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Abstract

structural diversity.

Background: Mitochondrial DNA sequences have long been used in phylogenetic studies. However, little attention
has been paid to the changes in gene arrangement patterns in the snake’s mitogenome. Here, we analyzed the
complete mitogenome sequences and structures of 65 snake species from 14 families and examined their structural
patterns, organization and evolution. Our purpose was to further investigate the evolutionary implications and
possible rearrangement mechanisms of the mitogenome within snakes.

Results: In total, eleven types of mitochondrial gene arrangement patterns were detected (Type |, Il, Ill, llI-A, 11I-B,
1-B1, HI-C, WI-D, I-E, II-F, Il-G), with mitochondrial genome rearrangements being a major trend in snakes, especially
in Alethinophidia. In snake mitogenomes, the rearrangements mainly involved three processes, gene loss,
translocation and duplication. Within Scolecophidia, the O, was lost several times in Typhlopidae and
Leptotyphlopidae, but persisted as a plesiomorphy in the Alethinophidia. Duplication of the control region and
translocation of the tRNA"" gene are two visible features in Alethinophidian mitochondrial genomes. Independently
and stochastically, the duplication of pseudo-Pro (P*) emerged in seven different lineages of unequal size in three
families, indicating that the presence of P* was a polytopic event in the mitogenome.

Conclusions: The WANCY tRNA gene cluster and the control regions and their adjacent segments were hotspots for
mitogenome rearrangement. Maintenance of duplicate control regions may be the source for snake mitogenome
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Background

In general, mitochondrial genomes (mitogenomes) of
vertebrates are double-stranded circular molecules,
typically 16-18 kbp in size and encode a set of 37 genes,
including 2 ribosomal RNA genes, 22 tRNA genes and
13 respiratory protein genes [1-7]. Vertebrate mitochon-
drial genomes also contain a control region (CR), which
include signals for the initiation of replication and tran-
scription [8, 9]. A short non-coding replication origin
for the L-strand (O;) also has been identified in the
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mitochondrial genomes of most vertebrates, excluding
birds, crocodilians, tuatara and blind snakes [10, 11].
Compared with nuclear DNA, the evolution of mitogen-
ome sequences is rapid, they lack introns, are highly
conserved in gene content and order [12], and are abun-
dant in cells. These special features make them valuable
for studying organismal evolution, phylogeny and tax-
onomy [7, 12].

Generally, the organization of the 37 genes and the
major noncoding regions (control region, CR) tend to be
conserved in vertebrates [5, 6, 9]. However, deviations
from the typical organization pattern have been found in
many animal groups, such as fish [13, 14], amphibians [3,
5], reptiles [6, 10, 15-19], birds [7, 20], and mammals [21,
22]. Such deviations involve shuffling of tRNA gene clus-
ters, translocations and/or duplications of genes, loss of
genes, and some gene inversions [3, 5-7, 13, 20, 23-25].
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Gene rearrangements in vertebrate mitogenomes can be
explained using two widely accepted models, the Tandem
Duplication and Random Loss (TDRL) Model [26] and
the Recombination Model [27]. The TDRL model was
postulated to account for most vertebrate gene rearrange-
ments; it posited that rearrangements of mitochondrial
gene order have occurred via tandem duplication of some
genes, followed by the random deletion of some of the du-
plications [6, 13, 14, 20, 26, 28-30]. The recombination
model is characterized by breakage and rejoining of the
participating DNA strands, and has often been used to ex-
plain changes in mitochondrial gene order [14, 31-35].
There are also two further models, Tandem Duplication
and Non-Random Loss (TDNL) model, and tRNA mis-
priming, which are less commonly used to explain mito-
genome rearrangements [36-38]. The TDNL model
assumes a complete mtDNA duplication followed by the
loss of genes, predetermined by their transcriptional polar-
ity and location in the genome; the tRNA mis-priming
model considers the duplicated/inserted tRNAs acting as
primers for DNA synthesis, but these tRNA primer se-
quences fail to be removed from the nascent DNA strand
during mtDNA replication.

The mitogenomes of snakes contain a number of char-
acteristics that are unusual for vertebrates and represent
an ideal model for exploring potential links between
mitogenomic structure, function, and evolution [25].
These unique characteristics are the duplicated control
regions, an elevated evolutionary rate relative to nuclear
DNA. and shorter tRNA genes, and other shortened
genes [12, 25, 39, 40].

In 1998, the first reported snake mitogenome came
from a Japanese colubrid snake, the akamata (Lycodon
semicarinatus) [41], whose gene order differed from most
known vertebrates at that time owing to its duplicated
control regions (Additional file 1: Figure S1). By 2005
(Additional file 2: Table S2) only 10 snake mitogenomes
had been reported with new mitogenome arrangements
and genomic characteristics having been discovered [10,
16, 17, 41, 42]. The mitogenomic arrangement in the
Texas blind snake (Leptotyphlops dulcis) is distinct
from alethinophidian snakes by having a single control
region. In addition, the light-strand replication origin
(Oy) was lost in the Texas blind snake, and the tRNAS!"
gene translocated from IQM to the WANCY cluster
(Additional file 1: Figure S1B). The duplicated control
regions were the most important feature in alethinophidian
snakes. It has been found that duplicated control regions
evolved concertedly and were accompanied by the tRNA"*"
gene translocation [18]. Another feature new mitogenome
arrangements was the appearance of pseudo-Pro (P*) in L.
semicarinatus (Colubridae) and Ovophis okinavensis (Viper-
idae). But the P* was located at the 5" proximity of CR2 in
L. semicarinatus whilst at the 5 proximity of CR1 in O.
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okinavensis (Additional file 1: Figure S1C, D, E) [3, 10, 16].
Yan et al. [18] compared the mitogenomes of 14 snake
species from 11 families and found six distinct gene ar-
rangement patterns (Additional file 1: Figure S1). They
believed that the mitogenome of the brahminy blind
snake Ramphotyphlops braminus (Typhlopidae) was the
ancestral arrangement (Additional file 1: Figure S1A).
The P* located at the 5° proximity of CR2, was viewed
as a unique characteristic feature of the Families Colu-
bridae and Homalopsidae. However, the P* could have
originated from two different evolutionary events inde-
pendently in the families Colubridae and Homalopsi-
dae, (Additional file 1: Figure S1) [18]. In 2009, a new
mitogenome arrangement was found in the king cobra
Ophiophagus hannah (Elapidae) (Additional file 1:
Figure S1G) [19]. In the new mitogenome arrangement,
the tRNA" was duplicated from the 3’ proximity of
NADH dehydrogenase 1 (NDI) and inserted into the 5’
proximity of the CR1. Apart from the above
mitogenome arrangement patterns, three new patterns
were discovered in Colubridae [43, 44]. In the blunt-
headed tree snake (Imantodes cenchoa), the mitogen-
ome arrangement was marked by unequal sized dupli-
cate control regions; the second arrangement, found in
small spotted cat-eyed snake Leptodeira septentrionalis,
was characterized by unequal size duplicate control re-
gions accompanied by a non-coding fragment insertion
between NDS and ND6; and the last arrangement, con-
tained a large (5702 bp) insertion between tRNA“* and
tRNA™" and was found in the clouded snake Sibon
nebulatus [43, 44].

Earlier studies sought to sequence complete mito-
chondrial genomes, and detect variations in genomic
structure, and summarize the patterns of gene arrange-
ment. The researchers tended to focus on the diversity
and unique structural features of the mitogenome,
whilst paying little attention to the evolutionary impli-
cations of the mitogenomic structure. For example, the
Op disappeared in Scolecophidia species, but reap-
peared in Alethinophidia, which was not satisfactorily
explained.

Recently, the number of assembled snake mitogen-
omes has increased rapidly, which provides an excellent
opportunity to study the dynamic variation of mitoge-
nomic features and their evolutionary implications. In
the present study, we collected and sequenced complete
snake mitogenomes from 65 species (including 3 new
complete sequences in this study) to explore the occur-
rence of mitogenomic reorganizations. Significantly, we
next investigated the evolutionary implications of mito-
genome arrangements within snakes. Finally, we discuss
potential evolutionary mechanisms responsible for mito-
genome rearrangements and their effects on hotspot
areas of rearrangement.



Qian et al. BMC Genomics (2018) 19:354

Results

Types of mitogenome arrangement

In the present study, the mitogenome size for Lycodon
ruhstrati, L. rufozinatum and L. flavozonatum were
found to range between 17,153-17,188 bp, respectively
(Additional file 2: Table S1). The mitogenomes con-
tained 2 rRNAs, 22 tRNAs, 13 protein-coding genes
(PCGs), 2 control regions (CR1 and CR2), and a pseudo-
pro (P*, which is absent in L. ruhstrati) (Additional file 2:
Table S1). Disregarding the presence of P* the compos-
ition and gene arrangements were the same as their sibling
species, for example, L. semicarinatus (Additional file 2:
Table S1, Fig. 1). In a comparative analysis of 65 mitogen-
ome sequences in this study, eleven types of mitochondrial
gene arrangements were found. According to their inferred
evolutionary relationships in the phylogeny, the first three
types were named Type I, Type II and Type III (Figs. 1, 2
and 3). A further eight types were named Type III-A, Type
III-B, Type III-B1, Type III-C, Type III-D, Type III-E, Type
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III-F and Type III-G, according to their inferred evolution-
ary relationships with Type III (Figs. 1, 2 and 3). The gene
organization pattern of each type is shown in Fig. 1 and dis-
cussed later in more detail.

Phylogenetic analysis

The phylogenetic trees of snakes were reconstructed
using Bayesian inferences and Maximum likelihood
methods. Both phylogenetic methods provided identical
and well-supported tree topologies (Fig. 2). The phylo-
genetic results indicate that Leptotyphlopidae is closest
to the common ancestor rather than Typhlopidae.
Thus, the Scolecophidia is a paraphyletic group. This
result supports the non-monophyly of Scolecophidia as
reported by other researchers [18, 45, 46]. Within
Alethinophidia, three large clades are found, including
a paraphyly of Henophidia and the monophyly of
Caenophidia. Two families in Henophidia, Anillidae
and Tropidophiidae, compose the basal clade to the
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other alethinophidians. The remaining alethinophidians
are divided into two strongly supported clades, one con-
taining the other four families (including Pythonidae,
Xenopeltidae, Cylindrophiidae and Boidae) of Henophidia,
the other represents the Caenophidia (advanced snakes).
The remaining species from the six families constituted
a monophyletic lineage representing the Caenophidia.
In this lineage, the Acrochordidae as sister to all other
caenophidians, followed successively by Xenodermatidae,
Viperidae, Homalopsidae, Elapidae and Colubridae.

However, the resultant Bayesian tree showed that Homa-
lopsidae was nested within Elapidae and Colubridae
(Additional file 3: Figure S2). Thus, the topology of our
phylogenetic tree is similar to previous studies [12, 18,
39, 46, 47] and in agreement with the results from nuce-
lar gene analyses [45, 48].

Types of mitogenomes and their phylogenetic distribution
Two mitogenome arrangement types, Type I and II, ap-
peared in the Scolecophidians. Type I is distributed in
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Fig. 3 Putative evolutionary implications of mitochondrial genome rearrangement in snakes. The changes of mitogenomic rearrangements are
shown. Types correspond to those in Fig. 2. The arrows denote the evolutionary directions of the rearrangements. The gray block represents the

the Leptotyphlopidae and located in the basal clade, and
Type II only emerged in the Typhlopidae (Fig. 2). Type
III was the dominant gene arrangement and extensively
distributed in Alethinophidia (Fig. 2). Type III-A was
only found in Tropidophis haetianus (Henophidia). Type
III-B was the prevailing arrangement in Viperidae, and
most species in Viperidae belong to this type except O.
okinavensis, which possessed a new type (type III-Bl).
Type III-C is an arrestive arrangement type, widely dis-
tributed in the Colubridae and Homalopsidae. The
phylogenetic tree indicated that type III-C occurred in-
dependently six times in Colubridae and Homalopsidae.
Type HI-D was identified in O. hannah (Elapidae). In
addition, the remaining three Types, Type III-E, Type
III-F and Type III-G, appeared in three Colubridae spe-
cies (I. cenchoa, L. septentrionalis, S. nebulatus) respect-
ively (Fig. 2).

The evolutionary implications of mitogenome
rearrangements

The evolutionary implications of the eleven mitogenome
arrangements were inferred from their distribution situ-
ation in the phylogenetic tree of 65 species (Fig. 3). Type I
originated from the unknown/indeterminate ancestral
mitogenome arrangement, with two distinct features, the
missing O and tRNAS™ translocated from the IQM
tRNA gene cluster to the WANCY cluster. Type II was
also derived from the unknown/indeterminate ancestral
mitogenome arrangement by losing Op within the
WANCY cluster (Figs. 1 and 3). Type III emerged in
alethinophidians (Fig. 2), marked by two notable features,
duplication of the control regions and translocation of the
tRNA"" gene (Fig. 1). Just like Type I and II, the Type III
was also derived from the unknown/indeterminate
ancestral mitogenome arrangement pattern (Fig. 3).

Obviously, the remaining types (Type III-A, -B, -B1, -C,
-D, -E, -F, -QG) were derived from Type III directly or in-
directly, each with their own unique features (Fig. 3). On
the basis of Type III, Type III-A translocated tRNA'"®
gene from 3’ proximity of COX2 to 5" proximity of ATP6
gene. In Type III-B, the tRNA"™ gene was translocated to
the 5" proximity of CR2. In O. okinavensis, the new type,
Type HI-B1 was derived from Type III-B, with a P*
inserted into the 5’ proximity of CR1. When an additional
P* was inserted into the 5’ proximity of CR2, Type III
changes into the Type III-C. The Type III-D was derived
from Type III, with an additional tRNA" gene, which was
duplicated from the 3 proximity of NDI and inserted to
the 5 proximity of CR1. In Type III-E, the apparently
prolonged asymmetric control regions (2878 bp in CRI,
4110 bp in CR2) were its typical characteristic. In Type
II-E, a 342 bp noncoding gene fragment was found
besides the asymmetry control regions. In Type III-G, a
large insertion fragment (5702 bp) was inserted between
the tRNA" and tRNA™" genes (Figs. 1 and 3).

Discussion

Eleven types of mitogenome arrangement within snakes
In this study, the mitogenomes of 65 snakes species from
14 families exhibited eleven gene arrangement patterns
(Figs. 1, 2 and 3), which were more frequent than previ-
ously reported for snakes species. However, the distribu-
tion and frequency of each mitochondrial genome type is
asymmetrically distributed across the phylogeny of snakes
(Fig. 2). Type I and II only occurred in Scolecophidia and
represented the potentially ancestral mitogenome arrange-
ment pattern for snakes. Type III and its eight derivative
types (Type III-A, 1II-B, [II-B1, III-C, III-D, III-E, III-F, III-
G) are distributed in the Alethinophidia (Fig. 2). Among
them, some types have the preponderant distribution in a
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specific phylogenetic branch. For example, Type III was
the common and prevailing arrangement in Alethinophi-
dia, except in Viperidae where most arrangement patterns
belonged to Type III-B.

In a previous study, six mitogenome arrangements were
found in 14 snake species from11 families [18], moreover,
in that study it seems that some families have fixed con-
nections with specific mitogenome arrangement patterns.
Undoubtedly, the expanded sample size in the present
study provided more information on mitogenome diver-
sity in snakes. Not only were more mitogenome arrange-
ment patterns discovered but we also identified a more
diverse phylogenetic distribution of patterns. In this study,
five new mitogenome arrangements (Types III-A, III-D,
II-E, LI-F, 1II-G) were found in T. haetianus (Tropido-
phiidae), O. hannah (Elapidae), and in three Colubrid
snakes, I cenchoa, L. septentrionalis, S. nebulatus. Rare
changes in mitogenome arrangement have attracted great
interest because of their potential to provide homoplasy-
free evidence of phylogenetic relationships [26]. Overall,
in Caenophidia, almost every family (except those families
containing just a single species) presented of multiple
mitogenome arrangements, especially in Colubridae. Even
within certain genera (e.g. Lycodon and Elaphe), there
were multiple mitotypes (Type III and III-C) [16]. This
phenomenon has also been identified in other groups,
such as the presence of different mitotypes in a single
Lizard genus (e.g. Phrynocephalus) [49]. However, many
family-level taxa are represented by a single species, so it
would be worthwhile to sequence more mitogenomes to
explore mitogenomic diversity within these lineages.

The dynamic evolution of snake mitogenome structure
Based on our phylogenetic reconstruction based on the
mitogenomes of 65 species and the distribution of the
eleven mitogenome arrangements across this topology
(Figs. 1, 2 and 3), the evolutionary implications of mito-
genome structure was inferred. Scolecophidia were the
basal branches of all Alethinophidia snakes, and its
mitogenome arrangement contains two types (Type I
and II) (Fig. 2). Based on the phylogenetic results (Fig. 2)
, we surmise that Type I and II might be independently
derived from some unknown ancestral mitogenome
organization (Fig. 3). The most distinctive structural fea-
ture shared by Type I and II, is the missing Oy, which
may have been derived independently from earlier snake
mitogenomes.

Type III was the dominant type in Alethinophidia,
which had two notable features, duplication of the con-
trol region and translocation of tRNA"*" gene (Fig. 1).
Notably, the mitochondrial genomes of Alethinophidia
contain a stable Oy, structure, which also has been found
in lizard taxa [42] (Fig. 1, Additional file 4: Figure S3). It
suggests that Type III may also be derived from the
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unknown ancestral mitogenomes by a tandem
duplication of the control region and translocation of
the tRNA™" gene (Figs. 1 and 3). The other eight types
were derived directly or indirectly from Type III by
translocation, duplication or insertion of specific genes
(Fig. 3).

Gene rearrangement hotspot ——WAN-O,-CY genes
cluster

The WAN-O.-CY region, the cluster of five mitochon-
drial tRNA genes and the O, among them (tRNA’?,
tRNA*, tRNA®", Oy, tRNA®*, tRNAD", the typical
order), has been revealed as a hotspot for gene order
rearrangements by TDRL [26, 33]. These rearrangements
involved translocations and insertions, which have been
found in many vertebrate groups. For example, ACW-O¢-
NY, A-O;-CWNY and NCYWA-O; were found in marsu-
pials [26, 50], WNCYA-Or and WA-O_-YNC in salaman-
ders [33], WANYC (without Or) in Sloane’s viperfish
(Chaulioudus sloani), and A-O;-WANCY in the dune
gecko (Stenodactylus petrii) [6]. Insertion of a tRNA gene
was found in the blind snake (L. dulcis), the tRNAS™ was
translocated from the IQM region (the gene cluster exists
in typical vertebrate mitochondrial genomes including
Typhlopidae, comprising tRNA genes, tRNA™, tRNAS™"
and tRNAM®) to the WANCY cluster, giving rise to a
unique WQANCY gene order [42]. Length heteroplasmy
has been reported in the WAN-O_-CY cluster. For ex-
ample, a 66 bp element (pseudo-tRNA“"®) was inserted
into O in the Actinopterygiian fish (Pagellus bogaraveo),
which was explained by an independent translocation
event through intra-mitochondrial recombination [51].
The pseudo-tRNA**™ was also found in four caecilian
amphibians (Siphonops annulatus, S. paulensis, S.
hardyi and Luetkenotyphlus brasiliensis), but the
presence of pseudo-tRNA™™ was predicted by the
TDRL model [26]. An extreme case was found in the
clouded snake (S. nebulatus) where a large (5702 bp)
insertion region with tandem repeats was detected
between the tRNA®' and tRNA™" genes and might
have resulted from slipped-strand mispairing during
mitogenome replication [43, 44, 52, 53].

Many previous studies have indicated that the Oy, was
possibly involved in the processes of the mitogenome
molecule, such as gene rearrangements [26, 54], muta-
tion gradients [55, 56] and nucleotide asymmetric com-
positional bias [57, 58]. For example, amphibians with
unstable O;, were much more likely to have undergone
gene rearrangements [59]. However, the absence of func-
tional Oy, has been reported in fishes, birds, crocodilians,
lampreys, and some groups of lizards and snakes [42, 54,
60—62]. Previous studies have reported that the O;-like
structure can act as the Op when the regular O is lost
(e.g. in Lepidosauria and Symphurus) [60, 63]. In this
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study, the Oy, was lost in Scolecophidias, but found in all
Alethinophidia species, which is in agreement with the
results from Yan et al. [18]. However, the O;-like struc-
ture has not been detected in Scolecophidias, which dif-
fers from above studies [60, 63]. Previous molecular
phylogenetic studies suggested a sister relationship be-
tween snakes and Lizards; the O; was also found in all
the lizard taxa [42]. Therefore, it may be inferred that
the O is a plesiomorphy which persisted in Alethino-
phidia. In this study, based on the analysis of the O se-
quences of 65 snakes and 4 Lizards, we found that the
O of Alethinophidia retains high sequence similarity to
that of Lizards (Additional file 4: Figure S3). The loss of
O both occurred in Typhlopidae and Leptotyphlopidae.
In view that Scolecophidia is a paraphyletic group, loss
of Or, should be two independent processes in the Scole-
cophidia lineages (Fig. 3).

Gene rearrangement hotspot ll——duplicate control
regions and flanking tRNA genes

Duplications of control regions are often observed in
various groups of vertebrates, such as fishes [14, 64],
amphibians [3, 5], reptiles [17, 18, 41] and birds [7, 20,
65, 66]. In most cases, the copied CRs are highly similar
to each other [5, 41, 65], and were usually interpreted as
concerted evolution [16, 65, 67]. Generally, it was be-
lieved that concerted evolution was maintained by the
tandem duplication and/or gene conversion via general
recombination [41]. In the vast majority of snake mito-
genomes, sequences of the control regions were almost
identical to each other within each individual (orthologs)
, but very divergent in different individuals (paralogs),
indicating that the duplicate control regions evolved
concertedly. Dong et al. [17] proposed that such mecha-
nisms operate on snake mitogenomes, the flanking
tRNA genes may be copied together with the CR se-
quence to be pasted in other homologous regions of the
mitogenome. In 2008, Kurabayashi et al. surveyed man-
tellid frogs and summarized that the control region was
the hotspot of recombination and general recombination
had a potential to cause gene rearrangement in upstream
regions of multiple CRs as the results of gene conversion
[31]. In the present study, amongst the 11 types of gene
rearrangements, there are 7 types in which gene rear-
rangements occurred in the control regions and flanking
segments, involving duplication of control regions and
tRNA genes, translocation of tRNA genes, the presence
of pseudogenes and asymmetry of the control regions
(Fig. 1). Therefore, as for snake mitogenomes, the con-
trol regions and their adjacent segments were the hot-
spot for rearrangements, the maintenance mechanism of
duplicate control regions is the source of mitogenome
structural diversity.
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The asymmetry of the duplicate control regions has
been found in many species, often involving extensive
tandem repeats or truncated genes [20]. In this study,
asymmetric control regions were found in two colubrid
species, I cenchoa and L. septentrionalis. Considerable
length variations exist in duplicate control regions,
which are composed of hundreds of random repeats
[44]. It was believed that tandem repeats may have re-
sulted from slipped-strand mispairing during mitogen-
ome replication [53, 68, 69], the changes of unit size and
copy number can result in large size variations in control
region sequences in birds and mammals [70-72]. There-
fore, we think that asymmetry of duplicate control re-
gions in snake mitogenomes can also be attributed to
the presence of tandem repeats; at the same time it is
also the source of gene rearrangement diversity.

In the present study, the pseudo—tRNAPro gene (P¥),
located at the 5’ proximity of CR2, was distributed in 6
independent lineages of the family Colubridae and
Homalopsidae (Type III-C, Fig. 2). This result did not
support previous studies, which reported that the P* was
an exclusive feature of the Colubridae and Homalopsi-
dae (Yan et al. [18], Additional file 1: Figure S1F). Com-
bined with the phylogenetic analysis, we can see that the
P* appeared seven times independently and successively
(Figs. 2 and 3). It is worth noting that P* was polytopic
and evolved independently in the evolutionary history of
snakes. In Type III-B1 (O. okinavensis), P* located at the
upstream of the CR1 and tRNA"™ gene was translocated
to the 5 proximity of CR2 [17], it might result from gene
conversion via general recombination. It is generally
believed that the pseudogene remnants predicted by the
TDRL model were uncommon in mitogenomes [33, 73,
74], for they were lost rapidly under strong selective
pressure to constrain mitogenome size and gene number
[26, 75]. In snake mitogenomes, the presence of
pseudogenes may occur in two scenarios: first, the
functional tRNAP™ gene was duplicated with its
associated CR, and then a portion of the tRNA"™ gene
was randomly deleted. Second, the tRNAP™ gene was
copied partially and pasted in the other homologous
region of the mitogenome together with the CR sequence.
In this study, the additional copy of the tRNA" gene that
was found in O. hannah might belong to the latter
presupposition (Type III-D, Fig. 1), for it located in up-
stream of CR1.

Conclusions

In the current study, the complete mitogenome se-
quences and structures of 65 snake species from 14 fam-
ilies were analyzed to examine their structural patterns,
organization and evolution. Eleven types of mitochon-
drial gene arrangement pattern in total were found,
which showed a trend of diversification of mitochondrial
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genome order rearrangements in snakes, especially in
Alethinophidia. The snake mitogenome rearrangements
mainly involved three processes, gene loss, translocation
and duplication. Within Scolecophidia, the O;, was lost
repeatedly in Typhlopidae and Leptotyphlopidae, but
persisted as a plesiomorphy in Alethinophidia. Inde-
pendently and stochastically, the presence of duplicate
P* was a polytopic event in the mitogenome and
emerged in seven different lineages of unequal size in
three families. The WANCY tRNA gene cluster and the
control regions and their adjacent segments were hot-
spots of mitogenome rearrangement. The maintenance
mechanism of duplicate control regions of the mitogen-
ome may be the source of its structural diversity.

Methods

Specimens used

In this study, the tissue samples of three species (Lycodon
ruhstrati, L. rufozonatum and L. flavozonatum) were col-
lected in the Dabie and Huangshan mountains between
2012 and 2014 (Additional file 5: Table S2). The above
samples were preserved in 100% ethanol, then stored at -
20 °C after being transported to the laboratory until used
for DNA extraction.

DNA extraction, PCR amplification, sequencing

Tissues were washed with double-distilled water before
DNA extraction, then total genomic DNA was extracted
using the standard phenol/chloroform method [76].
Total DNA was examined on 1.0% EB-agarose gels and
stored at —20°C. Nineteen pairs of universal primers
were designed to amplify and sequence the complete
mitochondrial genome of L. ruhstrati, L. rufozonatum
and L. flavozonatum (Additional file 6: Table S3).

PCR reactions were carried out in 50 pl reaction vol-
umes containing 1 ul (50-80 ng) template DNA, 25 pl 2 x
EasyTag PCR SuperMix polymerase (TransGen Biotech,
containing 1.25 U Ex Tag, 0.4 mM dNTP, 4 mM Mg*"),
1 pl of each 10 mM primer, and sterile double-distilled
water to final volume. PCRs were performed in a PCR-
Cycler (TC-96/G/H(b)C) and amplification conditions
were as follows: initial denaturation for 5 min at 95 °C,
followed by 32 cycles of denaturation for 30s at 95 °C, 51-
54 °C for 40s (annealing), and 72 °C for 80-100 s (exten-
sion), and a final extension step of 10 min at 72 °C. PCR
products were examined by EB-agarose gel electrophoresis
to validate amplification efficiency. After purification, all
the products were sent to Sangon Biotech Company
(Shanghai, China) for sequencing from both directions
using the primers in the PCR amplification.

Sequence assembly and collection
Contiguous fragments were assembled to create complete
mitochondrial genomes in Seqman II (DNAStar, Madison,

Page 8 of 11

WI, USA) and checked by visual inspection to ensure the
accuracy of variable sites identified by the program [77].
The harvested mitogenome sequences have been depos-
ited in the GenBank, and the accession numbers of L.
ruhstrati, L. rufozinatum and L. flavozonatum were
KJ179951, KJ179950 and KR911720, respectively. The
mitochondrial genomes of other 62 species from 14 fam-
ilies were downloaded from Genbank (Additional file 5:
Table S2, Classification system followed Pyron et al. [48]).

Data analysis

Genes encoded in the determined mitogenome se-
quences were identified by comparison with correspond-
ing gene sequences from other snakes and subsequent
manual inspection of gene structure [18, 41]. In addition,
the software Getmitogenome was used to excise nucleo-
tide sequences of encoded genes, as well as amino acid
sequences of 13 protein genes, which were added to a
pre-existing alignment dataset [6]. The base compos-
ition, codon usage, and open-reading frames (ORF) were
analyzed using program MEGA 5.0 [78]. The overlap-
ping regions and intergenic spacers were counted manu-
ally [79]. The tRNA genes were identified using the
software package tRNAscan-SE 2.0 (http://lowelab.ucsc.
edu/tRNAscan-SE/) by eye, based on vertebrate mito-
chondrial anti-codon sequences and their secondary
structure. In addition, the DOGMA annotation software
was used to check annotated genes [80]. This procedure
helped us to evaluate gene boundaries more carefully
and to identify possible pseudo-genes [6]. The genome
arrangements with same components and order were
classified as identical type. All mitogenome types were
visualized by linearized organization, and drawn by
Microsoft Visio.

Phylogeny reconstruction
Twelve protein-coding, 22 tRNA, and two rRNA gene se-
quences were separately aligned using Clustal X 1.8 soft-
ware with default settings followed by manual adjustment
[39, 46, 81], except ND6 gene and control regions because
of their heterogeneous base composition and poor phylo-
genetic performance [57, 82]. For each dataset, best fit
combinations of partitioning schemes and nucleotide sub-
stitution models were determined with PartitionFinder
version 2.1.1 [83], using the “greedy” algorithm [84] and
the Bayesian information criterion (BIC), with the branch
lengths of alternative partitions linked and with the
software set to evaluate specific substitution model sets
for either RAXML or MrBayes independently. Best-fit sub-
stitution models and partitioning schemes selected in each
case are given in Additional file 7: Table S4.

Phylogenetic analyses were carried out by Bayesian
and Maximum Likelihood (ML) methods, using Iguana
iguana, Plestiondon egregius and Varanus komodoensis
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as outgroups [18]. The Bayesian analyses were imple-
mented with MrBayes version3.1.2 [85]. MrBayes ana-
lyses simultaneously initiate two Markov Chain Monte
Carlo (MCMC) model runs to provide additional con-
firmation of convergence of posterior probability distri-
butions. Analyses were run for 10,000,000 generations.
Chains were sampled every 1000 generations. When the
average standard deviation of split frequencies reached a
value less than 0.01, the first 1000 trees were discarded
as “burn-in” and the remaining trees were used to calcu-
late Bayesian posterior probabilities [86, 87]. The max-
imum likelihood (ML) analysis was performed using an
algorithm in the RAxML software [88, 89] under the
GTR + 1+ G model, and the robustness of the phylogen-
etic results were tested through bootstrap analysis with
1000 replications [90].

Combining the definite phylogenetic relationships of
different species, with the distributed information of
each mitogenome type in the phylogenetic lineage of
snakes, we infer the evolutionary implications of the
mitogenome structure and represent it by schematic
diagram.

Additional files

Additional file 1: Figure S1. Gene organization of control regions and
WANCY cluster in snake mitochondrial genomes. Circular mitogenomes
are linearly depicted as an open bar divided into individual genes. Only
relevant genes are shown, and in a way that does not reflect actual gene
lengths. B, C, D, E came from Kumazawa et al. [16]; A, F from Yan et al.
[18]; G from Chen and Zhao [19]. The H- and L- strand encoded genes
are denoted above and below each gene box. Transfer RNAs are
indicated by their single-letter abbreviations. Abbreviations: 125, 16S, and
P* stand for 125 rRNA, 16S rRNA, and a pseudogene for tRNAPro gene,
respectively. Taxa for which have been reported to date are listed in
Additional file 5: Table S2. (PDF 612 kb)

Additional file 2: Table S1. Features of the mitogenomes of three
Lycodon species. (DOCX 22 kb)

Additional file 3: Figure S2. Bayesian phylogenetic inference tree
based on the combined data set of RNA genes and Protein-coding
genes. The numbers above the branches indicate the posterior probability.
(PDF 256 kb)

Additional file 4: Figure S3. Homology analysis of O.. The sequences
of OL of Alethinophidians and four saurians are aligned. (PDF 574 kb)

Additional file 5: Table S2. List of taxa used in this study. *: the species
were used in Yan et al. [18]. #: the species were used in Chen and Zhao.
[19]. (DOC 132 kb)

Additional file 6: Table S3. Primers sequences used in this study.
(DOC 66 kb)

Additional file 7: Table S4. Best-fit models and partitioning schemes
selected by PartitionFinder for the dataset analyzed. (DOCX 22 kb)

Abbreviations

12S: 12S ribosomal RNA; 16S: 16S ribosomal RNA; ATP6: ATPase subunit 6;
ATP8: ATPase subunit 8, COX1-3: Cytochrome ¢ oxidase subunits 1-3;

CR: Control region; Transfer RNA genes are depicted with the corresponding
single-letter amino acid; Cyt b: Cytochrome b; IQM: tRNA"®, tRNAS", tRNAME,
L1: tRNAY WUR- | 5 tRNAREY CUN: ND1-6; NADH dehydrogenase subunits 1-
6; ND4L: NADH dehydrogenase subunits 4 L; O.: The putative L-strand repli-

cation origin; P*: A pseudogene of tRNA”® gene; S1: tRNA® VN
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52: tRNA>S" A5 TDNL: Non-Random Loss; TDRL: Tandem Duplication and
Random Loss; WANCY: tRNAT™, tRNAMN® tRNA™S", tRNAS® and tRNA™
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