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Abstract

The Mediterranean and Black Seas are semi-enclosed basins characterized by high environmental variability and growing
anthropogenic pressure. This has led to an increasing need for a bioregionalization of the oceanic environment at local and
regional scales that can be used for managerial applications as a geographical reference. We aim to identify biogeochemical
subprovinces within this domain, and develop synthetic indices of the key oceanographic dynamics of each subprovince to
quantify baselines from which to assess variability and change. To do this, we compile a data set of 101 months (2002–2010)
of a variety of both ‘‘classical’’ (i.e., sea surface temperature, surface chlorophyll-a, and bathymetry) and ‘‘mesoscale’’ (i.e.,
eddy kinetic energy, finite-size Lyapunov exponents, and surface frontal gradients) ocean features that we use to
characterize the surface ocean variability. We employ a k-means clustering algorithm to objectively define biogeochemical
subprovinces based on classical features, and, for the first time, on mesoscale features, and on a combination of both
classical and mesoscale features. Principal components analysis is then performed on the oceanographic variables to define
integrative indices to monitor the environmental changes within each resultant subprovince at monthly resolutions. Using
both the classical and mesoscale features, we find five biogeochemical subprovinces for the Mediterranean and Black Seas.
Interestingly, the use of mesoscale variables contributes highly in the delineation of the open ocean. The first axis of the
principal component analysis is explained primarily by classical ocean features and the second axis is explained by
mesoscale features. Biogeochemical subprovinces identified by the present study can be useful within the European
management framework as an objective geographical framework of the Mediterranean and Black Seas, and the synthetic
ocean indicators developed here can be used to monitor variability and long-term change.
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Received August 8, 2014; Accepted September 26, 2014; Published October 31, 2014

Copyright: � 2014 Nieblas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. We used daily 4-km, version 5 Advanced Very
High Resolution Radiometer pathfinder SST (1982–2012) available at http://www.nodc.noaa.gov/sog/pathfinder4km/. Chl data were taken from the National
Aeronautics and Space Administration’s daily 4-km level-3 Moderate Resolution Imaging Spectroradiometer daily data set (2002–2010) available at http://
oceancolor.gsfc.nasa.gov/. We extracted weekly 1/3u (i.e., about 33 km at these latitudes) Ssalto/Duacs sea level anomalies and geostrophic velocity anomalies
(u,v) computed and distributed by Aviso (1992–2012), with support from the Centre National d’Études Spatiales (http://www.aviso.oceanobs.com/duacs/). The
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Introduction

Growing pressure on the European marine environment has led

to an increasing demand for comprehensive evaluation and

monitoring programs [1–4]. The Mediterranean and Black Seas

are ecologically- and economically-important semi-enclosed seas

characterized by highly specific biogeochemcial, oceanographic,

and environmental conditions that have resulted in pronounced

endemism of exploited marine species [5–7]. The Mediterranean

Sea is commonly divided into two basins, east and west, which

each have specific hydrological conditions and marked seasonal

cycles [8]. Recently, the International Panel on Climate Change

has designated the Mediterranean as one of the most perturbed

marine ecosystems of the global ocean, as both deep and surface

environments show significant change in the open seas, coastal,
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benthic and neritic areas [9–11]. In addition, it is undergoing

increasing anthropogenic pressure, including pollution, overfish-

ing, and habitat loss via coastal development [1,7,12].

In this context, the European Union has recently adopted the

Integrated Maritime Policy framework for the protection of

European Seas; the primary objective of which is to achieve

environmentally healthy waters by 2020 [1–4]. The first step

toward the goal of healthy waters and the aim of this study is to

identify an objective spatial partitioning in the Mediterranean and

Black Seas, where environmental conditions are homogeneous, to

act as a framework for marine zoning [13,14], for ecological

management [15,16], as well as to determine baseline conditions

which can then be used to effectively monitor variability and

change.

Marine bioregionalization aims to identify unique and homo-

geneous biogeochemical partitions delineated by observable

frontiers, such as frontal structures. This discipline, recently

redefined by [17], is based on objective statistical methodologies

and has been applied in several regions of the global ocean at

several different scales [18–21]. However, owing to the complex

hydrodynamics [22,23] and the important influence of mesoscale

activity on biogeochemcial processes [24–26], bioregionalization

of the Mediterranean and Black Seas remains difficult.

Marine bioregionalizations are classically performed on ocean-

ographic features that are thought to be representative of the

oceanographic and biogeochemical structure of a region; for

example, sea surface temperature (SST), bathymetry and surface

chlorophyll-a (chl) [20,27,28]. However, mesoscale processes must

also be important for defining biogeochemical partitions as they

are known to impact ocean productivity, including the spatial

distribution and stocks of chlorophyll-a [29,30]; and basin-scale

circulation and its mesoscale variability have been shown to be

crucial in delineating hydrodynamical regions [31].

Previous studies have used single or multivariate analyses to

derive regions of similar features in the Mediterranean Sea,

including classical oceanographic indicators (i.e., chl [8]; SST, chl,

sea surface salinity, and bathymetry [32]), bio-physical indicators,

such as Ekman pumping, nutrient concentration, euphotic depth,

and stratification [32]; and exploited fish distributions and

biodiversity [7]. Recently, the Mediterranean Sea was subdivided

into several hydrodynamical provinces delineated by multi-scale

oceanic frontal structures in order to assess the ecological

connectivity of the whole basin [31].

In this study, we derive objective biogeochemical subprovinces

(sensu [33]) of the Mediterranean and Black Seas based on

multivariate analyses of classical oceanographic features (SST, chl,

and bathymetry), mesoscale features (eddy kinetic energy (EKE),

SST and chl surface fronts, finite-size Lyapunov exponents

(FSLE), and the Okubo-Weiss (OW) parameter), and a combina-

tion of both classical and mesoscale features. We also quantify the

stability of the boundaries between the biogeochemical subpro-

vinces in time and space. Synthetic oceanographic indices for the

subprovinces are then extracted to act as baseline indicators, using

principal components analysis (PCA), similar to the multivariate

ocean-climate indices recently developed by [34]. Finally, we

examine the temporal variability of these indices and their

relationships with large-scale climate indices. The biogeochemical

subprovinces identified in this study and the time series of their

synthetic indicators could become important tools within the

European management framework for assessing the environmen-

tal variability and change within the Mediterranean Sea.

Materials and Methods

Data
We used daily 4-km, version 5 Advanced Very High Resolution

Radiometer pathfinder SST (1982–2012) available at http://www.

nodc.noaa.gov/sog/pathfinder4km/. Chl data were taken from

the National Aeronautics and Space Administration’s daily 4-km

level-3 Moderate Resolution Imaging Spectroradiometer daily

data set (2002–2010) available at http://oceancolor.gsfc.nasa.gov/

. We extracted weekly 1/3u (i.e., about 33 km at these latitudes)

Ssalto/Duacs sea level anomalies and geostrophic velocity

anomalies (u,v) computed and distributed by Aviso (1992–2012),

with support from the Centre National d’Études Spatiales (http://

www.aviso.oceanobs.com/duacs/). The bathymetry of the Med-

iterranean basin was extracted from the ETOPO1 database hosted

on the National Oceanic and Atmospheric Administration’s

website at ,4 km resolution using the getNOAA.bathy function

(marmap package, http://cran.r-project.org/). For consistency

between variables, analyses were performed for data between May

2002 and November 2010, totaling 101 months.

Oceanographic indices
Several features were derived by further processing the

remotely-sensed data. SST and chl fronts were computed with

the gradient method, using a common sobel operator (e.g.,

[35,36]). These continuous values indicate the frontal intensity

between water masses.

Using geostrophic velocity anomalies, we calculated several

indicators of mesoscale ocean features. These data were used to

derive backward-calculated FSLEs, which measure the horizontal

mixing and dispersion in the ocean [37] and help to detect

mesoscale Lagrangian coherent structures of ecological signifi-

cance (e.g., [38]). FSLEs are defined as l(x,t,d0,df) = (1/t)log(d0/

df) where l(x,t,d0,df) is the FSLE at position x and time t with an

initial separation distance from x of d0 and final separation

distance from x of df. Here, we assign d0 to be 0.04 degrees and df

to be 0.6 degrees, and a time interval, t, of 200 days, following the

FSLE parameterizations of the Center for Topographic studies of

the Ocean and Hydrosphere (http://ctoh.legos.obs-mip.fr/

products/submesoscale-filaments/fsle-description), allowing us to

detect mesoscale structures of ,100 km, an appropriate scale for

these seas [37]. Geostrophic velocity anomalies were also used to

compute EKE, (u2+v2)/2, which is an indicator of the intensity of

the eddy activity. Finally, we use geostrophic velocity anomalies to

compute the OW parameter [39,40], W = s2
n+s2

s+v2, where sn

and ss are the normal and shear components of strain, and v is the

relative vorticity. This parameter is used to identify regions of high

vorticity (W,0), which are likely related to the cores of mesoscale

ocean eddies [41].

Monthly mean time series (2002–2010) were derived for all

variables (except bathymetry) for the region including the

Mediterranean and the Black Seas (30uN to 47uN, 26uE to

42uE) and regridded at 4 km resolution. We natural log

transformed chl, chl fronts and bathymetry in order to stabilize

their variance as their values can span several orders of magnitude.

Spatio-temporal multivariate k-means cluster analysis
Multivariate arrays were created from time-averages of the

monthly scaled oceanographic indices (Figure 1) and combined

into ‘‘classical’’ (i.e., SST, chl, and bathymetry), ‘‘mesoscale’’ (i.e.,

FSLE, OW, EKE, and SST and chl surface fronts), and ‘‘full’’

arrays (i.e., all features). After initial tests, k-means (kmeans, stats

package, http://cran.r-project.org/; [42]) was determined to be

the most robust cluster analysis algorithm to objectively classify

Biogeochemical Subprovinces of Mediterranean and Black Seas
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biogeochemical subprovinces. This partitioning method, using

Euclidean distances, assigns data points to k clusters and minimizes

the sum of squares between the data points to cluster centre. With

this algorithm, k must be defined a priori. In order to define k, we

bootstrap (1000 times) k between 2 and 30. The between-clusters

sum of squares is then divided by the total sum of squares to find

the explained sum of squares. Arbitrary 1% and 5% thresholds are

defined (Figure S1 in File S1), which we used to define the optimal

k for the three multivariate arrays (Table 1), whereby the

explained sum of squares for each additional k increases by less

than 1% and 5%, respectively. K-means analyses were then

performed on each array using the optimal k for both threshold

levels (1%; Figure S2 in File S1 and 5%; Figure 2). The resultant

clusters were defined as the biogeochemical subprovinces of the

Mediterranean and Black Seas as a subdivision of the Mediter-

ranean provinces defined by [33].

To investigate the spatial stability of the subprovinces through

time, we used the optimal k values found for each of the three

multivariate arrays for both the 1% and 5% threshold levels, and

performed a k-means analysis on each of the multivariate arrays

for every month of the data set (n = 101 months). Then, based on

an adaptation of the effectiveness test implemented by [43], the

Figure 1. Time-averages of all oceanographic variables collected for the Mediterranean Sea. Variables include a) natural log-transformed
bathymetry, b) sea surface temperature (SST), c) natural log-transformed chlorophyll-a (chl), d) finite-size Lyapunov exponents (FSLE), e) Okubo-Weiss
parameter (OW), f) eddy kinetic energy (EKE), g) SST surface frontal gradients, and h) natural log-transformed chl surface frontal gradients.
doi:10.1371/journal.pone.0111251.g001

Biogeochemical Subprovinces of Mediterranean and Black Seas
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temporal stability of each geographical cell is computed as the

percentage of time that a geographical cell is considered as a

boundary between two clusters at each temporal step (Figure 3,

Figure S3 in File S1).

Development of synthetic indices through PCA
In order to develop synthetic indices of the oceanographic

indicators for each biogeochemical subprovince, we extracted the

scaled and centered monthly time series of each oceanographic

variable (except bathymetry) for each pixel within each biogeo-

chemical subprovince. Although bathymetry is important for

determining the biogeochemical subprovinces, it does not vary in

time and was not included in the PCA. The strong seasonal cycle

observed in all time-series was removed before performing the

PCA as this signal swamps both the lower- and higher-frequencies

of the time series (e.g., [44]). We then performed a PCA for each

biogeochemical subprovince with an individual being the monthly

value of each oceanographic variable for each pixel. We used the

Figure 2. Biogeochemical subprovinces of the Mediterranean and Black Seas. Subprovinces for the (a) ‘‘classical’’, (b) ‘‘mesoscale’’, and (c)
‘‘full’’ multivariate arrays using a 5% threshold for the explained sum of squares to define the optimal number of subprovinces (see text).
doi:10.1371/journal.pone.0111251.g002

Table 1. Optimal number of clusters, k, for each multivariate array for the 1% and 5% threshold levels obtained by bootstrapping
1000 times the k-means analysis on k between 2 and 30.

Array Threshold

1% 5%

Classical 9 4

Mesoscale 14 4

Full 13 5

doi:10.1371/journal.pone.0111251.t001

Biogeochemical Subprovinces of Mediterranean and Black Seas
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common cutoff of eigenvalues .1 to retain the unrotated principal

components (PCs) (Table S1). We then took the monthly mean of

the retained PCs over all the pixels, and used these as the synthetic

indices of each biogeochemical subprovince.

Finally, we investigated the mode of temporal variability of

these synthetic indices. Spectra were calculated to show the

variability of each time-series. Lagged correlations were then

investigated between time-series and monthly anomalies of four

independent large-scale climate indices known to influence

Mediterranean Sea dynamics [45,46]: North Atlantic Oscillation

(NAO), the East Atlantic pattern (EA), the East Atlantic-West

Russia pattern (EAWR), and the Scandinavian pattern (SCAND).

These indices were computed by the National Oceanic and

Atmospheric Administration/Climate Prediction Center.

Results

At the 5% threshold level, we find four subprovinces for the

classical oceanographic features, four subprovinces for the

mesoscale features and five subprovinces for the full combination

of features (Table 1, Figure 2). Overall, the ‘‘classical’’ array (i.e.,

defined using the set of classical features) has the most stable

boundaries in time and space (Figure 3a), while the boundaries for

the ‘‘mesoscale’’ array (i.e., defined using the set of mesoscale

features only) are highly variable (Figure 3b), as are the boundaries

of the ‘‘full’’ array (i.e., defined using both classic and mesoscale

features) (Figure 3c). This indicates that the apparent stability

found for the classical array is not representative of the ‘‘true’’ in-
situ variability of the oceanic environment. The 5% threshold

identifies fewer biogeochemical subprovinces than the 1%

threshold (Table 1; Figure 2; Figure S2 in File S1), which, in

addition to higher stability (Figure 3; Figure S3 in File S1), makes

them easier to monitor in a management context. The full array at

the 5% threshold was finally determined to be the most useful for

management purposes, as the subprovinces are realistic and

inclusive of both classical and mesoscale features (Figure 2, 3, 4).

We perform a PCA for the subprovinces defined for the 5%

threshold of the full array to derive synthetic time series (Table S1,

Figure 5). The first two PCs are retained for full subprovinces 1–3

(explaining up to 39% and 21% of the variance for PC1 and PC2,

respectively), and the first three PCs are retained for full

subprovinces 4–5 (explaining up to 27%, 20%, and 18% of the

variance for PC1, PC2 and PC3, respectively). We find strong low

frequency (interannual) energy for the first two PCs in all full

subprovinces (Figure 6), with the PCs of subprovince 5 being

particularly different from the rest, especially PC2. We do not find

any meaningful correlations to large-scale climate indices for any

of the retained PCs (Table S2).

The stability of the boundaries for a given biogeochemical

subprovince indicates whether the subprovince is representative of

the local hydrological and biogeographical conditions, with higher

stability giving greater credence. We found that the stability of the

borders of the biogeochemical subprovinces defined by the 5%

threshold (Figure 3) were more stable in terms of time and space

than those of the 1% threshold (Figure S3 in File S1). The

boundaries of the biogeochemical subprovinces of the classical

array are very clearly defined and spatially stable through time

(Figure 3a), with the greatest stability of boundaries found at the

coastal isobaths (Figure 1a). Greater variability in the boundaries

occurs through the Strait of Sicily and in the Aegean Seas, which

correspond to high spatial bathymetric variability. The variability

in biogeochemical subprovince boundaries observed in the Ionian

Sea appears to correspond to a latitudinal transition of SST

(Figure 1b). The boundaries for the mesoscale array are extremely

variable (Figure 3b), with boundaries shifting significantly for each

month of the data set. Especially high variability occurs in the

southern parts of both the eastern and western basins, including

the Alboran Sea, Algerian Basin, through the Strait of Sicily and

south of Malta, where mesoscale activity is particularly high

(Figure 1d,e,f).

Despite this spatial variability, we find that the subprovinces

derived from the classical and mesoscale features are often

grouped in the same manner. For example, the coastal Gulf of

Lions, the northern Adriatic Sea, the Aegean Sea, the coastal Gulf

of Gabes, the coast near the Suez Canal, and the western Black

Sea are consistently grouped together in all three multivariate

arrays (classical subprovince 1, mesoscale subprovince 4, full

subprovince 4; Figure 2). These subprovinces are characterized by

shallow bathymetry, generally low but variable SSTs, and high

and variable chl (Figure 4a, c; Table 2). In terms of mesoscale

features, these subprovinces have relatively consistently high

FSLE, indicating low horizontal mixing, low EKE, and high

SST and chl frontal gradients (Figure 4b, c; Table 2). Offshore of

the Gulf of Lions and the offshore Black Sea are also commonly

grouped by the three multivariate arrays (classical subprovince 4,

mesoscale subprovince 2, full subprovince 5), and are character-

ized by deep bathymetry, low and relatively constant SSTs, and

high chl (Figure 4a, c; Table 2). This subprovince has high FSLE,

again indicating low horizontal mixing, low EKE (Figure 4b, c;

Table 2), and high chl frontal gradients for the full subprovince 5

(Figure 4c; Table 2). The Strait of Gibraltar/Alboran Sea is

Figure 3. Spatial stability of the borders of biogeochemical
subprovinces. Stability plots for the (a) classical, (b) mesoscale, and (c)
full multivariate arrays. K-means analyses, using the k found in the time-
averaged analyses (Table 1), are performed on the multivariate arrays at
monthly time steps for the 101 months of the data set and using a 5%
threshold of the explained sum of squares to define the optimal
number of subprovinces (see text). Spatial stability is represented as the
percentage of time that a boundary of the biogeochemical subpro-
vinces is found at a particular pixel over the 101 months of the data set.
Red colors indicate stable borders.
doi:10.1371/journal.pone.0111251.g003

Biogeochemical Subprovinces of Mediterranean and Black Seas
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grouped mainly by classical subprovinces 3 and 4 (Figure 2a, c),

but is more variably characterized by mesoscale features (Figure 1,

Figure 4). The majority of the southern parts of the eastern and

western basins are grouped together (classical subprovince 2,

mesoscale subprovince 2, full subprovince 1), and are character-

ized by deeper bathymetry, higher SSTs, low chl, and low

Figure 4. Violin plots of the scaled values for each oceanographic variable. Violin plots for the (a) classical, (b) mesoscale, and (c) full
multivariate arrays. Colors indicate biogeochemical subprovinces. The mean of each variable is represented by the bulge in the violin and its
variability is indicated by the tails. Here, positive bathymetry is shallow and negative bathymetry is deep. Variable abbreviations are as follows: sea
surface temperature (SST), chlorophyll-a concentration (chl), finite-sized Lyapunov exponents (FSLE), the Okubo-Weiss parameter (OW), eddy kinetic
energy (EKE), and SST and chl frontal gradients (SSTgrad, and chlgrad, respectively). Colorbars represent subprovinces.
doi:10.1371/journal.pone.0111251.g004

Biogeochemical Subprovinces of Mediterranean and Black Seas
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mesoscale activity (Figure 4; Table 2). The eastern and western

basin are divided by the Strait of Sicily for the classical and full

subprovinces (Figure 2a, c) due to relatively shallow bathymetry

(Figure 4a,c; Table 2). Mesoscale subprovince 1 appears related to

full subprovince 3, which both occupy the southern basin, and are

characterized by low FSLE (strong mixing), low and variable OW

(indicative of eddy cores), high EKE, and low SST and chl frontal

gradients (Figure 4b; Table 2). This high EKE is especially

Figure 5. Principal component (PC) analysis for the biogeochemical subprovinces of the Mediterranean Sea. The (a) biogeochemical
subprovinces of the Mediterranean Sea, as defined by the 5% threshold for the full multivariate array, and the (b–f) PC analysis arrow plots and time
series of the retained PCs for each of the subprovinces, derived from the mean of all pixels in the subprovince for each month of the data set. Arrows
that align well with an axis are well-explained by that axis. The longer the arrow, the more it contributes to explaining the variability of an axis.
Variable abbreviations are as in Figure 4.
doi:10.1371/journal.pone.0111251.g005

Biogeochemical Subprovinces of Mediterranean and Black Seas

PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e111251



apparent in full subprovince 3, south of Crete in the Levantine Sea

(e.g., the wind-driven Ierapetra anticyclonic gyre), in the Algerian

Basin, and in the Alboran Sea (Figure 1f, 2c).

In general, we find that classical variables for the full

subprovinces primarily explain the first PC, and mesoscale

variables for the full subprovinces generally explain the second

PC (Figure 5b–f arrow plots, left panels; Table 3), with full

subprovince 5 exhibiting much different patterns for all PCs than

the other full subprovinces. For each PC, the variables having a

correlation value .0.5 with a particular PC time series are

deemed significant (a necessarily subjective cutoff value relevant

only to this data set; Table 3). We find that the first two axes are

typically divided between classical (chl and SST, as well as chl

frontal gradients; PC1), and mesoscale features (typically FSLE

and EKE, and SST frontal gradients for subprovince 3; PC2)

(Figure 5b–d arrow plots), while OW does not explain any axis

(Table 3). Chl and chl frontal gradients are highly correlated

(r = 0.92), explaining the alignment of this mesoscale feature with

classical features on the first axis. FSLE and EKE are also highly

negatively correlated for each subprovince (Figure 5b–d arrow

plots). PC1 for subprovinces 1, 2, and 3 are significantly correlated

(p,0.001), with relatively high correlation coefficients (p,0.05,

r = 0.61 to 0.8; Table S2), indicating that their classical features

vary in the same manner. PC2 for subprovinces 1 and 2 are also

significantly correlated (p,0.05, r = 0.58; Table S2).

Three axes are retained for subprovinces 4 and 5, as the

eigenvalues for their PC3 were .1 (Figure 5e, f). The classical and

mesoscale features are not as clearly divided by the retained axes

for subprovinces 4 and 5 as they are for the first three

subprovinces. The first axis for subprovince 4 is primarily

explained by chl and chl frontal gradients and the second axis is

explained by FSLE and EKE, similar to subprovinces 1–3, but the

third axis is primarily explained by SST (Table 3). Subprovince 5

is even more different as the first and second axes are explained by

a mix of classical and mesoscale features: PC1 is primarily

explained by chl, chl frontal gradients and EKE, PC2 is explained

by SST and SST frontal gradients, and PC3 is explained by FSLE.

The PC time series represent synthetic indices of oceanographic

dynamics for each full subprovince (Figure 5b–f, right panels).

After removing the dominant seasonal cycle, power spectra reveal

that low-frequency (interannual) variability dominates PC1 for all

subprovinces (Figure 6a) as well as PC2 for all subprovinces except

subprovince 5 (Figure 6b). Subprovince 5 has distinctive spectral

characteristics, with no high-frequency peak for PC1 (Figure 6a)

and no decrease in energy at high frequencies for PC2. Instead,

PC2 has a strong peak at a period of 8 months (Figure 6b).

Subprovince 5 also has a strong low-frequency signal for PC3, but

no significant signals are found for PC3 of subprovince 4

(Figure 6c).

We find six out of 48 significant correlations between the

retained PCs and large-scale climate indices (r = 20.2 to 0.27 with

p-value ,0.05). However, this could be due to multiple testing of

time series. Since the correlations were low, we did not correct the

p-values for multiple testing and we consider that there is no major

links between the PCA axes and climatic indices. Lagged

correlations between the PCs and the climate indices were also

considered but did not render stronger relationships (Table S2).

Discussion

Our results synthetically characterize the hydrodynamics of the

Mediterranean and Black Seas, complex and variable oceanic

systems that function on multiple temporal and spatial scales [47].

Mesoscale features in the Mediterranean are an important source

of variability [48], and we find that they are an important

component to include in this bioregionalization. Indeed, the

omission of mesoscale features and their temporal variability in

such spatial analyses are misleading, as already suggested by [20],

who promoted the use of dynamical biogeochemical subprovinces

instead of their static equivalents. Classical features here are stable

and are clearly representative of the biogeochemistry of the

subprovince that they describe. Though highly variable, mesoscale

features enable us to further discriminate additional regions. This

is especially useful in the open ocean, which appears homogenous

when considering only classical variables.

Overall, the biogeochemical subprovinces defined for the full

array of variables (Figure 3c) can be organized into four broad

categories that compare relatively well with previous studies.

Subprovinces 1 and 2 represent the open ocean regions of the

southern basin. These two subprovinces are highly correlated in

Figure 6. Spectral energy plots. Spectral energy plots for (a) principal component (PC) 1, (b) PC2, and (c) PC3 as retained for the different
biogeochemical subprovinces computed for 101 months, having removed the seasonal signal. Peaks are indicated for all PCs at interannual
frequencies. The error bar in the bottom-left indicates the 95% significance level.
doi:10.1371/journal.pone.0111251.g006
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terms of their PC1 and PC2 (Table S2), indicating that both their

classical and mesoscale features vary similarly and appear to differ

mostly in their bathymetry. Subprovince 3 is representative of

regions of particularly high mesoscale activity. This is clearly the

case for the Alboran Sea, the Algerian Basin, the Strait of Sicily

and the Ierapetra, Rhodes and Mersa-Matrouh gyres, as

confirmed in other studies (e.g., [8,22,37,47,49,50]). Mesoscale

activity is also particularly high for the phenological regions in the

Alboran Sea and the Strait of Sicily found by [8], who defined

seven regions based on satellite ocean color. They found no

apparent bloom pattern in these regions, which coincide primarily

with full subprovince 3 (characterized by highly variable chl;

Table 2). Subprovince 4 represents the coastal regions with both

narrow and wide continental shelves. Finally, subprovince 5

represents oceanic gyres at high latitude, including the Lion Gyre,

though the South Adriatic Gyre [50] is not included in this

subprovince, as might be expected. The biodiversity hot spots

identified by [7] using exploited fish distributions also show good

spatial agreement with our subprovinces. They highlight the

importance of the western Mediterranean shelves, the Alboran

Sea, the Adriatic Sea, and the Levantine Basin, which coincide

with our coastal and high mesoscale activity subprovinces. These

subprovinces are characterized by high and highly variable chl, an

indicator of primary productivity [51], which may be associated

with the high ecological productivity and biodiversity here [52].

The coastal regions and the large oceanic gyres revealed in this

study are consistent with the subdivisions found by [31] using only

dynamical criteria, e.g., advection and dispersion schemes due to

surface currents. This suggests that the horizontal circulation

potentially explains a significant part of the basin-scale distribution

of oceanic tracers such as SST and chl. The mesoscale variability

of the oceanic circulation also controls their smaller-scale patterns

(through the formation of SST and chl frontal gradients) and is

thus responsible for the lower stability of the boundaries in regions

where mesoscale features are particularly ubiquitous.

The synthetic indices developed in this study via PCA show

temporal variability at seasonal and interannual time scales. The

seasonal signal of oceanographic conditions in the Mediterranean

that is the dominant signal in all PCs is generally related to

changes of heat and momentum fluxes, which also vary at seasonal

time scales driven by synoptic weather patterns [53]. However,

interannual variability, as shown to be strong for PC1 and 2, is

often more complex and puzzling. Our attempt to explain the

interannual signal that we found in PCs 1 and 2 showed no clear

relationship to large-scale climate indices, which supposedly

represent external atmospheric forcing over the basin [45,46].

Though it is possible that our indices are not sufficiently long (101

months) to reveal any relationship to low-frequency signals, other

potential drivers may help explain the interannual variability that

we find. Among these are internal nonlinear ocean dynamics (e.g.,

unstable mesoscale eddy fields) that alter water properties and

movements, the region and timing of deep-water formation, the

extreme events and long-term variability of atmospheric forcing

(e.g., winds, solar radiation, precipitation) that impact both the

surface and sub-surface circulation, or interannual variations in

the Gibraltar inflow [50].

The oceanographic variables defined here were included to

capture as much of the ocean variability and dynamics as possible;

however, our analysis indicated that some variables may be

redundant. As noted, chl and chl frontal gradients are highly

positively correlated (r = 0.92) and are almost always aligned with

the same axis (Figure 5b–d arrow plots, Table S1, Table 3). For

PC2, FSLE and EKE could also be redundant in that they are

consistently aligned with the same axis for subprovinces 1–4 and

are significantly negatively correlated (r = 20.53, p,0.001). This

is consistent with the compact relationship (power-law) found

between FSLE and EKE in the global ocean [54], although it

appears less robust in the Mediterranean [55]. OW does not

appear to be a useful variable to include in this bioregionalization,

as it does not significantly contribute to the explanation of any axis

(Table 3). This may be because OW is related to EKE and FSLE

[55] and may be redundant in this analysis. In addition, it may

exist at a lower spatial resolution than that detected by the 5%

threshold level. At the 1% threshold level, it appears that OW may

play a more important role in the bioregionalization (Figure S2b, c

in File S1). Finally, frontal structures themselves indicate the

boundaries between two different water masses [56] and between

macro- or meso-provinces [33], making these variables potentially

redundant to a partitioning analysis. However, this is not obvious a
priori, as there is clearly a complex relationship between chl and

chl fronts as indicated by their high correlation. We find that the

contribution of SST and chl fronts is not strong or consistent in the

Mediterranean or Black Seas.

In this study, we characterize the biogeographical conditions of

the Mediterranean Sea in a simple and synthetic approach. We

develop objective biogeochemical subprovinces that agree with

spatial characterizations made in previous studies and are

specifically adapted to be useful as geographic reference points

in a management context. Our results highlight the importance of

mesoscale features to help delineate further regions in the

seemingly homogeneous open ocean. We suggest that these

subprovinces could be relevant for defining pelagic habitats for

marine protected areas that are dynamic, yet predictable enough

to be important for foraging and breeding aggregations [57]. In

addition, the synthetic indices developed here represent a baseline

from which variability and future changes of important classical

and mesoscale features can be assessed. An understanding of the

fundamental ocean processes of these heavily-impacted bodies of

water has important implications for climatic studies, anthropo-

genic impact mitigation, and marine resources management.
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Supporting Information

File S1 Supporting figures and tables. Figure S1 in File S1:

Boxplots of the bootstrapped (1000 times) between-clusters sum of

squares divided by the total sum of squares (i.e., y-axis represents

the proportion of the explained sum of squares) for k between 2

and 30 for k-means analyses performed on the (a) ‘‘classical’’, (b)

‘‘mesoscale’’ and (c) ‘‘full’’ multivariate arrays. To identify the

most appropriate k for each multivariate array, we define

thresholds whereby the explained sum of squares for each

additional k increases by less than 5% (red line) or less than 1%

(blue line). Table S1 in File S1: The eigenvalues of each axis for

the ‘‘full’’ multivariate array for biogeochemical subprovinces

defined by the 5% threshold. To determine which principal

components (PC) to retain, we used the common cutoff of

eigenvalues $1. Figure S2 in File S1: Biogeochemical subpro-

vinces of the Mediterranean Sea for the (a) ‘‘classical’’, (b)

‘‘mesoscale’’, and (c) ‘‘full’’ multivariate arrays using a 1%

threshold on the explained sum of squares to define the optimal

number of subprovinces (see text). Figure S3 in File S1: Spatial

stability of the borders of biogeochemical subprovinces for the (a)
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classical, (b) mesoscale, and (c) full multivariate arrays. K-means

analysis, using the k found in the time-averaged analyses (Table 1),

are performed on the multivariate arrays at monthly time steps for

the 101 months of the data set and using a 1% threshold on the

explained sum of squares to define the optimal number of

subprovinces (see text). Spatial stability is represented as the

percentage of time that a boundary of the biogeochemical

subprovinces is found at a particular pixel over the 101 months

of the data set. Red colors indicate stable borders. Table S2 in File

S1: Correlation coefficients between the retained principal

components (PC) for each of the full biogeochemical subprovinces

and the monthly anomalies of the large-scale climate indices:

North Atlantic Oscillation (NAO), the East Atlantic pattern (EA),

the East Atlantic-West Russia pattern (EAWR), and the

Scandinavian pattern (SCAND). Only correlations above the

95% significance level are included. Table S3 in File S1:

Correlation coefficients between the retained principal compo-

nents (PC) for each of the full biogeochemical subprovinces.

Significance levels are represented as p,0.001 ‘***’, p,0.05 ‘*’,

not significant ‘ ’.
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15. Gabrié C, Lagabrielle E, Bissery C, Crochelet E, Meola B, et al. (2012) The
status of marine protected areas in the Mediterranean Sea. MedPAN and RAC/

SPA. 256 p. Available: http://www.medpan.org/documents/10180/0/The+
Status+of+the+Marine+Protected+Areas+in+the+Mediterranean+Sea+2012/
069bb5c4-ce3f-4046-82cf-f72dbae29328. Accessed 2014 October 7.

16. Coll M, Cury P, Azzurro E, Bariche M, Bayadas G, et al. (2013) The scientific

strategy needed to promote a regional ecosystem-based approach to fisheries in
the Mediterranean and Black Seas. Rev Fish Biol Fish 23: 415–434.

17. Vierros M, Bianchi G, Skjoldal HR (2008) The Ecosystem approach of the

convention on biological diversity. In: Bianchi G, Skjoldal, editors. The
Ecosystem approach to fisheries. pp. 39–46.

18. Edgar GJ, Moverley J, Barrett NS, Peters D, Reed C (1997) The conservation-

related benefits of a systematic marine biological sampling programme: the
Tasmanian reef bioregionalisation as a case study. Biol Conserv 79: 227–240.

19. Grant S, Constable A, Raymond B, Doust S (2006) Bioregionalisation of the

Southern Ocean: report of experts workshop (Hobart, September 2006). Sydney:

WWF-Australia and ACE CRC. 44 p. Available: http://awsassets.wwf.org.au/

downloads/mo007_bioregionalisation_of_the_southern_ocean_8sep06.pdf. Ac-

cessed 2014 October 7.

20. Reygondeau G, Longhurst A, Martinez E, Beaugrand G, Antoine D, et al.

(2013) Dynamic biogeochemical provinces in the global ocean. Global

Biogeochem Cycles 27: 1046–1058.

21. Kavanaugh MT, Hales B, Saraceno M, Spitz YH, White AE, et al. (2014)

Hierarchical and dynamic seascapes: A quantitative framework for scaling

pelagic biogeochemistry and ecology. Prog Oceanogr 120: 291–304.

22. Millot C, Taupier-Letage I (2005) Circulation in the Mediterranean Sea. In:

Saliot A, editor, The Mediterranean Sea, Handbook of Environmental

Chemistry. Berlin Heidelberg: Springer, pp. 29–66.

23. Giakoumi S, Sini M, Gerovasileiou V, Mazor T, Beher J, et al. (2013)

Ecoregion-based conservation planning in the Mediterranean: dealing with

large-scale heterogeneity. PLoS One 8: e76449. doi:10.1371/journal.-

pone.0076449.

24. Millot C (1991) Mesoscale and seasonal variabilities of the circulation in the

western Mediterranean. Dyn Atmospheres Oceans 15: 179–214. doi:10.1016/

0377-0265(91)90020-G.

25. Millot C (1999) Circulation in the Western Mediterranean Sea. J Mar Syst 20:

423–442. doi:10.1016/S0924-7963(98)00078-5.

26. Robinson AR, Malanotte-Rizzoli P, Hecht A, Michelato A, Roether W, et al.

(1992) General circulation of the Eastern Mediterranean. Earth-Science Reviews

32: 285–309. doi:10.1016/0012-8252(92)90002-B.

27. Sherman K, Alexander LM (1989) Biomass yields and geography of large

marine ecosystems. Boulder: Westview Press. 493 p.

28. Sherman K, Sissenwine M, Christensen V, Duda A, Hempel G (2005) A global

movement toward an ecosystem approach to management of marine resources:

Politics and socio-economics of ecosystem-based management of marine

resources. Mar Ecol Prog Ser 300: 275–279.

29. Lehahn Y, d’Ovidio F, Levy M, Heifetz E (2007) Stirring of the northeast

Atlantic spring bloom: A Lagrangian analysis based on multisatellite data.

J Geophys Res 112: C08005. doi:10.1029/2006JC003927.

30. Rossi V, Lopez C, Sudre J, Hernandez-Garcia E, Garcon V (2008) Comparative

study of mixing and biological activity of the Benguela and Canary upwelling

systems. Geophys Res Lett 35: L11602. doi:10.1029/2008GL033610.
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and interannual variability in the Mediterranean Sea using a numerical ocean

model. Prog Oceanogr 66: 321–340.

48. Larnicol G, Ayoub N, Le Traon PY (2002) Major changes in Mediterranean Sea

level variability from 7 years of TOPEX/Poseidon and ERS-1/2 data. J Mar

Syst 33: 63–89.

49. Malanotte-Rizzoli P, Manca BB, d’Alcalà MR, Theocharis A, Bergamasco A, et
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