have led
to the identification of anatomical structures and the localization of cancer in surgical
image data [2,3]. However, red, green, and blue (RGB) images acquired by standard visible-
light-sensitive cameras only allow the observation of the target’s surface. In addition, it
is challenging to distinguish between tissues with similar colors and shapes. Therefore,
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the use of spectral information beyond the visible light wavelength range in the learning
process plays a crucial role in machine learning approaches to catch up with, or even
outperform, predictions made by medical experts.

Near-infrared (NIR) light offers advantages over the visible spectral range, including
high biological transparency owing to its low absorption and scattering by tissues. The
over 1000 nm (OTN) wavelength NIR region (1000-2000 nm), often called the “second
biological window” [4], provides higher penetration depth down to 10 mm [5], as well as
chemical information corresponding to the overtone and combination tone of molecular
vibrations. This slight absorption, which is at a magnitude 10~2 lower than that of the
visible or mid-infrared regions [6], delivers the fingerprint of chemical composition in
the deep tissue [7]. Moreover, spectral imaging, which can acquire the spectrum of each
camera pixel, can analyze a large amount of data with a high spatial resolution [8]. Spectral
imaging with a high wavelength resolution is called hyperspectral imaging (HSI) [9,10].
Various resected cancers have been analyzed using HSI [11-16]. For instance, Sato et al.
reported that NIR-HSI could be used to identify tumors covered by normal mucosa [17].
To apply NIR-HSI to real-time imaging, wavelength bands must be reduced because the
HSI data (200-300 bands) require substantial processing time. Therefore, Akimoto et al.
proposed a selection method for valuable wavelengths, and the authors indicated that
four bands in the range of 1000-1400 nm could identify the region of a gastrointestinal
stromal tumor under normal mucosa, using the same level of accuracy as NIR-HSI [18].
The results indicate that multispectral imaging (MSI) using selected wavelengths in the
range of OTN-NIR could potentially recognize invisible cancer and organs during surgery
without labeling with a fluorescent probe. However, to date, only studies on laparoscopic
HSI or MSI using less than 1000 nm light have been reported [19-21].

In this study, based on a laparoscope that can observe OTN-NIR images, as reported by
Zako et al. [22], a wavelength-selectable light source and an optical system for laparoscopy
were built to perform OTN-NIR MSI with easy operability. We demonstrate the proof-of-
concept for this prototype laparoscope and light source.

2. Materials and Methods
2.1. Light Source and Laparoscope for OTN-NIR Multispectral Imaging

In this study, a light source that can perform OTN-NIR multispectral imaging was
developed. In Figure 1a, the developed light source able to select the output wavelength
manually using an NIR bandpass filter is shown. The light source was constructed with
a cold mirror (CLDM-25.4C3.3, SIGMA KOKI, Tokyo, Japan), a 1500 nm shortpass filter
(#84654, Edmund Optics, Barrington, NJ, USA), two achromatic lenses (AC254-030-C and
AC254-035-C, Thorlabs, Newton, NJ, USA), and an off-axis parabolic mirror (MPD119-P01,
Thorlabs, USA) based on a 150 W halogen lamp (JCR15V150WS and LA-150UE, HAYASHI-
REPIC CO., LTD., Tokyo, Japan). The filter holders (CFS1/M, Thorlabs, USA), inserted
in the light source, enabled the selection of the output wavelength. The optical system,
modeled using the CODEV optical ray-tracing software, is shown in Figure 1b. As the
selectable filters, 14 wavelength (1000-1400 nm) filters that were commercially available are
listed in Table 1. For filters below 1150 nm, a 1250 nm shortpass filter was added because
transmitted light was observed in the region over 1400 nm.

The prototype imaging system developed to perform OTN-NIR multispectral imaging
under a laparoscope is depicted in Figure 2a. The device was constructed with a custom-
made VIS-NIR endoscope (Machida Endoscope Co., Tokyo, Japan) [22], an NIR tunable
fluidic lens (EL-16-40-TC-NIR-20D-1-C, Optotune, Dietikon, Switzerland), an achromatic
lens (AC254-060-C, Thorlabs, Newton, NJ, USA), and a 320 x 256 pixel InGaAs camera
(Xeva-1.7-320, Xenics, Leuven, Belgium). The optical system is illustrated in Figure 2b. As
shown in the figure, the field of view (FOV) was approximately 60°, the exit pupil diameter
was 3 mm, and the maximum eyepiece field angle was £7°. The laparoscope had a light
guide of 5 mm diameter bundle fiber connecting to the light source. Due to a focus shift
that occurred when the wavelength was changed in the light source, the optical power
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of the tunable lens was set, as shown in Table 1, to adjust the focus [23]. By tuning the
optical power, the angle of view changed on the order of several pixels. Therefore, based
on the image at 1000 nm, which had the largest angle of view, all wavelength images were

enlarged, and the positions were matched by an affine transformation.

(a)
Figure 1. (a) Developed light source for over 1000 nm (OTN)-near-infrared (NIR) multispectral imaging; (b) optical ray

Filter holder

tracing at 1200 nm for the light source optical system.

Halogen lamp
(JCR15V150WS)
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(b)

Table 1. Bandpass filter information and the tunable lens settings.

Wavelength (nm) Optical Power (dpt) FWHM (nm) Vendor Model Number
1000 —2.03 10 Edmund Optics 65-782
1030 -1.87 10 Thorlabs, Inc FLH1030-10
1050 —1.55 10 Edmund Optics 65-783
1070 —1.61 10 Thorlabs, Inc FBH1070-10
1100 —1.42 10 Edmund Optics 65-784
1150 —0.85 10 Edmund Optics 65-785
1200 —0.69 10 Edmund Optics 65-786
1225 —0.29 10 IR System Co., Ltd. NB-1225-010 nm
1250 —0.22 10 Edmund Optics 65-787
1300 0.29 12 Edmund Optics 65-788
1320 0.59 12 Thorlabs, Inc FB1320-12
1350 0.67 12 Edmund Optics 65-789
1370 0.94 10 IR System Co., Ltd. NB-1370-010 nm
1400 1.18 12 Edmund Optics 65-790

NIR camera

Tunable fluidic lens.
Laparoscope

Light output
7

FOV = 60"

NIR tunable fluidic lens
(EL-16-40-TC-NIR-20D-1-C}
InGaAs sensor{320 x 256)
Angle of view = 7° - 30 pm pixel pitch

Eyepiece -

Laparoscope tip

Exit pupil
3mm 60 mm focal length
(AC254-060-C)

Figure 2. (a) Laparoscopic OTN-NIR imaging device; (b) optical ray tracing at 1300 nm for a laparoscopic optical system.

The minimum (0°) and maximum (7°) angles of view are shown in red and green. The FOV was 60°.
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2.2. Properties of the Laparoscope and Light Source

The spectral characteristics of the developed light source at 14 wavelengths were
confirmed using a 99% reflectance standard (SG3052, SphereOptics GmbH, Herrsching,
Germany) placed at 20 mm from the tip of the laparoscope. Subsequently, the spectrum
was measured using an NIR spectrometer (NIRQuest512-2.2, Ocean Photonics, Tokyo,
Japan), as shown in Figure 3a.

The resolution using the developed laparoscopic OTN-NIR imaging device was evalu-
ated using a 1951 USAF resolution chart (R3L3S1N, Thorlabs) placed at 60 mm from the
laparoscope tip. Illumination was provided from outside to ensure even lighting. This
light transilluminated a 100 x 100 mm N-BK?7 ground glass diffuser (DG100X100-220,
Thorlabs, Newton, NJ, USA) onto which the resolution chart was placed. The contrast for
each element of the USAF resolution chart was calculated using the Michelson contrast
formula, as follows [24]: ! !

max — ‘min
Inax + Lin (1)
where Iy and I,,,;,, represent the highest and lowest pixel intensity values of the adjacent
bars within an element, respectively.

Contrast =

NIR spectrometer

NIR QUEST

20 mm

Light guide

Laparoscope —
NIR camera 60 mm
Laparoscope NIR
Light guid camera
i uide .
o e Light source Light source
(a) (b)

Figure 3. (a) Spectroscopy for the light source of the laparoscopic OTN-NIR multispectral imaging system. The exposure
time was set to 500 ms. The average was 10 times. (b) Resolution evaluation of the laparoscopic NIR imaging device.

2.3. OTN-NIR Multispectral Imaging for Live Mouse

To prepare tumor-bearing mice, HI29 human colon cancer cells (ATCC HTB-38) were
cultured in Roswell Park Memorial Institute medium (RPMI 189-02025, FUJIFILM Wako
Pure Chemical Corporation, Osaka, Japan) supplemented with 10% fetal bovine serum
(FBS 10270-106, Gibco) and 1% penicillin/streptomycin (161-23181, FUJIFILM Wako Pure
Chemical Corporation). All cells were maintained at 37 °C and 5% CO, in a humidified
incubator. HT29 cells (1 x 10”) were implanted in the left waist of nine female BALB/c-nu
nude mice at 6 weeks of age (Charles River Laboratories Japan, Inc., Kanagawa, Japan).
Mice 14 days after cancer implantation are shown in Figure 4a.

In this study, OTN-NIR multispectral imaging under a laparoscope was performed
in a dark box, as shown in Figure 4b. The OTN-NIR multispectral images were captured
for the live mice before tumor implantation and 14 days post-implantation. The distance
between the tip of the laparoscope and the mouse was 60 mm. All procedures and protocols
were approved by the Animal Care and Use Committee of the National Cancer Center
(K19-016).
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(a)

Figure 4. (a) Tumor-bearing mice on day 14, after implantation of HT29 cells; (b) experimental setup of OTN-NIR

NIR camera

-—'—_’-’

Laparoscope

Dark room box

Light source —

Isoflurane

(b)

multispectral imaging under laparoscope.

2.4. Data Processing

It was necessary to calibrate images from the dark noise and white standard in each
pixel (i,]) to analyze each mouse image. Moreover, in this study, each reflectance was
converted to absorbance. The calibration was performed as follows:

L (i, j) = La(i, j) )
Lo (i, ) = 1a(i, j)

where A(i, ) is the row vector of the absorbance spectrum for the obtained image, and
I.(i,j), Iy (i, ), and I (i, j) are row vectors of raw data, white standard data, and dark data,
respectively. When I, (7, j) — I,(i, j) was lower than zero, the pixel was excluded from the
calculation. Because the pixel data had a 12-bit depth resolution (0-4095), the exposure time
was set such that the maximum value of I, (7, j) was approximately 90% of the dynamic
range (4095) at each wavelength.

In NIR spectral measurements, variance such as non-specific scatter occurs on the
surface of the sample. In this regard, the variance is reduced using the standard normal
variate (SNV) for baseline correction of the spectrum as follows:

Alij) = ~tog @

__ x—mean(x)

Z(x) = st 3)

where x is a row vector containing the original spectrum, mean(x) is the mean of x, std(x)
is the standard deviation of x, and Z(x) denotes the SNV-transformed spectrum. In this
study, A(i,j) was assigned to x.

2.5. Classification Algorithm

In this study, an artificial neural network with a dense multilayer was employed
to identify tumors from OTN-NIR MSI data [25,26]. Each unit in a particular layer was
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connected to all the units in the next layer. The input value z; of the j th unit was calculated
by adding the bias b; to the sum from 1 to the i th of the values, which is the multiplication
of the output values x; and the corresponding weight w;; as follows:

m
zj = Z W;jX; + b] 4)
i=1

where z; represents the input to the activation function, and the response is the output of
the unit. As the activation function, the sigmoid and Rectified Linear Unit (ReLU) functions
were used as follows: .

o(zj) = ——— 5
( ] ) 1 + e*Zj ( )

R(zj) = max(0,z;) (6)

As updating weights, the backpropagation method was used to train the neural
network as follows:

k—1k oE
Aw; 7" = —N—— (7)
] k—1k
8wi,j
where wf;l’k is the weight between the 7 th unit in the (k — 1) th layer and the j th unit in

the k th layer, E is the error function, and 1 is the learning rate.

To suppress overlearning, a dropout process was applied to all layers except for the
final layer. Adam was used as the optimization function. The structure of the neural
network used in this study is shown in Figure 5. Because the final output value indicates
the probability of discrimination as “tumor” from the multispectral input data of a pixel,
the prediction results were displayed as binary classification with 60% of the cutoff value
and heat map.

Dense 1 Dense 2 Dense 3 Dense 4 Dense 5

o o o 2} (@]
2| |= I 2 I 2 I = 1 al gl |5
= c 5] c ) c ) = ) = o 2
> = = S - = =) - = — = = = Q.
[OF B Y —- —] 3 |» |3l 3| || 2>l |2 2] 51— —»| =
= Q o Q © o Q [\\] or Q o or [e] o =
- o~ & o ie} Q. — Q o o - 5] O

— s} Y o [T) [e] o

. _ [ L [

] o O [m]

Figure 5. Neural network structure.

In this study, multispectral imaging data were extracted from the region of the back
to the waist in mice before tumor implantation as “normal” teaching data. Multispectral
imaging data of the tumor area were defined by medical experts and were extracted from
mice 14 days after tumor implantation as “tumor” teaching data. To classify “normal” and
“tumor”, leave-one-out cross-validation was employed. In this procedure, the pixels of a
mouse were classified by data sets of eight mice built as teaching data. This procedure
could provide an unbiased estimate of generalization ability.

The prediction accuracy was evaluated by classifying the pixels into four groups,
namely: tumor predicted as tumor (true-positive: TP), tumor predicted as normal (false-
negative: FN), normal predicted as tumor (false-positive: FP), and normal predicted as
normal (true-negative: TN). From the classified pixels, the specificity, sensitivity, and
accuracy can be calculated as follows:

TN
SpeCIfICIty (0/0) = m X 100, (8)
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TP
o
Sensitivity (%) = 1N < 100, )
o TP + TN
Accuracy (%) = TP TN+ FPF TN 100. (10)

For binary classification of pixels in tumor-implanted mice, it was challenging to draw
a correct boundary between the tumor and the normal areas. Therefore, the pixels that
could be defined as tumor or normal were extracted, and the binary classification’s image,
specificity, sensitivity, and accuracy were derived.

3. Results and Discussion

First, the NIR light transmitted through each of the 14 bandpass filters was detected
by spectroscopy to validate the specifications of the filters. The results of the spectroscopy
of the reflected light from the standard reflector are shown in Figure 6. Each bandpass filter
was confirmed to perform as in the specifications. The system with these filters is available
as the light source for MSI in the OTN-NIR wavelength range.

40,000

—1000 nm
—1030 nm
—1050 nm
30,000 r 1070 nm
—1100 nm
—1150 nm

1200 nm
—1225nm
—1250 nm
—1300 nm
—1320 nm

1350 nm
—1370 nm

\J)LL —1400 nm

20,000 |

Intensity (arb. unit)

10,000

0

1 I I 1
900 1000 1100 1200 1300 1400 1500 1600 1700
Wavelength (nm)

Figure 6. The spectrum of the transmitted light through each bandpass filter.

The 1951 USAF resolution chart images for each wavelength were captured to evaluate
the spatial resolution of the developed laparoscopic NIR imaging device, with or without
a tunable lens. From these images, the contrast of each wavelength can be calculated.
These images and the calculated contrasts are shown in Figure 7a,b. According to the
Rayleigh criterion, line pairs can be considered resolved if the contrast value is higher than
0.26 [27]. Although the images are focused on around 1300 nm without the tunable lens,
the tunable lens setup could focus on 14 wavelengths. Moreover, the results show that the
image can be resolved up to 1.6-2.0 Ip/mm at 1000-1400 nm wavelengths using the tunable
lens. In future, custom-made achromatic lenses may be used to address the wavelength
irregularities; however, this may present disadvantages for the laparoscopic application
of MSI because the number of lenses and weight will increase, and the light intensity will
decrease. In contrast, although the angle of view of the tunable lens needs to be corrected
for each wavelength, it has the potential to be used for laparoscopic short-wavelength IR
(SWIR) MSI, which has a broader range of wavelengths because it can correct the focus
shift with a single lens.
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1030 nm 1050 nm 1100 nm

1300 nm

1320 nm
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1000 nm 1030 nm 1050 nm 1070 nm 1100 nm
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Figure 7. The figure displays 1951 USAF resolution chart images for the laparoscope at each spectral band (Top) and the

spatial resolving power of the laparoscopic imaging system by a contrast transfer function analysis (Bottom): (a) without

the tunable lens and (b) with the tunable lens.

Through the 14-wavelength filter, the mice before and 14 days after implantation of the
tumor could be captured by OTN-NIR MSI with live imaging. In this imaging, the average
exposure time of each wavelength was 46 ms. Figure 8a,b shows the OTN-NIR pseudo-
color images (B: 1000 nm, G: 1200 nm, R: 1400 nm) of each mouse with the boundaries of
the pixels used in the normal and tumor datasets. In Figure 8c, the average SNV-processed
spectra of normal or tumor datasets are shown. In this study, no pixels with I, (i, j) — 1;(i, j)
lower than zero in the region of interest (ROI) were present. Although all the absorption
spectra in Figure 8c show a similar shape, they also show differences between the normal
and the tumor pixels at approximately 1070, 1250, and 1400 nm. This indicates that the
OTN-NIR absorption spectra likely include tumor-specific information.

Based on these datasets, machine learning was performed using neural networks. The
discrimination results of the nine mice are shown in Figure 9. It was visually apparent
that the pixels identified as “tumor” and “normal” were aggregated in the tumor and
normal areas, respectively. However, there were also some FP and FN pixels. In particular,
various FP pixels were observed between the waist and tail. It is considered that the
spectrum was similar between the tumor and waist, as the tumor was in the waist region.
As shown in the heatmap diagram in Figure 9, although there were red level pixels that
were false-positive, there was a tendency for a large amount of red level pixels to be in
the tumor area and a small number of red level pixels in the normal area. In the analyzed
results, total pixels (102,420 px) were classified as follows: TP, 2629 px; FN, 2287 px; FP,
10,212 px; and TN, 87,292 px. From the classified pixels, the specificity, sensitivity, and
accuracy were calculated as 89.5%, 53.5%, and 87.8%, respectively. The results are listed in

Table 2.
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Figure 8. (a) Boundaries of pixels used as teaching data for the normal area before tumor implantation in nine mice; (b)
boundaries of pixels used as teaching data for the tumor area of the nine tumor-implanted mice; (c) average of the standard
normal variate (SNV)-processed spectrum of normal and tumor pixels in each mouse.
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Figure 9. Classification images of tumor-implanted mice by neural network using OTN-NIR MSI datasets.
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Table 2. Prediction results of OTN-NIR multispectral imaging (MSI) analysis for the tumor-implanted mice.

No. Tumor Volume (mm?) Tumor (px) Normal (px) Specificity (%)  Sensitivity (%)  Accuracy (%)
i 174.0 360 11,015 96.3 54.7 95.0
ii 526.0 507 11,527 89.4 53.5 87.9
iii 355.2 451 10,923 99.2 26.6 96.3
iv 416.1 565 10,322 80.9 729 80.5
\% 821.9 735 8698 88.0 61.1 85.9
vi 276.5 558 12,472 94.6 21.3 91.5

vii 696.2 648 9453 87.1 52.3 84.9

viii 419.5 684 10,457 77.8 74.1 77.6
ix 341.9 408 12,637 90.0 52.7 88.8

total - 4916 97,504 89.5 53.5 87.8

In this study, although aggregated TP pixels were visually recognized and confirmed in
all tumor-implanted mice, identification of tumor-implanted mice showed lower sensitivity
than hyperspectral imaging in previous studies [28]. The reasons for these results are
considered to be the following: (i) As the imaging time exceeded the order of seconds,
there were blurred pixels in the merged multidimensional image due to breathing and
heartbeat. (ii) The data set size was lower than that of the previous study because of the
smaller number of mice and small ROI. (iii) Because the illumination was non-uniform
compared with that of the conventional method, more pixels of halation and dark shadows
were included. (iv) Although the previous study used an NIR wavelength of 256 bands,
the most specific absorption wavelengths for tumor discrimination were different because
only 14 wavelengths were used in this study.

As for the above, future prospects are considered as follows: (i) The time required for
imaging was long because the filter change was done manually. By automating the filter
change, the total imaging time could be shorter than that in this study. (ii) The proposed
improvements noted above enable image capture at high speeds; thus, several sample
images with various magnifications could be acquired. (iii) A suitable FOV for identification
could be created by imaging from various angles, and halation and dark shadow could be
decreased by changing the arrangement of the illumination at the tip of the laparoscope.
(iv) The valuable wavelengths for the identification of tumors could be selected from
NIR-HSI data using resected specimens. In this study, OTN-NIR MSI was investigated
using commercially available filters via straightforward construction; however, spectral
images with high wavelength resolution could be obtained by adopting an acoustic tunable
filter (AOTF) and a liquid crystal tunable filter to select the wavelength before imaging or
light output [21,29,30]. In particular, a combination of an AOTF and a supercontinuum
light source is promising because high power output and fast wavelength switching can be
obtained. (v) In addition to the points mentioned, although a neural network was used as a
machine learning method in this study, other methods such as support vector machine and
principal correlation analysis have been proposed to identify lesions [11]. The identification
accuracy may be improved by investigating the optimal algorithm.

Although the subcutaneous tumor model of mice was adopted because it was straight-
forward to handle the tumor implantation, the overall sensitivity was low, and two out
of nine samples showed a sensitivity below 30%. The conceivable reasons are that light
scattering by the skin, which has a complex structure such as hair follicles, resulted in
the inclusion of the spectra disruption through the skin in all tumor data. In addition,
because it was difficult to make the conditions uniform for the specimens (e.g., tumor size
and contrast of subject), it may be observed that the identification ability was low in some
samples that included individual differences. In contrast, gastrointestinal tissue composed
of smooth muscle may be a suitable target for spectral imaging because it has a simpler
structure than skin and shows less optical scattering [31]. Therefore, the proposed device
is expected to be applied to the gastroenterological field. In particular, there is a demand
in medical applications to visualize the location of invisible digestive tract cancer from
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the serous membrane side during laparoscopic surgery. Previous studies have indicated
that tumors existing under normal tissue in the stomach could be distinguished by high
sensitivity, specificity, and accuracy at four wavelengths [17,19]. Thus, the analysis of
resected digestive tract cancer specimens by NIR-HSI on the serous side is underway. By
determining the effective wavelengths for cancer detection, processing techniques such as
those used for tissue oxygen saturation may be applied [32,33]. Therefore, laparoscopic
OTN-NIR MSI has the potential to enable cancer detection in deep regions during surgery.

4. Conclusions

In this study, we developed a laparoscopic imaging device and a wavelength-selectable
light source to perform OTN-NIR MSI, which was performed on nine live mice before
and after tumor implantation. The images of tumor-implanted mice were classified using
normal and tumor pixel datasets using a neural network. As a result, pixels of subcutaneous
tumors were distinguished without opening the skin. The specificity, sensitivity, and
accuracy were 89.5%, 53.5%, and 87.8%, respectively. This is the first report demonstrating
the classification of living tissues with OTN-NIR MSI under laparoscopy. Therefore, this
study serves as a preliminary step in clinical research on laparoscopic OTN-NIR MSI for
future use by optimizing the algorithm and imaging conditions.

In future, the use of a high-resolution NIR camera and light source that can select wave-
lengths automatically will enable the acquisition of a large amount of OTN-NIR MSI data at
high speed. Therefore, the device may realize higher discrimination accuracy. In addition,
the device is expected to be used in various situations, such as laparoscopic surgery.
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