
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Zhendong Jin,
Second Military Medical University,
China

REVIEWED BY

Liqi Sun,
Second Military Medical
University
Farooq Rashid,
Chongqing Public Health
Medical Center, China

*CORRESPONDENCE

Wenzhi Guo
fccguowz@zzu.edu.cn
Yuting He
fccheyt1@zzu.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Gastrointestinal Cancers: Hepato
Pancreatic Biliary Cancers,
a section of the journal
Frontiers in Oncology

RECEIVED 22 July 2022
ACCEPTED 05 September 2022

PUBLISHED 28 September 2022

CITATION

Yu X, Zhang Q, Zhang S, He Y and
Guo W (2022) Single-cell sequencing
and establishment of an 8-gene
prognostic model for pancreatic
cancer patients.
Front. Oncol. 12:1000447.
doi: 10.3389/fonc.2022.1000447

COPYRIGHT

© 2022 Yu, Zhang, Zhang, He and Guo.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 28 September 2022

DOI 10.3389/fonc.2022.1000447
Single-cell sequencing
and establishment of an
8-gene prognostic model for
pancreatic cancer patients

Xiao Yu1,2,3,4†, Qiyao Zhang1,2,3,4†, Shuijun Zhang1,2,3,4,
Yuting He1,2,3,4* and Wenzhi Guo1,2,3,4*

1Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou
University, Zhengzhou, China, 2Key Laboratory of Hepatobiliary and Pancreatic Surgery and
Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou
University, Zhengzhou, China, 3Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and
Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou
University, Zhengzhou, China, 4Henan Key Laboratory of Digestive Organ Transplantation,The First
Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Background: Single-cell sequencing (SCS) technologies enable analysis of

gene structure and expression data at single-cell resolution. However, SCS

analysis in pancreatic cancer remains largely unexplored.

Methods: We downloaded pancreatic cancer SCS data from different

databases and applied appropriate dimensionality reduction algorithms. We

identified 10 cell types and subsequently screened differentially expressed

marker genes of these 10 cell types using FindAllMarkers analysis. Also, we

evaluated the tumor immune microenvironment based on ESTIMATE and

MCP-counter. Statistical enrichment was evaluated using Gene Ontology

and Kyoto Encyclopedia of Genes and Genomes pathway analysis. We used

all candidate gene sets in KEGG database to perform gene set enrichment

analysis. We used LASSO regression to reduce the number of genes in the

pancreatic risk model by R package glmnet, followed by rtPCR to validate the

expression of the signature genes in different pancreatic cancer cell lines.

Results: We identified 15 cell subpopulations by dimension reduction and data

clustering. We divided the 15 subpopulations into 10 distinct cell types based on

marker gene expression. Then, we performed functional enrichment analysis

for the 352 marker genes in pancreatic cancer cells. Based on RNA expression

data and prognostic information from TCGA and GEO datasets, we identified

42 prognosis-related genes, including 5 protective genes and 37 high-risk

genes, which we used to identified two molecular subtypes. C1 subtype was

associated with a better prognosis, whereas C2 subtype was associated with a

worse prognosis. Moreover, chemokine and chemokine receptor genes were

differentially expressed between C1 and C2 subtypes. Functional and pathway

enrichment uncovered functional differences between C1 and C2 subtype. We

identified eight genes that could serve as potential biomarkers for prognosis

prediction in pancreatic cancer patients. These genes were used to establish an

8-gene pancreatic cancer prognostic model.
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Conclusions: We established an 8-gene pancreatic cancer prognostic model.

This model can meaningfully predict prognosis and treatment response in

pancreatic cancer patients.
KEYWORDS

single-cell sequencing, pancreatic cancer, chemokines, immune microenvironment,
prognostic model
Introduction

Pancreatic cancer is one of the most lethal malignancies and is

associated with a high mortality rate (1–3). Pancreatic ductal

adenocarcinoma (PDAC) is derived from the pancreatic ductal

epithelium and accounts for about 90% of pancreatic cancer (4, 5).

The lethality of pancreatic cancer is largely due to its difficulty to

diagnose early and a lack of effective treatments. Despite improved

surgical techniques and the use of neoadjuvant and adjuvant

chemotherapies, the prognosis of pancreatic cancer remains

stubbornly poor. Though immunotherapies have shown

preliminary effectiveness in pancreatic cancer treatment, they

are still at the preclinical stage (6). Therefore, it is urgent and

imperative to explore the mechanisms of pancreatic cancer

progression to identify new therapeutic modalities,

especially immunotherapy.

The continuous development of sequencing technology has

significantly improved RNA sequencing (RNA-seq) methods and

techniques (7). However, bulk RNA-seq is the whole observation

and detection of a population of cells. As the analysis represents

the average expression of a population of cells, bulk RNA-seq fails

to capture cellular heterogeneity (8, 9). The genetic information of

cells with the same phenotype may differ significantly, and many

rare cell populations are lost in the overall characterization. The

emergence and advancement of single-cell sequencing (SCS) in

the last decade have enabled precision genetic analysis of tumors

(10, 11). SCS provides an abundance of molecular information,

making it possible to characterize a variety of rare or previously

unidentified cell populations within tumors (12, 13). SCS is a

highly impactful tool that can facilitate the early diagnosis,

tracking, and individualized treatment of cancers. SCS has been

widely used to uncover molecular mechanisms and characterize

rare subpopulations in many cancers, including lung cancer (14),

breast cancer (15), gastric cancer (16), and colorectal cancer. In

colorectal cancer, macrophages and dendritic cells were

significantly associated with myeloid-targeting immunotherapies

(17). SCS also revealed rare targetable genes that could be

informative to develop lung cancer treatment (18, 19). However,

SCS has been under-utilized in pancreatic cancer studies.
02
In the present study, we downloaded pancreatic cancer SCS

data as well as corresponding clinical data from Gene Expression

Omnibus (GEO) database, Cancer Genome Atlas (TCGA)

expression data collection, and International Cancer Genome

Consortium (ICGC). Based on these data, we identified 2

molecular subtypes of HCC with significant immunological

differences. Then, we performed appropriate gene selection

using dimensionality reduction algorithms. We examined

molecular and immune signatures and constructed a polygenic

risk score model. Our 8-gene model may serve as a promising

biomarker to predict pancreatic cancer patient prognosis and

immunotherapy efficacy.
Methods

Data acquisition and preprocessing

We downloaded the SCS data GSE156405 from GEO (http://

www.ncbi.nlm.nih.gov/geo/) database. We retained scRNA-seq

data from five patients with needle biopsy. We download

pancreatic cancer gene expression spectrum data and clinical

information from TCGA database (https://portal.gdc.cancer.

gov/).

PACA-AU data was obtained from the ICGC database

(https://dcc.icgc.org/). We obtained GSE21501, GSE28735,

GSE57495, GSE62452, GSE71729, and GSE85916 datasets

from the GEO database (https://www.ncbi.nlm.nih.gov/geo/).

Subsequently, preserved pancreatic cancer sample data of six

datasets (GEO) were combined and eliminated batch effects

using removeBatchEffect (20).
Dimensionality reduction

The scRNA-seq data were processed as described below:
1) Single-cell analysis was performed on five samples from

GSE156405.
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2) Set thresholds such that each gene was expressed in a

minimum of three cells and each cell expressed a

minimum of 250 genes.

3) The percentage of mitochondria and rRNA was

calculated by PercentageFeatureSet function (21).

4) Cells were filtered such that each cell used in subsequent

analysis expressed more than 500 and fewer than 6000

genes, had less than 30%mitochondrial gene expression,

and a minimum unique molecular identifier (UMI) of

1000.

5) The FindVariableFeatures function was used to find

hypervariable genes (21).
Definition and analysis of cell subsets

The cells were clustered by FindNeighbors and FindClusters

(21). We obtained immune cell markers associated with

pancreatic cancer from previous studies, including stellate cell

(ADIRF), fibroblasts (COL1A1, COL1A2, and DCN), T cells

(CD2, CD3D, CD3E, and CD3G), B cells (CD79A and CD79B),

neutrophils (CSF3R, S100A8, and S100A9), mast cells (GATA2,

TPSAB1, and TPSB2), NK cells (KLRF1, FGFBP2, and KLRC1),

macrophage (CD163 and CD68), pDC (LILRA4) and pancreatic

cancer cells (KRT19 and TM4SF1) (22–24). FindAllMarkers was

used to select marker genes of each subpopulation (logFC =0.5,

Minpct=0.35) . Prognost ic genes were clustered by

ConsensusClusterPlus in the RNA-seq cohort (25). The

optimal number of clusters was determined according to the

cumulative distribution function (CDF).
DEGs identification and functional
enrichment analysis

The limma package in R was used to identify differentially

expressed genes (DEGs) associated with tumorigenesis by

comparing gene expression levels between pancreatic cancer

tissues and normal tissues. Statistical enrichment was

evaluated using Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway analysis. GO

enrichment analyses included biological process (BP),

molecular function (MF), and cellular component (CC).
Cell score

CIBERSORT was used to calculate the immune cell fraction for

each tumor subtype in the RNA-seq and GEO datasets. The MCP

counter was used to evaluate the immune microenvironment, and
tiers in Oncology 03
the expression levels of immune cell marker genes were used to

evaluate the degree of immune cell infiltration.
LASSO regression and immune score

LASSO regression (developed by Tibshirani) can develop a

refined model by constructing a penalty function (26, 27). It is a

biased estimation with complex collinearity. In our study, we

used LASSO regression to reduce the number of genes in the risk

model by R package glmnet (28). Then, we performed a 10-fold

cross-validation for model building. The ESTIMATE database

was utilized to calculate immune cell score. CIBERSORT is a

deconvolution algorithm that calculates the proportion of cells

via processing of bulk RNA-seq data.
Statistical analysis

We used SPSS 23.0 (SPSS, Inc., Chicago, IL) for statistical

analysis. R package Survival CoxPH function was used to

conduct a univariate Cox proportional risk regression model.

Multivariate Cox regression analysis was performed on the

prognosis-related genes identified by LASSO. The R package

timeROC was used to perform receiver operating characteristic

(ROC) analysis on the prognosis classification of the RiskScore.

Differences were considered statistically significant at P < 0.05

(*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001)
Results

Single-cell data for dimensionality
reduction and clustering

All data processing and analysis workflows were shown in

Figure S1. We performed log-normalization to normalize data

from five pancreatic cancer samples (Figure 1A). Through data

integration, scaling, and PCA dimensionality reduction, we

identified 15 distinct subpopulations (Figure 1B). The 15

subpopulations were re-grouped into 10 different cell types

according immune cell marker gene expression (Figure 1C).

We screened differentially expressed marker genes of the 10 cell

types by FindAllMarkers analysis. The top five marker genes in

each cell subpopulation were presented in Figure 1D

(positive=TRUE). Furthermore, we performed functional

enrichment analysis using the 352 marker genes in pancreatic

cancer cells. GO and KEGG pathway enrichment analyses were

performed on the 352 DEGs using WebGestaltR tools (P<0.05)

(29). According to GO functional annotation, 256 clusters were

annotated significantly in the BP category (Figure 2A). A total of
frontiersin.org
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161 GO terms were annotated in the CC category (Figure 2B).

Lastly, 38 clusters with significant differences were annotated in

the MF category (Figure 2C). Thirty-three DEGs were annotated

in the KEGG pathway (Figure 2D). The results showed that

intercellular junctions and extracellular matrix interactions were

significantly enriched.
Construction of pancreatic cancer
molecular subtypes

The above analyses revealed cancer cells represented a large

proportion of the cells sequenced from pancreatic cancer patients,

as they were the main principal components. We further

identified prognosis-related marker genes and constructed new

molecular subtypes of pancreatic cancer based on them. We

identified 5 protective genes and 37 high risk genes through

univariate analysis in RNA-seq and GEO datasets (p < 0.05,

HR > 1) (Figure 3A). Pancreatic cancer samples in RNA-seq

were clustered by using 42 prognostic associated genes. CDF Delta

area curve revealed the clustering result is relatively stable when
Frontiers in Oncology 04
the clustering number is two. Therefore, we defined 2 molecular

subtypes (k=2) (Figures 3B, C). C1 subtype had a relatively better

prognosis, whereas C2 subtype was associated with a worse

prognosis. Similar results were also observed in the GEO cohort

(Figures 3D, E), which further confirmed the prognostic

significance of the molecular subtype classification.
Cell type differences between C1 and
C2 subtypes

To assess cell differences between C1 and C2 subtypes, we

probed our SCS data and by examining differentially expressed

marker genes in different molecular subtypes. Using our RNA-

seq data and the GEO database, we calculated the immune cell

score of each subtype and compared the resulting score between

the C1 and C2 subtypes. The results showed the cancer cell score

of the C2 subtype was significantly increased compared with the

cancer cell score in C1 subtype (Figures 4A, B). T and B cell

scores in C1 subtype were significantly higher than in the

C2 subtype.
A B

D

C

FIGURE 1

UMAP plot and maker genes of cell population. (A) UMAP plot of SCS in five samples. (B) UMAP of the 14 subgroups after clustering. (C) UMAP
of subpopulation after cell annotation. (D) Top five marker genes in the cell population.
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C1 and C2 subtype immune signatures

To further explore immune microenvironment differences

between the two subgroups, we evaluated the degree of immune

cell infiltration in pancreatic· cancer cohorts using immune cell

marker gene expression. The immune cell marker genes were

derived from previous studies (30). The tumor immune

microenvironment was also evaluated based on ESTIMATE

and MCP-counter. The discrepancy of immune cells between

the RNA-seq and GEO cohort was shown in Figures 5A–F.

ESTIMATE, MCP-counter, and single sample gene set

enrichment analysis (ssGSEA) revealed significant differences

between most immune cells. The distribution of immune

infiltration in RNA-seq was consistent with the GEO cohort.

These results revealed the consistency of molecular

characteristics and molecular subtype stability. We presented

ssGSEA immune scores by heatmaps to illustrate differences in
Frontiers in Oncology 05
the immune microenvironment, (Figures 4C, D). Taken

together, these findings demonstrated a significant difference

in immune microenvironment score between C1 and

C2 subtypes.
Immune checkpoints and chemokines

The development and use of immune checkpoint targeting

immunotherapies in the personalized treatment of pancreatic

cancer has become increasingly common. Therefore, we

evaluated the distribution of immune checkpoint gene

expression in the RNA-seq and GEO datasets. We found 32

(69.57%) of the 46 checkpoint genes were aberrantly expressed

in the RNA-seq dataset, and most of them were overexpressed in

the C2 subtype, which has the worst prognosis (Figures S2A,

S2B). In the GEO dataset, 28 (68.29%) of the 41 checkpoint
A B

DC

FIGURE 2

GO and KEGG annotation. (A) BP annotation of the maker genes in cancer cells. (B) CC annotation of the maker genes in cancer cells. (C) MF
annotation of the maker genes in cancer cells. (D) KEGG annotation of the maker gene in cancer cells.
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genes were aberrantly expressed. Consistent with the RNA-seq

dataset, most of them were overexpressed in the C2 subtype

(Figures S2C, S2D).

Chemokines play essential roles in cancer progression and

may facilitate immune cell migration into the tumor

microenvironment, further affecting cancer progression and

therapeutic response. Here, we analyzed the expression of

chemokines in C1 and C2 subtype. In the RNA-seq data, 25

out of 41 chemokines were differentially expressed between the

subtypes (Figure S3A), which suggest that the degree of immune

cell infiltration in C1 and C2 subtypes may differ. In the GEO

cohort, 22 out of 37 chemokines were differentially expressed

between C1 and C2 subtype (Figure S3B). Such differences may

contribute to rapid tumor progression and poor immunotherapy

efficacy. Additionally, we evaluated chemokine receptor gene

expression in the two subtypes. A total of 13 out of 18 chemokine

receptor genes were differentially expressed in RNA-seq

database (Figure S3C). In the GEO database, 11 of the 17

chemokine receptor genes were differentially expressed (Figure

S3D). Chemokines and chemokine receptor relative gene

expression maintained was consistent between C1 and C2

subtypes in both the RNA-seq and GEO datasets. Most were

highly expressed in the C2 subtype, which is associated with a

worst prognosis. These results also were illustrated as heat maps

(Figures S3E, S3F).
Frontiers in Oncology 06
Functional and pathway
enrichment analyses

To verify the functional differences between the C1 and C2

subtypes, we performed GO functional enrichment analysis of

DEGs between the C1 and C2 subtypes in the RNA-seq dataset.

Regarding GO function annotations of DEGs, 553 annotations

with significant differences were observed in BP, including

epithelial cell differentiation, angiogenesis, and regulation of

signaling receptor activity (Figure S4A). A total of 124 GO CC

terms were annotated (Figure S4B). The most significant

difference between the C1 and C2 subtypes was plasma

membrane protein complex. A total of 58 genes were

significantly annotated in MF (Figure S4C). Additionally,

KEGG pathway analysis was adapted for gene set enrichment

analysis (GSEA) of C1 and C2 subtypes (p < 0.05, and FDR <

0.25) (Figure S4D) (31).

To continue exploring the C1 and C2 subtypes, we

performed gene set enrichment analysis (GSEA) using all

candidate gene sets in KEGG database. Several cancer-related

pathways, such as base excision repair, P53 signaling pathway,

and pancreatic cancer were significantly enriched in the C2

subtype according to the RNA-seq dataset (Figures 6A, B).

Importantly, the enrichment results from the GEO dataset

were consistent with the RNA-seq results (Figures 6C, D).
A B

D EC

FIGURE 3

Molecular signatures of cancer cells. (A) Venn diagram overlap of 352 marker genes in cancer cells from two cohorts by single factor analysis.
(B) CDF curve and CDF delta area of RNA-seq queue sample. (C) Heatmap of RNA-seq sample clustering (consensus k=2). (D) Overall survival
curves of C1 and C2 subtype in RNA-seq dataset. (E) Overall survival curves of C1 and C2 subtype in GEO database.
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Mutational signature and immune cell
type classification

Also, we used the TCGA dataset to analyze gene mutations

in the C1 and C2 subtypes. We found that subtype was markedly

correlated with gene mutations in pancreatic cancer. We noted a

higher percentage of KRAS, TP53, SMAD4, and CDKN2A

mutations in the C2 subtype (Figure 7A). Similarly, data from

ICGC-AU showed that the mutation frequency of KRAS was

significantly lower in the C1 subtype than in the C2

subtype (Figure 7B).

Six infiltrating immune cell types have been identified in

human cancer: IC1 (wound healing), IC2 (INF-R dominant),
Frontiers in Oncology 07
IC3 (inflammation), IC4 (lymphocyte depletion), IC5

(immunologically silenced), and IC6 (TGF-beta dominant). As

expect, IC1, IC2, and IC6 are associated with poor prognosis. In

TCGA, most pancreatic cancer patients belonged to IC1, IC2,

and IC3 immune subtypes (Figure 7C), though the IC5 immune

subtype is not included in TCGA data. Survival analysis revealed

these immune subtypes were not significantly associated with

overall survival in pancreatic cancer (Figure 7D). We also

observed significant differences in the distribution of these

immune subtypes in C1 and C2 subtypes (Figure 7E). IC3 was

the major infiltrating immune cell type of the C1 subtype,

whereas IC1 become the predominant immune cell type of the

C2 subtype.
A

B

D
C

FIGURE 4

Immune cell scores and heat map of immune microenvironment score. (A) Cell score between C1 and C2 subtype in RNA-seq dataset. (B) Cell
score between C1 and C2 subtype in GEO database. (C) Differences in heat map distribution of ssGSEA immune microenvironment score in
subtypes. (D) Heatmap distribution differences of ssGSEA immune microenvironment score in GEO dataset in subtypes. **p < 0.01; ***p < 0.001;
ns, no significant.
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Tumor Immune Dysfunction and
Exclusion (TIDE) analysis

We used the TIDE software (http://tide.dfci.harvard.edu/)

to evaluate potential clinical effects of immunotherapy in the

C1 and C2 subtypes. A higher TIDE prediction score indicates

an increased chance of immune escape, which indicates

immunotherapy may be less beneficial for these patients. In

the RNA-seq dataset, exclusion scores were remarkably
Frontiers in Oncology 08
elevated in the C2 subtype and dysfunction scores were

higher in the C1 subtype. However, TIDE scores between the

C1 and C2 subtypes were not significantly different

(Figures 8A–C). The exclusion and dysfunction scores in the

GEO dataset were consistent with the RNA-seq dataset.

Although, the TIDE score was increased in the C2 subtype

compared to the C1 subtype (Figures 8D–F). This result was

consistent with previous immune checkpoints and immune

microenvironment analysis.
A B

D E

F

C

FIGURE 5

Immune microenvironment score. (A–C) The distribution of immune microenvironment score in RNA-seq dataset. (D–F) The distribution of
immune microenvironment score in GEO database. *p < 0.05; **p < 0.01; ***p < 0.001.
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Prognostic model

Using the GEO dataset, we identified 42 genes that can predict

cancer prognosis. We randomly sampled the GEO dataset with a

sampling ratio of Train: test = 7:3. Then, we applied LASSO

regression (lambda= 0.046) to obtain 11 prognosis-related genes

(Figure 9A). To further reduce the number of genes, we used

stepAIC, which reduced the number of genes to eight (EPS8,

DSG2, RHOD, ITGB6, ANKRD37, SELENBP1, FOXA3,

ALDH1A1) and determined the corresponding risk coefficients

(Figure 9B) (32). Finally, we arrived at an 8-gene prognostic model

for pancreatic cancer patients. We calculated the risk score of each

sample in both the GEO training dataset and validation dataset

and divided the samples into high and low risk groups using the

median as cutoff. A higher score predicted poorer prognosis in

pancreatic cancer patients. Kaplan Meier (KM) curves and ROC

curves were displayed in Figures 9C, D. The corresponding AUC
Frontiers in Oncology 09
in 1-year, 2-year, and 3-year were 0.65, 0.71, and 0.75, respectively.

Moreover, we validated our model in GEO validation, TCGA, and

ICGC datasets (Figures 9E, F).
Discussion

SCS technologies have been increasingly used in disease

research over the past decade (33–35). SCS can reveal gene

structure and expression status at single-cell resolution, which

facilitated the exploration of biological processes and disease

mechanisms with unprecedented precision (36, 37). In our

study, we classified and defined two pancreatic cancer

subtypes by analyzing SCS data from multiple public

databases. We observed sequenced cells form 10 cell

subgroups, including stellate cells, fibroblasts, T cells, B cells,

neutrophils, mast cells, NK cells, macrophages, pDCs, and
A B

DC

FIGURE 6

Enrichment analysis of GSEA pathway. (A, B) GSEA of C1 and C2 subtype in RNA-seq dataset. (C, D) GSEA of C1 and C2 subtype in the GEO dataset.
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A B

DC

FIGURE 7

Gene mutations and distribution of immune subtypes. (A) Somatic mutations analysis of DEGs in two molecular subtypes. (B) Mutation frequency
differences of KRAS among different subtypes in ICGC cohort. (C) Sankey between molecular types and immune subtypes. (D) Survival curve of
existing immune subtypes. (E) Distribution of immune subtypes among different molecular types. *p < 0.05.
A

D E F

B C

FIGURE 8

TIDE analysis of immune therapy. (A) Exclusion scores among different molecular subtypes in RNA-seq dataset. (B) C1 and C2 subtype
dysfunction scores in the RNA-seq dataset. (C) TIDE score of different molecular subtypes in RNA-seq data. (D) Differences of Exclusion scores
among different molecular subtypes of the GEO dataset. (E) C1 and C2 subtype Exclusion scores in the GEO dataset. (F) TIDE score of different
molecular subtypes in the GEO dataset. *p < 0.05; ***p < 0.001.
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pancreatic cancer cells. These subgroups can be identified by

expression of specific marker genes. Researchers have found

immune cells of the various lymphoid and myeloid lineages by

SCS (38). These immune cell subsets facilitated the formation of

an immunosuppressive microenvironment in pancreatic cancer.

We further explored the molecular and immune signatures of

different cell subsets. Furthermore, we used TIDE software to

evaluate potential clinical immunotherapy efficacy in the C1 and

C2 subtypes. C2 had a higher TIDE score, which suggests

patients with this subtype would benefit less from

immunotherapy. Nevertheless, we need to note that the

mechanism(s) of immune cell exclusion and dysfunction may

well be different in different tumor types. Therefore, this

conclusion still needs to be verified by more precise molecular

and animal experiments.

Pancreatic cancer has an extremely poor prognosis, which is

largely attributed to its difficulty to diagnose early (39–41).

Given this limited therapeutic window, it is of great interest to
Frontiers in Oncology 11
establish gene models that can effectively predict pancreatic

cancer prognosis. Hosein et al. (38) observed macrophage

heterogeneity in pancreatic cancer at different stages using

single-cell RNA-seq. Specifically, they revealed macrophages

express different genes at different times and play different

functional roles. Studies have yet to relate marker genes with

cell subgroup in pancreatic cancer.

We identified 10 different cell types using data clustering and

dimension reduction. Then, we performed functional

enrichment analysis for 352 marker genes in pancreatic cancer

cells. Notably, we found some marker genes were markedly

correlated with pancreatic cancer progression. These finding

indicate the prognostic risk model may provide clinical

treatment guidance. Specifically, we found EPS8, DSG2,

RHOD , ITGB6 , ANKRD37 , SELENBP1 , FOXA3 , and

ALDH1A1 could be potential biomarkers to accurately predict

the prognosis of pancreatic cancer patients. Therefore, we

established a prognostic model based on these eight genes. The
A

B D

E F

C

FIGURE 9

Establishment and analysis of prognostic models. (A) LASSO coefficient profiles of 42 prognostic genes in the GSE dataset. (B) Multivariate
analysis of the risk model genes. (C) KM and ROC analysis of the risk model in the GEO dataset. (D) KM and ROC analysis of the risk model in
the GEO validation dataset. (E) KM and ROC analysis of the risk model in the complete GEO dataset. (F) KM and ROC analysis of the risk model
in complete the RNA-seq dataset. *p < 0.05; **p < 0.01.
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prognostic risk model was a worthy prognostic indicator, as

evidenced by its ability to accurately indicate prognosis in three

external datasets (GEO validation, TCGA, and ICGC datasets).

Similar with our findings, serval studies have demonstrated

EPS8, DSG2, ITGB6 were aberrantly expressed in pancreatic

cancer, breast cancer, pituitary tumor, and gastric cancer (42,

43). Hütz et al. (43) found silenced DSG2 facilitated pancreatic

cancer cell migration and invasion. EPS8 increased

polyubiquitination by downregulating ALDH7A1 protein

expression in pancreatic cancer. Zhuang et al. (44) observed

that ITGB6 was significantly upregulated and closely associated

with overall survival in pancreatic cancer. These findings have

important significance for prognosis prediction and subsequent

treatment of pancreatic cancer patients. The risk model could

predict the patient prognosis and may inform the use of

individualized therapies in pancreatic cancer patients.
Conclusion

Based on pancreatic cancer SCS data from the GEO, TCGA

and ICGC databases, we identified a new molecular subtype of

HCC with distinct molecular and immune signatures.

Meanwhile, we established a risk model based on 8 prognosis-

related genes, which has stable and effective prognosis

prediction performance.
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