
Input Strictly Local Tree Transducers

Jing Ji(B) and Jeffrey Heinz

The Department of Linguistics and The Institute of Advanced
Computational Science, Stony Brook University, Stony Brook, USA

{jing.ji,jeffrey.heinz}@stonybrook.edu

Abstract. We generalize the class of input strictly local string functions
(Chandlee et al. 2014) to tree functions. We show they are characterized
by a subclass of frontier-to-root, deterministic, linear tree transducers.
We motivate this class from the study of natural language as it provides
a way to distinguish local syntactic processes from non-local ones. We
give examples illustrating this kind of analysis.

Keywords: Strictly local · Computational syntax · Tree transducers

1 Introduction

Locally Testable sets of strings in the strict sense (Strictly Local, SL) are a
subclass of the regular languages with interesting properties [16,20]. Rogers [18]
presents a generalization of SL to sets of trees and shows they characterize the
derivations of context-free languages. Chandlee et al. [2,3] generalize SL formal
languages in another direction. They present classes of strictly local string-to-
string functions. In this paper, we generalize the SL class to a class of functions
over trees. In particular, we present a characterization in terms of frontier-to-
root, deterministic, linear tree transducers [5,7].

One motivation comes from computational and theoretical linguistics, where
the goal of one program is to identify and understand the minimally powerful
classes of formal grammars which can describe aspects of natural language [4].
To this end, subregular sets and functions over strings have been used to dis-
tinguish and characterize phonological generalizations [11]. More recent research
has begun studying natural language syntax from the perspective of subregular
sets and functions over trees, as opposed to strings [9,10].

One rationale for studying subclasses of regular string/tree sets and relations
is that it is known that finite-state methods are sufficient to describe aspects
of natural language. For phonology and morphology, finite-state methods over
strings appear sufficient [1,17]. For syntax, finite-state methods over trees sim-
ilarly appear sufficient. Rogers [19] showed that a syntactic theory of English
can be understood in terms of Monadic Second Order (MSO) definable con-
straints over trees. Languages with more complex constructions can be under-
stood in terms of regular tree languages undergoing regular tree transductions

c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 369–381, 2020.
https://doi.org/10.1007/978-3-030-40608-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_26&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_26

370 J. Ji and J. Heinz

[8,14]. Tree transducers also have found broad application in machine transla-
tion [13,15]. It remains an open question, however, whether the full power of
regular computations are necessary [11].

Another rationale for identifying subregular classes of languages is that learn-
ing problems may be easier to solve in the sense of requiring less and time and
resources than otherwise [12].

By defining and characterizing the Input Strictly Local class of tree trans-
ducers, we hope to take a first step in developing a more fine-grained perspective
on the syntactic transformations present in natural languages. The structure of
the paper is as follows.

Section 2 defines trees and associated properties and functions based on their
recursive structure. In this way we follow the tree transducer literature [5,7].
However, we note that we do not adopt the convention of ranked alphabets.
Instead we obtain their effects by bounding the largest number of children a tree
in some tree set can have and by requiring that the pre-image of the transition
function of the tree automata is finite. While this is unconventional, we believe
it simplifies our presentation and proofs. Section 2 also reviews strictly local
treesets and reviews the proof of the abstract characterization of them [18].

Section 3 presents the main theoretical results. Deterministic, frontier-to-
root, finite-state, linear tree transducers (abbreviated DFT) are defined, Input
Strictly Local (ISL) tree functions are defined abstractly and then characterized
in terms DFTs. Section 4 concludes.

2 Preliminaries

Assume a finite alphabet Σ and let Σ∗ denote the set of all strings of finite
length that can be obtained via concatenation of the elements of Σ. We denote
the empty string with λ.

Consider an alphabet Σ and symbols [] which do not belong to it. A tree is
defined inductively as follows:

– Base Case: For each a ∈ Σ, a[] is a tree. The tree a[] is also called a leaf.
We also write a[λ] for a[].

– Inductive Case: If a ∈ Σ and t1t2 . . . tn is a string of trees of length n (n ≥
1), then a[t1t2 . . . tn] is a tree.

For a trees t = a[t1t2 . . . tn], the trees t1, t2, . . . tn are the children of t and ti
denotes the ith child. ΣT denotes the set of all trees of finite size from Σ.

The depth, size, yield, root, branch, and the set of subtrees of a tree t,
written dp(t), |t|, yld(t), root(t), branch(t) and sub(t), respectively, are defined
as follows. For all a ∈ Σ:

– If t = a[], then dp(t) = 1, |t| = 1, yld(t) = a, root(t) = a, branch(t) = 0,
and sub(t) = {t}.

– If t = a[t1t2 . . . tn] then dp(t) = max{dp(ti)|1 ≤ i ≤ n} + 1, and |t| =
1 +

∑n
i=1 |ti|, and yld(t) = yld(t1)yld(t2) . . . yld(tn), and root(t) = a, and

branch(t) = n, and sub(t) =
⋃{sub(ti)|1 ≤ i ≤ n} ∪ {t}.

Input Strictly Local Tree Transducers 371

The roots of the subtrees of a tree t are called nodes. The root of a tree is also
called its root node. Leaves are also called frontier nodes.

The branching degree of a tree t is branch degree(t) = max{branch(u) | u ∈
sub(t)}. Let ΣT

n denotes the set of trees {t ∈ ΣT | branch degree(t) ≤ n}.

Example 1. Suppose Σ = {S, a, b}. S [a S [a b] b] denotes a tree rooted in S
with branch degree of 3.

Let N∗ be the set of all sequences of finite length of positive natural numbers.
For �n = 〈n1, n2, . . . , nm〉 ∈ N∗ (m ≥ 1), the subtree of t at �n is written t.�n, and
it is defined inductively:

– Base Case: t.�n = t iff �n = λ.
– Inductive Case: Suppose t = a[t1t2 . . . tn] and �n �= λ. Then t.�n =

t.〈n1, n2 . . . nm〉 = tn1 .〈n2, n3 . . . nm〉.
– Note: t.�n is undefined otherwise.

These sequences are the Gorn addresses of the subtrees of t. For example, The
first child of t is given by t.〈1〉 (if it exists); the second child by t.〈2〉 (if it exists);
the second child of the first child by t.〈1, 2〉 (if it exists); and of course t.〈 〉 = t.

The Gorn addresses provide a natural ordering of the subtrees of t in terms
of the length-lexicographic ordering. For distinct �n = 〈n1, n2, . . . , nk〉, �m =
〈m1,m2, . . . ,m�〉, �n precedes �m iff either k < �, or k = � and n1 < m1, or
k = � and n1 = m1 and 〈n2, . . . , nk〉 < 〈m2, . . . ,m�〉. This essentially orders
subtrees of t such that the ones closer to the root of t are ordered earlier, and
those ‘on the same level’ in t are ordered ‘left to right.’ We make use of this
ordering in our proof of Theorem 1.

The largest common subtrees of a set of trees T , denoted lcs(T), is {d ∈⋂
t∈T sub(t) | ∀d ′ ∈ ⋂

t∈T sub(t), |d′| ≤ |d|}.
The k-stem (k ≥ 1) of a tree t, written stemk(t), is defined as follows.

– Base Case: For all a ∈ Σ, if t = a[], then stemk(t) = a[].
– Inductive Case: For all a ∈ Σ, if t = a[t1t2 . . . tn], then

• stem1(t) = root(t)[], and
• stemk(t) = a[stemk−1(t1)stemk−1(t2) . . . stemk−1(tn)].

The stems of a tree t, denoted stem(t) is the set {stemk(t) | k ≥ 1}.

Example 2. The 2-stems of the tree in Example 1 is {S [a S b], S [a b], a[], b[]}.

It is useful to incorporate boundary markers into the roots and leaves of
trees. Informally, given a Σ-tree t, boundary markers are added above the root
and below the leaves. Formally, we employ symbols �, � �∈ Σ for this purpose.
We let Σ̂ = Σ ∪ {�, �}.

Thus for all a ∈ Σ, t ∈ ΣT , let add � (t) = �[t], and add � (a[]) = a[�[]],
and add�(a[t1 . . . tn]) = a[�(t1) · · ·�(tn)]. Then for any Σ-tree t, its augmented
counterpart t̂ = add � (add � (t)).

The k-factors of a tree t are defined as the set of k-depth stems of subtrees
of t̂. For all t ∈ ΣT , let Fk(t) =

⋃{stemk(u) | u ∈ sub(t̂)}.
We lift the definition of k-factors to treesets in the natural way. For all T

⊆ ΣT , Fk(T) =
⋃

t∈T Fk(t).

372 J. Ji and J. Heinz

Example 3. The 2-factors of the tree in Example 1 is the set {�[S []],
S [a []S [] b []], S [a [] b []], a [�[]], b [�[]], �[]}.

A strictly k-local grammar G = (Σ,S) where S is a finite subset of Fk(ΣT)
and the tree language of G is defined as: L((Σ,S)) = {t | Fk(t) ⊆ S}.

Note that since S is finite, there exists a smallest number n such that S ⊆ Σ̂T
n .

It follows that L((Σ,S)) is of branching degree n. A treeset T ⊆ ΣT is strictly
k-local if there exists a k and a strictly k-local grammar G such that L(G) = T .
Such treesets form exactly strictly k-local treesets (SLk). Strictly local stringsets
are a special case of strictly local treesets where all the branching degree is 1; so
every node (except leaves) are unary branching.

Strictly 2-local treesets have been called local treesets in previous literature
[18]. Every Strictly 2-local tree language can be generated by a context free
grammar [7,18].

Comparable to the characterization of strictly local string sets, which is Suffix
Substitution Closure [20], each strictly 2-local tree language satisfies Subtree
Substitution Closure[18]. To explain this characterization, we first introduce the
notion of subtree-substitution.

For t, s ∈ ΣT and �n = 〈n1, n2, . . . , nm〉 ∈ N∗ (m ≥ 1), the operation of
substituting the subtree of t at �n by s, written as t.�n ← s, is defined as follows.

– Base Case: t.�n ← s = s iff �n = λ.
– Inductive Case: If t = a[t1t2 . . . tn] then t.�n ← s = a[t1t2 . . . (tn1 .

〈n2, n3 . . . nm〉 ← s) . . . tn].

We also define substitution of all the subtrees of t rooted at x (x ∈ Σ) by s,
which we write as t

x←s.

– Base Case: If root(t) = x, t
x←s = s.

– Base Case: If root(t) �= x and t = a[] (a ∈ Σ), t
x←s = t.

– Inductive Case: If root(t) �= x and t = a[t1t2 . . . tn] (a ∈ Σ), t
x←s =

a[s1s2 . . . sn] where si = ti
x←s (1 ≤ i ≤ n).

Rogers [18] proves the following result and we repeat the proof to set the
stage for the sequel.

Theorem 1 (Subtree Substitution Closure). A treeset T ⊆ ΣT is strictly
2-local iff there is n such that T is of branching degree n and for all A,B ∈ T,
whenever there exist two vectors �n1, �n2 ∈ �N , such that root(A. �n1) = root(B. �n2)
then A. �n1 ← B. �n2 ∈ T .

Proof. If T is strictly 2-local, then there exists a corresponding strictly 2-local
grammar G that satisfies L(G) = T . Thus there exists a finite set S ⊂ Fk(ΣT)
such that L((Σ,S)) = T .

Consider any A,B ∈ T and �n1, �n2 ∈ �N such that root(A. �n1) = root(B. �n2).
Let t = A. �n1 ← B. �n2. We show t ∈ T . First notice that F2(A) ⊆ S and
F2(B) ⊆ S because A,B ∈ T and T = L((Σ,S)). Next consider any element
u ∈ F2(t). By definition of t and 2-factor, u must be a 2-stem of a subtree of

Input Strictly Local Tree Transducers 373

A. �n1 ← B. �n2. If u is the 2-stem of a subtree of B. �n2 then u ∈ F2(B) ⊂ S. If not,
then u is a 2-stem of a subtree of A and so u ∈ F2(A) ⊂ S. Either way, u ∈ S
and so F2(t) ⊆ S. It follows that t ∈ T .

Conversely, consider a treeset T such that whenever there exist two vectors
�n1, �n2 ∈ �N , such that root(A. �n1) = root(B. �n2) then A. �n1 ← B. �n2 ∈ T . We
refer to this property as the SSC. To show T is Strictly 2-Local, we present a
finite set S ⊂ Fk(ΣT) such that L((Σ,S)) = T . Let S = F2(T). Since T is of
branching degree n, S is finite. In order to prove L((Σ,S)) = T , we need to
show both L((Σ,S)) ⊆ T and T ⊆ L((Σ,S)). It is obvious that T ⊆ L((Σ,S))
because for any t ∈ T , F2(t) ⊆ S = F2(T).

The following proves that L((Σ,S)) ⊆ T by recursive application of SSC.
Consider any t ∈ L((Σ,S)). Let t1 = t.�n1, t2 = t. �n2, . . . tm = t.�nm be an enu-
meration of the m subtrees of t by their Gorn addresses in length-lexicographic
order. (Note that t1 = t).

The base step of the induction is to choose a tree s0 ∈ T that has the same
root as t. Such a s0 ∈ T exists because �[root(t)[]] ∈ S.

Next we assume by the induction hypothesis that si−1 ∈ T and we will
construct si which is also in T . For each 1 ≤ i ≤ m, if ti is a leaf then let u =
ti[�[]], otherwise let u = stem2(ti). Choose a tree x ∈ T such that u ∈ F2(x).
Such a tree x ∈ T exists because u ∈ S = F2(T). It follows there is �m such that
stem2(x.�m) = u. Let si = si−1. �ni ← x.�m. Since root(si−1. �ni) = root(x.�m) and
si−1, x ∈ T , it follows that si ∈ T by SSC. Informally, this construction ensures
the nodes and children of si are identical to those of t from the root of t to the
root of the subtree ti.

Since each si is built according to si−1 and s0 ∈ T we conclude that sm ∈
T . Furthermore, since the subtrees are ordered length-lexicographically and we
substitute a 2-stem of a subtree of t to build si, it follows that sm = t. As t was
arbitrary in L((Σ,S)), we obtain L((Σ,S)) ⊆ T . �

The catenation operation of two trees u · t is defined by substitution in the
leaves. Let $ be a new symbol, i.e., $ �∈ Σ. Let ΣT

$ denote the set of all trees
over Σ ∪ $ which contain exactly one occurrence of label $ in the leaves. The
operation of catenation is defined inductively:

– Base Case: For t ∈ ΣT , $[] · t = t.
– Base Case: For all a ∈ Σ, if u = a[], u · t = a[].
– Inductive Case: For all a ∈ Σ, if u = a[t1t2 . . . tn], u · t = a[(t1 · t)(t2 ·

t) . . . (tn · t)].

Example 4. Suppose Σ = {S, a, b}. Let u = S [a[] $[] b[]] and t = S [a[] b[]].
u·t = S [(a[]·t) ($[]·t) (b[]·t)] = S [a[] S [a[] b[]] b[]].

Notice that the classical catenation of strings can be viewed as a special case
of catenation of trees with unary branching. This operation can also be used to
represent subtrees. For t ∈ ΣT ∪ ΣT

$, if t = u · s, then s is a subtree of t.
If U ⊆ ΣT

$ and T ⊆ ΣT ∪ΣT
$, then U ·T = {u·t | u ∈ U, t ∈ T}. Furthermore,

for any t ∈ T and any tree language T ⊆ ΣT , the quotient of t w.r.t. T is defined

374 J. Ji and J. Heinz

as qtT (t) = {u ∈ ΣT
$ | u · t ∈ T}. Canonical finite-state tree recognizers can be

defined in terms of these quotients.

3 Input Strictly Local Tree Transducers

In this section we define functions that map trees to trees. After reviewing some
basic terminology, we introduce deterministic, frontier-to-root, linear, finite-state
Tree Transducers (DFT). We then define Input Strictly Local Tree Transducers
(ISLTT) in a grammar-independent way, and then prove they correspond exactly
to a type of DFTs. Examples are provided along the way.

A function f with domain X and co-domain Y can be written f : X → Y .
The image of f is the set {f(x) ∈ Y |x ∈ X, f(x) is defined} and the pre-image
of f is the set {x ∈ X|f(x) is defined}. Tree transducers compute functions that
map trees to trees f : ΣT

n → ΓT .
DFTs are defined as a tuple (Q,Σ, Γ, F, δ), where Q is a finite set of states,

F ⊆ Q is a set of final states, and δ is a transition function that maps a sequence
of states paired with an element of Σ to a state and a variably-leafed tree. A
variably-leafed tree is a tree which may include variables in the leaves of the tree.
Let X = {x1, x2, . . .} be a countable set of variables. If Σ is a finite alphabet
then ΣT [X] denotes the set of trees t formed with the alphabet Σ ∪ X such
that if the root of a subtree s of t is a variable then s is a leaf (so variables are
only allowed in leaves). Thus formally the transition function is δ : Q∗ × Σ →
ΓT [X]×Q. Importantly, the pre-image of the transition function must be finite.
We sometimes write (q1q2 . . . qm, a, t, q) ∈ δ to mean δ(q1q2 . . . qm, a) = (t, q).

In the course of computing a tree transduction, the variables in variably-
leafed trees are substituted with trees. Assume t1, t2, . . . tm ∈ ΓT and s ∈ ΓT [X],
which is a variable leafed tree with any subset of the variables {x1, x2, ..., xm}.
We define a substitution function φ such that φ(t1t2 . . . tm, s) = s

xi← ti for
1 ≤ i ≤ m.

We define the process of transducing a tree recursively using a function π,
which maps ΣT

n to Q × ΓT , which itself is defined inductively with δ.

– Base Case: π(a[]) = (q, v) iff δ(λ, a) = (v, q)
– Inductive Case: π(a[t1t2 . . . tm]) = (q, φ(v1v2 . . . vm, s)) iff δ(q1q2 . . . qm, a)

= (s, q) and π(ti) = (qi, vi) for each 1 ≤ i ≤ m.

The tree-to-tree function the transducer M recognizes is the set of pairs
L(M) = {(t, s) | t ∈ ΣT

n , s ∈ ΓT , π(t) = (q, s), q ∈ F}. We also write M(t) = s
whenever (t, s) ∈ L(M).

A DFT is linear provided whenever δ(q1q2 . . . qm, a) = (s, q), no variable
occurs more than once in s.

Example 5. Wh-movement refers to a syntactic analysis of question words such
as English what and who. It is common to analyze this as a relation between
tree structures [21]. The input structure describes the relation of the wh-word to
its verb (cf. “John thinks Mary believes Bill buys what?”) and the yield of the

Input Strictly Local Tree Transducers 375

output structure reflects the pronunciation (cf. “What does John think Mary
believe Bill buys”).

We use a simplified transformation to make the point. In the alphabet, S
represents the root node of a input tree, W stands for a wh-word and P for every-
thing else (P is for phrase). A transducer of wh-movement can be constructed as a
tuple Mwh = (Q,Σ,F, δ) where Q = {qw, qp, qs}, F = {qs}, Σ = {S, P,W}, and
δ = {(λ, P, P [], qp), (λ,W,W [], qw), (qpqp, P, P [x1x2], qp), (qwqp, P, P [x1x2], qw),
(qpqw, P, P [x1x2], qw), (qpqw, S, S[W []S[x1x2]], qs), (qwqp, S, S[W []S[x1x2]], qs),
(qpqp, S, S[x1x2], qs)}.

Figure 1 illustrates some of the transformations computed by the finite-state
machine Mwh. The tree with a wh-word in Fig. (1a) is transformed into the
tree in Fig. (1b). (Mwh keeps the original wh-word in-situ but it could easily be
removed or replaced with a trace). The trees in Fig. (1c) and (d) are the same
because there is no wh-word in the input tree and so Mwh leaves it unchanged.

S

P P

P P

P P

P W

(a)

�→

S

W S

P P

P P

P P

P W

(b)

S

P P

P P

P P

P P

(c)

�→

S

P P

P P

P P

P P

(d)

Fig. 1. Mwh maps the tree in (a) to the tree in (b) and likewise maps the tree in (c)
to itself in (d).

Next we describe the canonical form of deterministic tree transducers. The
quotient of a tree t ∈ ΣT with respect to a tree-to-tree function f : ΣT → ΓT

is a key idea. It will be useful to develop some notation for the largest common
subtree of the image under f of the set of trees which includes t as a subtree.
Let lcsif (t) = lcs

(
f
(
ΣT

$ · {t}))
. When f is understood from context, we just

write lcsi(t). Then the quotient is defined as follows:

qtf (t) =
{

(u, v) | f(u · t) = v · s, s = lcsif (t)
}

. (1)

When f is clear from context, we write qt(t) instead of qtf (t).
It is worth noting that for a tree t ∈ ΣT

n , the largest common subtree of
the image of a linear transducer with the input of ΣT

$ · {t} is unique if it exists
because if there is more than one tree that belongs to lcs(f(ΣT

$ ·{t})), they must
be produced by copying, which is not allowed by linear DFT. If trees t1, t2 ∈ ΣT

376 J. Ji and J. Heinz

have the same quotient with respect to a function f , they are quotient-equivalent
with respect to f and we write t1 ∼f t2. Clearly, ∼f is an equivalence relation
which partitions ΣT .

As in the string case, to each regular tree language T , there is a canonical
DFT accepting T . The characterization given by the Myhill-Nerode theorem can
be transferred to the tree case [6]. For any treeset T , the quotients of trees w.r.t.
T can be used to partition ΣT into a finite set of equivalence classes.

Analogous to the smallest subsequential finite state transducer for a subse-
quential function, we can construct the smallest linear DFT for a deterministic
tree-to-tree function f and refer to this transducer as the canonical transducer
for f , Ψ c

f . For t1, t2, . . . , tm ∈ ΣT
n (m ≤ n) and a ∈ Σ, let the contribution of a

w.r.t. t1t2 . . . tm be contf (a, t1t2 . . . tm) = v ∈ ΓT [X], which satisfies

φ
(
lcsi(t1)lcsi(t2) . . . lcsi(tm), v

)
= lcsi

(
a[t1t2 . . . tm]

)
. (2)

The term contf (a, t1t2 . . . tm) is well-defined since each lcsi(t1), lcsi(t2), . . .
lcsi(tm), and lcsi(a[t1t2 . . . tm]) are unique.

Then the canonical DFT for a deterministic tree-to-tree function f is:

– Q = {qtf (t) |∈ ΣT
n },

– F ⊆ Q,
– For a ∈ Σ, there exists v ∈ ΓT that satisfies (λ, a, v, qtf (a[])) ∈ δ,

– For t1, t2, . . . , tm ∈ ΣT
n (m ≤ n) and a ∈ Σ,

(
qtf (t1) qtf (t2) . . . qtf (tm),

a, contf (a, t1t2 . . . tm), qtf (a[t1t2 . . . tm])
)

∈ δ.

The presentation here differs from Friese et al. [6], but the only thing we require
in the proof of Theorem 2 below is the existence of the canonical DFT whenever
∼f is of finite index.

We define ISLTT as a subclass of linear DFTs.

Definition 1 (Input Strictly Local Tree-to-tree Function). A function
f is Input Strictly Local (ISL) if there is a k and n such that for all t1, t2 ∈ ΣT

n ,
if stemk−1(t1) = stemk−1(t2) then quotientf (t1) = quotientf (t2).

In the same way ISL string functions can be used to probe the locality prop-
erties of phonological processes, ISL tree functions can used to probe the locality
properties of syntactic transformations.

To show that a syntactic transformation is not ISL one need only construct
a counterexample to Definition 1.

Example 6. We can show the function computed by Mwh from Example 5 is
not ISL for any k because there is no bound on the distance the wh-word can
‘travel.’ Suppose there is a k and n such that for all t1, t2 ∈ ΣT

n , if stemk−1(t1) =
stemk−1(t2) then qtf (t1) = qtf (t2). Let u1 = u2 . . . = uk−1 = P [P$]. Also let uk

= P [P P], s = S[P$] and w = P [PW]. We construct two sentence structures:
s · t1 and s · t2, where t1 = u1 · u2 . . . uk−1 · w and t2 = u1 · u2 . . . uk−1 · uk.

Input Strictly Local Tree Transducers 377

It is obvious that stemk−1(t1) = stemk−1(t2). However, qtf (t1) �= qtf (t2) since
(s, s) ∈ qtf (t2) but (s, s) /∈ qtf (t1). As we can always find such a pair of trees
t1 and t2 for any k, it is thus proved that wh-movement is not ISL for any k.

Our main result, Theorem 2 below, establishes an automata-theoretic char-
acterization of ISL tree-to-tree functions. As we illustrate after the proof, one
can show that a tree transformation is ISL using this theorem.

Theorem 2 (ISL Tree Transducers). A function f is ISL iff there is some
k and n such that f can be described with a DFT for which

1. Q = {stemk−1(t) | t ∈ ΣT
n)} and F ⊆ Q,

2. ∀q1q2 . . . qm ∈ Q∗(1 ≤ m ≤ n), a ∈ Σ, u ∈ ΓT [X], it is the case that
(q1q2 . . . qm, a, u, q′) ∈ δ ⇒ q′ = stemk−1(a[q1q2 . . . qm]).

The transducer is finite since Σ is finite and n bounds the branching degree of
the pre-image of f which ensures the finiteness of both Q and δ.

Before our proof of the Theorem, we prove a lemma based on these remarks.

Remark 1. For all k,m ∈ N with k ≤ m, and for all t ∈ ΣT
n , stemk(stemm(t)) =

stemk(t) since both t and stemm(t) share the same k-stem from the root.

Remark 2. For all k ∈ N, and for all a ∈ Σ and t1, t2, . . . tm ∈ ΣT
n (m ≤ n),

stemk−1(a[t1t2 . . . tm]) = stemk−1(a[stemk−1(t1) stemk−1(t2) . . . stemk−1(tm)]).
This is a direct consequence of Remark 1.

Lemma 1. Let Ψ be a ISLTT with the properties defined in Theorem2. If t ∈ ΣT
n

and u ∈ ΓT , π(t) = (q, u), then q = stemk−1(t).

Proof. The proof is by induction on the depth of the trees to which π is applying.
The base case follows from the facts that for (λ, a, v, q) ∈ δ iff π(a[]) = (q, v)
and q = stemk−1(a[]).

Next assume for all t1, t2, . . . , tm ∈ ΣT
n (m ≤ n) and v1, v2 . . . , vm ∈ ΓT

such that π(t1) = (q1, v1) implies q1 = stemk−1(t1), π(t2) = (q2, v2) implies
q2 = stemk−1(t2), . . . , π(tm) = (qm, vm) implies qm = stemk−1(tm). We show
that ∀a ∈ Σ that there is a v ∈ ΓT [X] such that π(a[t1t2 . . . tm]) =(
q, φ(v1v2 . . . vm, v)

)
and q = stemk−1(a[t1t2 . . . tm]). Based on the assump-

tion, we know that π(t1) = (stemk−1(t1), v1), π(t2) = (stemk−1(t2), v2),
. . . , π(tm) = (stemk−1(tm), vm), so there exists v ∈ ΓT [X] such that
(stemk−1(t1)stemk−1(t2)stemk−1(tm), a, v, q) ∈ δ. By the construction, q is
defined to be equal to stemk−1(a[stemk−1(t1)stemk−1(t2)stemk−1(tm)]), which
by Remark 2, equals stemk−1(a[t1t2 . . . tm]).

Now we can prove the theorem.

Proof (Theorem 2). (⇐) Assume k ∈ N and let f be a function described by
Ψ = {Q, Σ, Γ , F, δ} constructed as in Theorem. Let t1, t2 ∈ ΣT

n such that
stemk−1(t1) = stemk−1(t2). By Lemma 1, both t1 and t2 lead to the same state,
so qtf (t1) = qtf (t2). Therefore, f is k-ISL.

378 J. Ji and J. Heinz

(⇒) Consider any ISL tree-to-tree function f . Then there is some k and
n such that ∀t1, t2 ∈ ΣT

n , we have stemk−1(t1) = stemk−1(t2) ⇒ qtf (t1) =
qtf (t2). We show that the corresponding ISL tree transducer Ψ ISL

f exists. Since
stemk−1(ΣT

n) is a finite set, the equivalence relation ∼f partitions ΣT into
at most stemk−1(ΣT

n) blocks. Thus there exists a canonical linear DFT Ψ c
f =

{Qc, Fc, Σ, Γ, δc}. πc is the process function derived from δc that maps ΣT
n to

Qc × ΓT .
Construct Ψ = {Q, F, Σ,Γ, δ} as follows:

– Q = stemk−1(ΣT
n)

– ∀q ∈ Q, q ∈ F iff qt(q) ∈ Fc.
– For a ∈ Σ and v ∈ ΓT [X], (λ, a, v, q) ∈ δ iff (λ, a, v, qt(q)) ∈ δc.
– ∀q1q2 . . . qm ∈ Q∗(1 ≤ m ≤ n), a ∈ Σ, u ∈ ΓT [X], we have (q1q2 . . . qm,

a, v, stemk−1(a[q1q2 . . . qm])) ∈ δ if and only if (qt(q1)qt(q2) . . . qt(qm), a, v,
qt(a[q1q2 . . . qm])) ∈ δc.

Ψ is ISL by construction, as the states and transitions of Ψ meet requirements
(1) and (2) of Theorem 2.

The following proof show that Ψ computes the same function as Ψ c
f by show-

ing that Ψ and Ψ c
f generate the same function. In other words we show ∀t ∈ ΣT

n ,
u ∈ ΓT , π(t) = (stemk−1(t), u) iff πc(t) = (qt(t), u) and stemk−1(t) ∈ F iff
qt(t) ∈ Fc.

First, we show that π(t) = (stemk−1(t), u) iff πc(t) = (qt(t), u). Clearly,
the base case is satisfied. For all a ∈ Σ and v ∈ ΓT [X], (λ, a, v, q) ∈ δ iff
(λ, a, v, qt(q)) ∈ δc. Thus πc(a[]) = (qt(a[]), v) and π(a[]) = (stemk−1(a[]), v).

Next assume that there exist t1, t2, . . . , tm ∈ ΣT
n and u1, u2, . . . , um ∈ ΓT

such that π(ti) = (stemk−1(ti), ui) iff πc(ti) = (qt(t1), ui) for each 1 ≤
i ≤ m. We show ∀a ∈ Σ and ∀v ∈ ΣT [X] such that π(a[t1t2 . . . tm])
= (stemk−1(a[t1t2 . . . tm]), we have (φ(u1u2 . . . um], v)) iff πc(a[t1t2 . . . tm]) =
(qt(a[t1t2 . . . tm]), φ(u1u2 . . . um], v)).

Suppose πc(a[t1t2 . . . tm]) = (qt(a[t1t2 . . . tm]), (φ(u1u2 . . . um, v))). By
assumption, πc(ti) = (qt(t1), ui) for each 1 ≤ i ≤ m. Hence,

(
qt(t1) . . . qt(tm),

a, v, qt(a[t1t2 . . . tm])
) ∈ δc.

Let qi = stemk−1(ti) for each 1 ≤ i ≤ m. Observe that each stemk−1(ti) =
stemk−1(qi) by Remark 1. Consequently, since f is k-ISL, qt(ti) = qt(qi). Simi-
larly, stemk−1(a[t1t2 . . . tm]) = stemk−1(a[q1q2 . . . qm]) and so qt(a[t1t2 . . . tm]) =
qt(a[q1q2 . . . qm]). By substitution then, we have πc(ti) = (qt(qi), ui) for each
1 ≤ i ≤ m and

(
qt(q1)qt(q2) . . . qt(qm), a, v, qt(a[q1q2 . . . qm])

) ∈ δc.
By construction of Ψ ,

(
q1q2 . . . qm, a, x, stemk−1(a[q1q2 . . . qm])

) ∈ δ. Since
π(ti) = (stemk−1(ti), ui) for each 1 ≤ i ≤ m, it follows that
π(a[t1t2 . . . tm]) =

(
stemk−1(a[q1q2 . . . qm]), (φ(u1u2 . . . um, v))

)
which equals(

stemk−1(a[t1t2 . . . tm]), (φ(u1u2 . . . um, v))
)
.

Conversely, consider any a ∈ Σ and v ∈ ΣT [X] and suppose π(a[t1t2 . . . tm]) =(
stemk−1(a[t1t2 . . . tm]), (φ(u1u2 . . . um], v))

)
. By assumption, π(ti) equals

(stemk−1(ti), ui) for each 1 ≤ i ≤ m. Thus
(
stemk−1(t1)stemk−1(t2) . . .

Input Strictly Local Tree Transducers 379

stemk−1(tm), a, v, stemk−1(a[t1t2 . . . tm])
) ∈ δ. Let qi = stemk−1(ti) for each

1 ≤ i ≤ m as before. It follows that stemk−1(ti) = stemk−1(qi), so
qt(ti) = qt(qi). Likewise, stemk−1(a[t1t2 . . . tm]) = stemk−1(a[q1q2 . . . qm]), so
qt(a[t1t2 . . . tm]) = qt(a[q1q2 . . . qm]). Therefore,

(
stemk−1(q1)stemk−1(q2) . . .

stemk−1(qm), a, v, stemk−1(a[q1q2 . . . qm])
) ∈ δ.

By construction of Ψ , this means
(
qt(q1)qt(q2) . . . qt(qm), a, v,

qt(a[q1q2 . . . qn])
) ∈ δc. Since πc(ti) = (qt(ti), ui) for each i by assumption, it

follows that πc(a[t1t2 . . . tm]) =
(
qt(a[q1q2 . . . qn]), (φ(u1u2 . . . un, v)

)
.

We need to further show that stemk−1(t) ∈ F iff qt(t) ∈ Fc. By construc-
tion, we know that q ∈ F iff qt(q) belongs to Fc. Thus stemk−1(t) ∈ F iff
qt(stemk−1(t)) ∈ Fc. By Remark 1, stemk−1(t) = stemk−1(stemk−1(t)). Hence
qt(t) = qt(stemk−1(t)). Therefore, stemk−1(t) ∈ F iff qt(t) ∈ Fc.

This concludes the proof that Ψ and Ψ c
f generate the same function. �

As mentioned earlier, the value of Theorem 2 is that it can be used to establish
that certain tree transformations are ISL by presenting a transducer for the
transformation which satisfies the properties specified by the theorem.

Example 7. This example shows that reversing the branch order of a regular tree
set T ⊆ ΣT

n is ISL. We illustrate with the classic tree language whose yield is the
string language anbn. In other words we wish to show that the transformation
that maps t1 = S[a[]b[]] to t′1 = S[b[]a[]] and S[a[]t1b[]] to S[b[]t′1a[]] and so
on is ISL.

The DFT can be represented as a tuple (Q, Σ, F, δ) where the states are
expressed by the 1-stems of the subtrees of the pre-image: Q = {a[], b[], S[]},
and F = {S[]}, and Σ = {a, b, S}, and δ = {(λ, a, a[], a[]), (λ, b, b[], b[]),
(a[]b[], S, S[x2, x1], S[]), (a[]S[]b[], S, S[x3x2x1], S[])}.

The reader can verify that this transducer correctly reverses the branch order
of the trees in its pre-image. Further, this construction shows the function is ISL
since it satisfies the requirements in Theorem 2.

4 Conclusion

This paper took a first step in characterizing local syntactic transformations by
generalizing Input Strictly Local string functions to trees. Future work includes
defining Output SL tree functions (cf. [3]) and studying whether these classes
of tree functions can be learned more quickly and with fewer resources, and
characterizing subclasses of tree transducers which characterize the types of non-
local processes found in syntax and machine translation.

References

1. Beesley, K., Kartunnen, L.: Finite State Morphology. CSLI Publications, Stanford
(2003)

380 J. Ji and J. Heinz

2. Chandlee, J., Eyraud, R., Heinz, J.: Learning strictly local subsequential functions.
Trans. Assoc. Comput. Linguist. 2, 491–503 (2014)

3. Chandlee, J., Eyraud, R., Heinz, J.: Output strictly local functions. In: Kuhlmann,
M., Kanazawa, M., Kobele, G.M. (eds.) Proceedings of the 14th Meeting on the
Mathematics of Language (MoL 2015), Chicago, USA, pp. 112–125, July 2015

4. Chomsky, N.: The Minimalist Program. The MIT Press, Cambridge (1995)
5. Comon, H., et al.: Tree automata techniques and applications (2007). http://tata.

gforge.inria.fr/. Release 12 Oct 2007
6. Friese, S., Seidl, H., Maneth, S.: Minimization of deterministic bottom-up tree

transducers. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol.
6224, pp. 185–196. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14455-4 18

7. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (2015).
http://arxiv.org/abs/1509.06233. Originally published in 1984

8. Graf, T.: Closure properties of minimalist derivation tree languages. In: Pogodalla,
S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 96–111. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22221-4 7

9. Graf, T.: Curbing feature coding: strictly local feature assignment. In: Proceedings
of the Society for Computation in Linguistics (SCiL) 2020 (2020, to appear)

10. Graf, T., Shafiei, N.: C-command dependencies as TSL string constraints. In:
Jarosz, G., Nelson, M., O’Connor, B., Pater, J. (eds.) Proceedings of SCiL 2019,
pp. 205–215 (2019)

11. Heinz, J.: The computational nature of phonological generalizations. In: Hyman,
L., Plank, F. (eds.) Phonological Typology, Chap. 5, pp. 126–195. Phonetics and
Phonology, De Gruyter Mouton (2018)

12. Heinz, J., de la Higuera, C., van Zaanen, M.: Grammatical Inference for Computa-
tional Linguistics. Synthesis Lectures on Human Language Technologies, Morgan
and Claypool (2015)

13. Knight, K., May, J.: Applications of weighted automata in natural language pro-
cessing. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted
Automata, Chap. 14. EATCS, pp. 571–596. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01492-5 14

14. Kobele, G.M.: Minimalist tree languages are closed under intersection with rec-
ognizable tree languages. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS
(LNAI), vol. 6736, pp. 129–144. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22221-4 9

15. Maletti, A.: Survey: tree transducers in machine translation. In: Bordihn,
H., Freund, R., Hinze, T., Holzer, M., Kutrib, M., Otto, F. (eds.) Proceedings of
the 2nd International Workshop on Non-Classical Models of Automata and Appli-
cations. books@ocg.at, vol. 263, pp. 11–32. Österreichische Computer Gesellschaft
(2010)

16. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge
(1971)

17. Roark, B., Sproat, R.: Computational Approaches to Morphology and Syntax.
Oxford University Press, Oxford (2007)

18. Rogers, J.: Strict LT2: regular :: local : recognizable. In: Retoré, C. (ed.) LACL
1996. LNCS, vol. 1328, pp. 366–385. Springer, Heidelberg (1997). https://doi.org/
10.1007/BFb0052167

19. Rogers, J.: A Descriptive Approach to Language-Theoretic Complexity. CSLI Pub-
lications, Stanford (1998)

http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
https://doi.org/10.1007/978-3-642-14455-4_18
https://doi.org/10.1007/978-3-642-14455-4_18
http://arxiv.org/abs/1509.06233
https://doi.org/10.1007/978-3-642-22221-4_7
https://doi.org/10.1007/978-3-642-01492-5_14
https://doi.org/10.1007/978-3-642-01492-5_14
https://doi.org/10.1007/978-3-642-22221-4_9
https://doi.org/10.1007/978-3-642-22221-4_9
https://doi.org/10.1007/BFb0052167
https://doi.org/10.1007/BFb0052167

Input Strictly Local Tree Transducers 381

20. Rogers, J., Pullum, G.: Aural pattern recognition experiments and the subregular
hierarchy. J. Log. Lang. Inf. 20, 329–342 (2011)

21. Sportiche, D., Koopman, H., Stabler, E.: An Introduction to Syntactic Analysis
and Theory. Wiley, Hoboken (2013)

	Input Strictly Local Tree Transducers
	1 Introduction
	2 Preliminaries
	3 Input Strictly Local Tree Transducers
	4 Conclusion
	References

