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The interest in tissue- and cell-specific S100 proteins physiological roles in the brain remains high. However, necessary
experimental data for the assessment of their dynamics in one of the most important brain activities, its plasticity, is not sufficient.
We studied the expression of S100B, S100A1, and S100A6 mRNA in the subfield CA1 of rat hippocampal slices after tetanic
and low-frequency stimulation by real-time PCR. Within 30 min after tetanization, a 2—4 fold increase of the S100B mRNA level
was observed as compared to the control (intact slices) or to low-frequency stimulation. Subsequently, the SI00B mRNA content
gradually returned to baseline. The amount of SI00A1 mRNA gradually increased during first hour and maintained at the achieved
level in the course of second hour after tetanization. The level of SI00A6 mRNA did not change following tetanization or low-

frequency stimulation.

1. Introduction

Although the S100 proteins are known to have a broad
spectrum of intra- and extracellular functions, the roles
they play in the central nervous system, in general, and,
particularly, in mediating one of the most important brain
activities, its plasticity, are largely unknown. Most S100
proteins undergo conformational changes upon calcium
binding, which allows them to interact with target proteins
[1]. They are differentially expressed in a variety of cell
types and tissues, and are thought to play unique roles,
despite a high degree of sequence homology they share and a
significant overlap of their expression patterns. For example,
in the brain, S100A1 is predominantly expressed in neurons,
S100B expression maps to the astrocytes of hippocampus and
cortex, as well as to the subpopulations of oligodendrocytes

and neurons, while SI00A6 is mainly detected in neurons of
the restricted brain areas (amygdala and entorhinal cortex)
and in some astrocytes [2-5]. At least several S100 proteins
affect cell growth, for example, S100B and S100A1, which
interact with the tumor suppressor p53 [6, 7].

Among S100 proteins, S100B is the most studied one
in connection with the neuronal plasticity, although the
data available is contradictory. Antiserum against S-100
protein prevents the long-term potentiation (LTP) in the
CA1 region of rat hippocampal slices, suggesting a positive
role of S100B in the manifestation of LTP [8]. In contrast
to this observation, another set of experiments indicate at a
rather negative influence of S100B on LTP [9, 10]. Transgenic
mice overexpressing the human S100B protein exhibited the
impaired hippocampal TP and spatial learning [9]. Con-
versely, an enhanced LTP was observed in the hippocampal
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CA1 region of mutant mice devoid of S100B, while the
perfusion of hippocampal slices with the recombinant SI00B
protein reversed the LTP in the slices from mutant mice
to the wild-type level [10]. The expression of both S100A6
and S100B proteins has been shown to be modulated in the
course of human brain development [11]. Higher levels of
S100B have been detected in the sera of patients after brain
trauma or ischemia, as well as those suffering from Alzheimer
disease or Down syndrome [12]. Overexpression of S100A6
has also been observed in patients suffering from Alzheimer
disease or amyotrophic lateral sclerosis [13, 14]. SI00A1 plays
a certain role in modulating innate fear and exploration of
novel stimuli [15].

The long-term brain plasticity requires the changes in
gene expression [16, 17]. Complex spatiotemporal patterns
of the expression of new growth factors, ion channels, struc-
tural molecules, and other proteins specify the alterations of
neuronal circuitry. With the purpose of studying the role of
gene expression in mediating the mechanisms of neuronal
plasticity, we compared the dynamics of mRNA expression
for three highly homologous S100 proteins with different
brain localizations after the LTP-inducing tetanization or the
low-frequency stimulation (LFS), which did not induce LTP,
in hippocampal CAL1 area of rats.

2. Materials and Methods

Experiments were conducted on hippocampal slices pre-
pared routinely. Wistar male rats (weight 180-220g) were
decapitated, the brains were rapidly removed and placed
into ice-cold oxygenated (95% O,, 5% CO,) artificial cere-
brospinal fluid (aCSF): 126 mM NaCl, 4 mM KCI, 1.24 mM
NaH,POy, 1.3 mM MgSOy, 2.3 mM CaCl,, 26 mM NaHCO:3,
10 mM D-glucose, pH 7.4. Left hippocampus was dissected
for removal and cut into 400 ym-thick slices perpendicular
to the longitudinal axis, using a chopper. Four consecutive
slices from dorsolateral region of the left hippocampus were
transferred to a submerged recording chamber (volume
7 mL). Slices were continuously perfused with the fresh, oxy-
genated aCSF warmed to 32-33°C at a rate of 2 mL/min. For
extracellular recordings, the recording electrode filled with
aCSF (resistance 1-5MQ) was placed in the hippocampal
CA1 pyramidal cell layer. To stimulate Schaffer’s collaterals,
a bipolar electrode with a tip diameter of 50 ym filled with
aCSF was placed in the CAl stratum radiatum. Intensity of
stimulation was adjusted to get p-spike amplitude ~50% of
the maximal response.

Two separate series of experiments were carried out: the
first, to test efficiency of the stimulation protocols in our
hands, and the second, to obtain the samples for real time
PCR analysis. While testing the stimulation protocol effi-
ciency, a single slice from each animal was used. Tetanization
(4 series x 1s, 100 Hz, with 30 intervals) or low-frequency
stimulation (400 stimuli during 91s, i.e., at 4.4 Hz) were
performed 2.5hr postdissection. Control slices were not
treated by tetanization or LFS protocols and received only
test stimulation in these experiments.
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FiIGUrRe 1: The region of the hippocampal slice (CAl) used
for mRNA sample preparation. CAl, CA3, DG—hippocampus
subfields. Hatched line indicates the direction of sections made to
separate the studied region.

Sample preparation for real time PCR analysis was as
follows. The slice, which was used as a baseline control for the
mRNA content normalization remained intact throughout
the entire incubation period (4.5hrs). Three other slices
were tetanized (or subjected to LES) 120, 60, or 30 min
prior to the end of incubation. Electrodes were placed onto
the slices 10 min before and were removed immediately
after the stimulation. At the end of incubation, slices were
transferred to an ice-cold oxygenated aCSF, the CA1 field was
rapidly dissected from each slice (as shown in Figure 1) and
placed into liquid nitrogen. Five relevant slices from different
animals were pooled to prepare each mRNA sample.

Total RNA was isolated from frozen slices using Aurum
Total RNA Fatty and Fibrous Tissue Kit (Bio-Rad Labora-
tories) according to the manufacturer’s protocol. The RNA
concentration and purity were determined spectrophoto-
metrically by measuring the absorbance at 260 and 280 nm
(corrected for background at 320 nm), and the RNA integrity
was assessed by running the sample on a denaturing agarose
(1%) gel and visualization of 18S and 28S rRNA bands. As
much as 0.5 ug of total RNA was used for single-stranded
cDNA synthesis. First strand cDNA synthesis was carried
out using iScript cDNA Synthesis Kit (Bio-Rad Laboratories)
according to the manufacturer’s protocol. Gene expression
levels were assayed by real-time PCR using iTaq SYBR Green
Supermix with ROX (Bio-Rad Laboratories). Real-time PCR
experiments were performed with 1Q5 Real-Time PCR
instrument (Bio-Rad Laboratories). The “house-keeping”
gene, 3-actin, was used as an endogenous internal control
for normalization. The gene-specific primer sequences for
S100B, S100A1, S100A6, and B-actin amplification were
as follows: S100B F: 5'-TTGCCCTCATTGATGTCTTCCA-
3, Rt 5'-TCTGCCTTGATTCTTACAGGTGAC-3"; S100A1
F: 5'-CCATGGAGACCCTCATCAAT-3', R: 5-TTCTGG-
ACATCCAGGAAGC-3'; S100A6 F: 5'-CTTCTCGTGGCT-
ATCTTCC-3’, R: 5-ACTGGACTTGACTGGGATAG-3';
B-actin F: 5'-ACCCACACTGTGCCCATCTA-3', R: 5'-
CGGAACCGCTCATTGCC-3'".

The optimal annealing temperature for each primer set
was determined prior to the experimental sample analysis.
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Duplicate real-time PCR reactions were run for each sample
containing SYBR Green master mix, 300 nM forward and
reverse primers, and 25ng cDNA template in 25uL of a
total reaction volume. The following standard real-time PCR
conditions were used: one cycle of 95°C for 3min and
40 cycles of 95°C for 15s, the primer specific annealing
temperature (58°C) for 20s, 72°C for 20s, optical data
were collected at 80°C for 10s. After PCR experiments, the
dissociation curve was established using the built-in melting
curve program to confirm the presence of a single PCR
product, which was then confirmed by gel electrophoresis.
The fold change in the target gene, normalized to 3-actin and
relative to control, was calculated based on PCR efficiency (E)
and Ct.

Data is expressed as the mean + S.E.M and tested for
statistical significance using Student’s t-test (for the com-
parison of the amplitudes of p-spikes after tetanization or
LFS with the baseline), paired ¢-test (for the comparison of
mRNA amounts in the samples from stimulated and con-
trol/nonstimulated slices), and repeated measures ANOVA
(for the comparison of mRNA dynamics after tetanization
and LFS).

3. Results

As shown in Figure 2, the employed tetanization protocol
caused a significant increase in the responses in CAl field
to the stimulation of Schaffer’s collaterals. The response
level remained increased throughout the entire course of
observation (3hrs). The same amount of 4.4 Hz stimuli
(LFS) applied within the same time frame did not cause any
potentiation.

Tetanization increased the S100B mRNA level drastically
and rapidly (Figure 3). As early as 30 min after tetanization,
a substantial increase of S100B mRNA level was observed
(286 + 27%, Py = .006, n = 4) in treated specimens,
as compared to the control (nonstimulated) slices. Then
S100B mRNA level gradually returned to baseline (218 +
26% at 60min, P = .02, n = 4) and, within 120 min
after tetanization, it was not differing from the control
values (128 + 14%, P, = .14, n = 4). LFS did not
cause any changes of the SI00B mRNA level at studied
time points (Figure 3). 2-Way repeated measures ANOVA
(group(2) x time(3)) showed highly significant difference
in the amount and dynamics of SI00B mRNA between
tetanization and LFS (group effect F;5 = 21, P < .006;
group-time interaction F(319) = 19, P <.001).

The S100A1 mRNA content, conversely, increased slowly
(during the first hour) and was maintained at the achieved
level in the course of the second hour after tetanization
(Figure 3) (30 min, 138 +£30%, P; = .15, n = 3; 60 min, 177 +
10%, P; = .004, n = 3; 120 min, 179 + 1%, P; <« .001, n =
3). 2-Way repeated measures ANOVA (group(2) X time(3))
showed highly significant difference in the amount of S100A1
mRNA between tetanization and LFS (group effect F(14) =
314, P < .001; group-time interaction F(,,5) = 3.7, P = .07).

Analysis of the S100A6 mRNA content did not reveal
any difference between treated and control samples at all
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FiGure 2: The influence of tetanization and low-frequency stim-
ulation on the amplitude of p-spikes in pyramidal layer of
CAL. P-spikes were elicited by stimulation of Shaffer’s collaterals.
Abscissa, the time from the onset of tetanization (LTP, long-term
potentiation) or low-frequency stimulation (LFS). Ordinate, the
amplitude of p-spike, first, normalized to the average amplitude of
p-spikes in 4 responses prior to tetanization (n = 5) or LES (n = 3),
and then, to the mean amplitude of responses in the control group
(baseline, n = 4). *P, < .05, against baseline, Student’s ¢-test.

time points studied both after tetanization and following
LES (Figure 3). Correspondingly, 2-Way repeated measures
ANOVA (group(2) x time(3)) showed insignificant differ-
ences between tetanization and LFS in respect to the amount
or dynamics of SI00A6 mRNA after stimulation (group effect
Fus = 0.4, P = .56; group-time interaction F(y19) = 0.1,
P =.89).

4. Discussion

Gene transcription is required for establishing and main-
taining the enduring form of long-term potentiation. The
products of coordinated expression of a multitude of genes
enable the stable modification of synaptic efficiency and
neuronal excitability [18, 19]. In the past years, the classical
view that astrocytes play a relatively passive role in brain
function has been overturned, and it has become increasingly
clear that signaling between neurons and astrocytes may
play a crucial role in the information processing performed
by the brain [20]. Investigation and characterization of not
only neuronal, but also the glial transcriptional profiles after
tetanic stimulation will provide a better understanding of the
processes underlying the long-term changes in response to
neuroglial activation.

We showed that LTP-inducing tetanization of Schaffer’s
collaterals, but not LFS, evokes increases in S100B and
S100A1 mRNA levels in hippocampal CAl area of rats.
This result suggests that tetanization-induced changes in
S100B and S100A1 mRNA amounts were not associated
with mechanical or electric damage of slices with electrodes,
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FiGure 3: The dynamics of S100B, S100A1, and S100A6 relative
mRNA amounts in hippocampal CAl area of rats after tetaniza-
tion and low-frequency stimulation. Ordinate, relative amount
of mRNA normalized to relative amount of mRNA in control
samples (nonstimulated slices). Abscissa, time after stimulation
(min). S100B: n1 = 4, n2 = 3; S1I00A1: nl = 3, n2 = 3; S100A6:
nl = 4, n2 = 3 for tetanization (black circles) and low-frequency
stimulation (white circles), respectively. **P, < .01, *P, < .05,
against control samples, Student’s paired ¢-test.

but might rather be relevant to the processes underlying
neuronal plasticity. The expression of S100B in astrocytes is
upregulated by brain-derived neurotrophic factor (BDNF)
[21], which is thought to play a crucial role in LTP
mechanisms [22]. BDNF activity during LTP initiation might
possibly participate in the induction of a rapid and transient
increase of SI00B mRNA content after tetanization, although
a number of other mechanisms of S100B upregulation exist
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[23], including the spillover of glutamate from activated
synapses. Extracellular S100B evokes an increase in intra-
cellular free calcium concentration in glial and neuronal
cells [24]. Calcium is involved in a number of cellular
processes including the regulation of transcription. It is,
therefore, possible that increased S1I00B protein secretion
from astrocytes associated with neuronal activation [25]
might induce S100B gene transcription.

In contrast to our results, LTP induction in mouse
dentate gyrus slightly decreased S100B mRNA content [19],
however, the reasons for that discrepancy remain unclear. It
would be interesting to compare the baseline expression of
S100B mRNA in our control (nonstimulated slices) samples
(35 = 5% of the B-actin mRNA, n = 7) with those in
mice. Chang et al. [19] used minislices of dentate gyrus
dissected from the whole hippocampal slices immediately
after their preparation, while we worked on whole slices
and dissected CA1 immediately before freezing. Supposedly,
a more extensive injury to the slices, as in [19], might be
responsible for a more prominent basal expression of SI00B
and, thereby, might occlude its further increase after LTP.

Functional significance of the S100B mRNA increase
after tetanization in our experiments is not yet clear. It
would be worthwhile to investigate whether S100B protein
content increases along with its mRNA expression. High
frequency neuronal activation stimulates S100B secretion
in hippocampal slices [25]. Whether the enhanced mRNA
expression simply replenishes the pool of S100B protein or
a further increase of the protein above baseline takes place
remains to be elucidated.

As mentioned above, experimental data concerning the
influence of S100B protein on LTP is contradictory. Natural
sources of this discrepancy arising from the complexity of the
biochemical machinery, which S100B is involved in, were dis-
cussed elsewhere [23]. Still another reason for contradictions
could be the immanent instability of acute slices. Cutting
hippocampal slices for in vitro experiments causes prolonged
disturbance of the background genetic activity, which might
never reach steady state. For example, the expression of
interleukin-1 mRNA can increase steadily with the time
over at least 7 hours after slice preparation [26]. Changing
background genetic activity could influence the mechanisms
of plasticity. A degree of LTP in hippocampal slices was
reported to decrease during survival [27]. Unfortunately,
this issue is commonly neglected by researchers. Thus, when
a varying amount of slices from one animal is used in
experiments and processed serially, it is difficult to exclude
artifacts associated with the differences in times of slice
survival in the compared experimental groups.

As most of the other S100 proteins, SI00A1 is a multi-
functional regulator. With respect to LTP mechanisms, an
implication of S100A1 in the Ca?"-dependent regulation of
synaptic vesicle trafficking and, ultimately, in the regulation
of presynaptic function and plasticity [28] might be relevant.
Though the data on brain S100A1 secretion is lacking so
far, it is known to induce RAGE-dependent growth of
neurites and promote neuronal survival in physiological
concentrations [29]. Furthermore, it is shown that RAGE
activation results in a fast CREB phosphorylation and its



Cardiovascular Psychiatry and Neurology

translocation into the nucleus [30], the factor being involved
in LTP mechanisms [17].

We did not observe any changes in S100A6 mRNA
following LTP induction. Obviously, this fact alone does
not exclude S100A6 participation in LTP mechanisms, but,
rather, reflects the peculiarities of the protein cellular dis-
tribution and/or expression regulation. As S100B, S100A1,
and some other 5100 proteins, SI00A6 is a RAGE ligand and
might be involved in mechanisms of cell survival [31].

Our results indicate that glial gene expression response
to the neuronal activation can be quite appreciable, although
functional significance of the observed increment in S100B
mRNA content after tetanization remains to be clarified.
We hope that further investigation of this phenomenon will
extend our knowledge about neuroglial cooperation during
LTP formation.
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