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Abstract
Pigments are an essential part of everyday life on Earth with rapidly growing industrial and biomedical applications. Syn-
thetic pigments account for a major portion of these pigments that in turn have deleterious effects on public health and 
environment. Such drawbacks of synthetic pigments have shifted the trend to use natural pigments that are considered as 
the best alternative to synthetic pigments due to their significant properties. Natural pigments from microorganisms are of 
great interest due to their broader applications in the pharmaceutical, food, and textile industry with increasing demand 
among the consumers opting for natural pigments. To fulfill the market demand of natural pigments new sources should be 
explored. Cold-adapted bacteria and fungi in the cryosphere produce a variety of pigments as a protective strategy against 
ecological stresses such as low temperature, oxidative stresses, and ultraviolet radiation making them a potential source for 
natural pigment production. This review highlights the protective strategies and pigment production by cold-adapted bacteria 
and fungi, their industrial and biomedical applications, condition optimization for maximum pigment extraction as well as 
the challenges facing in the exploitation of cryospheric microorganisms for pigment extraction that hopefully will provide 
valuable information, direction, and progress in forthcoming studies.
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Introduction

Think for a while, without hemoglobin how oxygen mol-
ecules can be carried within a living body or without chlo-
rophyll and other necessary pigments; how plants and other 
primary producers could prepare their food? Surely impos-
sible. It shows life on this planet depends on pigments. Pig-
ments have been used as coloring agents since the prehis-
toric era. Sir William Henry Perkin prepared the earliest 
synthetic dye in 1856 named mauvine. The development of 
mauvine initiated a historical revolution of synthetic dyes 
(Walford 1980). Initially, the synthetic dyes gained much 
attraction due to several characteristics such as easy to 
develop, economical, no undesirable flavors, excellent col-
oring properties, and needed in a small amount to use. How-
ever, most of the synthetic dyes used had never been tested 
for their toxic nature for health and adverse effects on the 
environment (Downham and Collins 2000). In general, syn-
thetic dyes are made up of chemical compounds composed 
of lead, mercury, copper, chromium, sodium chloride, ben-
zene, and toluene that are harmful to human health. Several 
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synthetic colorants previously permitted by the Food and 
Drug Administration (FDA) to use in medicines, food, and 
cosmetics development were later found carcinogenic (Rao 
et al. 2017). Some of these synthetically-derived colorants 
banned by the FDA include ethyl acrylate, benzophenone, 
eugenyl methyl ether (methyl eugenol), pulegone, myrcene, 
and pyridine. Similarly, several synthetic dyes like cochineal 
red, tartrazine, and sunset yellow initiate allergies directly 
or indirectly by combining with other colorants. The Center 
for Science in the Public Interest in Washington appealed to 
the FDA in 2008 to disallow synthetic food colorants since 
of their association with behavioral harms among children 
(Potera 2010). Most synthetic dyes previously used for vari-
ous purposes are now quit due to apparent hazards such as 
carbon black (extensively used as printing ink pigment) 
a potential carcinogen and benzidine a causative agent of 
bowel cancer (Rao et al. 2017). Moreover, the unethical 
release of untreated dye effluents from industries persists 
for a longer time due to higher stability. Due to the afore-
mentioned drawbacks of synthetic dyes, global demand for 
natural pigments has been increased (Manikprabhu and Lin-
gappa 2013). Being aware of the adverse effects causing by 
synthetic dyes, now consumers prefer natural ingredients in 
their food instead of artificial (Downham and Collins 2000). 
This has raised the demand for naturally derived pigments.

The use of natural colorants is believed to be relatively 
safe, since their nature is biodegradable, harmless, and non-
carcinogenic (Cristea and Vilarem 2006). Globally, the 
trend is shifting towards the consumption of biodegradable 
and environmentally friendly commodities; therefore, the 
demand for natural colorants is increasing in pharmaceuti-
cal, dyestuff, foodstuff, and cosmetics. Waste materials that 
are environmental pollutants have been used for microbial 
pigment production, which made this process more sustain-
able (Joshi et al. 2003; Kamla et al. 2012). Natural biocol-
orants that are an alternative to synthetic pigments could 
be obtained from plants and microorganisms. Natural pig-
ments obtained from microbes are more ideal over plants 
due to the solubility, and stability of pigments and the easy 
availability of microbes for culturing (Rao et al. 2017). The 
fast growth of microorganisms in inexpensive medium, 
easy downstream processing, and their constant cultiva-
tion independent of the seasonal variations are advantages 
of microbes over plants as a source of pigment production 
(Manikprabhu and Lingappa 2013). Moreover, the use of 
plants on a large scale can cause damage to the precious spe-
cies; therefore, the practice is not sustainable (Downham and 
Collins 2000). Additionally, the yearly growth rate of natural 
dyes has been projected 5–10% compared to synthetically 
derived dyes having a lower growth rate of 3–5% (Parmar 
and Phutela 2015). Pigments produced by microorganisms 
are not merely colors but consist of diverse chemical com-
ponents having multidimensional biological activities (Kim 

2013). Among microorganisms, bacteria, fungi, and micro-
algae offer an alternate source for natural pigments (Joshi 
et al. 2003; Choi et al. 2015; Rao et al. 2017; Pandey et al. 
2018; Ramesh et al. 2019).

Earth’s cryosphere has been thought too hostile to har-
bor life for a long time. However, being extreme ecologi-
cal conditions, diverse microbial communities exist in the 
glacial ecosystem (Anesio et al. 2017; Hassan et al. 2018; 
Rafiq et al. 2019) that maintain active biochemical routes 
(Anesio and Laybourn-Parry 2012). The microbial com-
munities inhabiting the cryosphere are constantly exposed 
to several stress conditions such as extremely low tempera-
tures, oligotrophic conditions, freeze–thaw cycles, ultravio-
let (UV) radiations, and higher salinity. To cope with these 
hostile conditions, microorganisms adapt several protective 
strategies including morphological alteration and produc-
tion of various metabolites. Most of these metabolites have 
important biotechnological and industrial applications (Cav-
icchioli et al. 2011). Among these metabolites, pigments 
are charismatic traits of these cold-adapted microorganisms 
that are studied to exploit for several industrial applications. 
Pigments production mostly occurs within cytoplasm as a 
responsive agent to hostile ecological conditions present-
ing several ecological functions (Pagano and Dhar 2015). 
Physiochemically extreme environments such as the cryo-
sphere provide a suitable setup to microorganisms for pig-
ment production with unique qualities and applications. In 
this review, pigments produced by cold-adapted bacteria and 
fungi in the cryosphere and their potential applications in 
various industries are discussed. Moreover, condition opti-
mization for maximum pigment yield as well as the chal-
lenges facing in the exploitation of cryospheric microorgan-
isms for pigment extraction are discussed.

Challenges in cryosphere and microbial 
adaptation mechanisms

Cryosphere has been dominated and colonized by diverse 
microorganisms collectively termed as psychrophiles or 
cold-adapted microorganisms. Life spin and activity of 
several microorganisms significantly reduce below 0 °C 
(Tribelli and López 2018). However, psychrophilic and psy-
chrotrophic microorganisms withstand the hostile environ-
ments of cryosphere and adapt to grow below 5 °C (close 
to zero). Low temperature reduces thermal energy with 
increased viscosity of solvents and solubility of gasses such 
as oxygen molecules and reactive oxygen species (ROS), 
reduced solubility of nutrients and solutes, decreased diffu-
sion as well as amplify desiccation, osmotic stress, and ice 
development. Moreover, life in the cryosphere experience 
several environmental stresses including high salinity, low 
availability of nutrients, oxidative stress, low water activity, 
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and freeze–thaw cycles. High-pressure stress is subjected 
to microbial population inhabiting in deep-sea and sub-
glacial habitats. Additionally, psychrophilic microbes are 
exposed to extremes of light, exposure to UV radiations, 
and bright light at high elevation and low light in frosted 
lakes, permafrost, and deeper ice sheets. To cope with 
these life-endanger challenges microorganisms adapt and 
develop certain sophisticated strategies (Margesin and Col-
lins 2019; Collins and Margesin 2019). Previously, several 
microbiological, physiological, biochemical, biophysical, 
and molecular-based approaches have been adapted to iden-
tify biogeographical distribution, physiological adaptation, 
diversity, and ecological role of psychrophiles. However, 
recent advances in ‘omics’ technologies such as genom-
ics, metagenomics, transcriptomics, and proteomics have 
uncovered novel adaptation mechanisms and environmental 
functions of microorganisms in the cryosphere (Singh et al. 
2014; Barauna et al. 2017; Tribelli and Lopez 2018). Several 
mechanisms adapted by microorganisms to cope with the 
hostile environment of cryosphere are shown in Fig. 1.

At low temperatures, psychrophiles alter their cellular 
envelope and components to provide shape, support, and 
protection to cells; regulate nutrient uptake and solute trans-
port; and participate in cell division, adhesion, signaling, 
and sensing. This alteration is against the low temperature 
that reduces membrane permeability, fluidity, diffusion 
rates, and cause cell rupturing due to freeze–thaw cycles 
and ice formation. Psychrophiles modify the composition 
of fatty acid in lipid bilayer present in the cell membranes 
and become homeoviscous (D’Amico et al. 2001; Siddiqui 

et al. 2013). Contents of unsaturated fatty acids, short-chain, 
methyl branched, and/or cis-isomeric can manage the low 
temperature stress (Hassan et al. 2020) by lowering the 
liquid phase phospholipid bilayer to gel phase and sustain 
their function. For this adaptation, upregulation and over-
representation of genes occur that encode proteins involved 
in membrane biogenesis and biosynthesis and desaturation 
of fatty acids (desaturases that also guard against ROS), 
biosynthesis of branched-chain fatty acids (KAS-II, KAS-
III) and cis-isomerization (fatty acid cis/trans isomerases) 
(Medigue et al. 2005; De Maayer et al. 2014; He et al. 2015; 
Goordial et al. 2016). Furthermore, psychrophiles upregu-
late the membrane transport proteins that could counter the 
reduced diffusion rates at lower temperatures (Bakermans 
et al. 2007; De Maayer et al. 2014). Long-chain polyun-
saturated fatty acids (LC-PUFAs) (Yoshida et al. 2016) 
also shield the membrane by generating hydrophobic edges 
between the lipid bilayers, which prevents the entrance of 
ROS augmented at low temperatures. Polyunsaturated fatty 
acids (PUFAs) can act as chaperons for proteins in the mem-
brane, which could be functional in cell division and the 
efflux process (Okuyama et al. 2008; Yoshida et al. 2016). 
Turk et al. (2011) reported higher membrane fluidity in psy-
chrotolerant yeast Rhodosporidium diobovatum suggesting 
that LC-PUFAs maintain the integrity and functionality of 
the plasma membrane. Similarly, psychrophiles upregulate 
certain genes encoding peptidoglycan biosynthesis and 
thicken their peptidoglycan (Mykytczuk et al. 2013), which 
can protect psychrophiles against freeze–thaw cycle, ice 
formation, and osmotic pressure. The lipopolysaccharides 

Fig. 1  Common strategies adapted by psychrophiles to cope with low temperatures and other stresses in the cryosphere
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(LPS) layer in psychrophiles are shortened in length lack-
ing the O-chain component (Corsaro et al. 2017) that may 
enhance the flexibility and stability of the outer membrane. 
Genes encoding for the synthesis of outer membrane com-
ponents, proteins, and LPS (largely glycosyl transferases) 
was reported upregulated at lower temperatures (Frank 
et al. 2011; De Maayer et al. 2014). Benforte et al. (2018) 
reported that how a mutation in the glycosyl transferase 
gene (wapH) reduced the growth pattern of the Antarctic 
bacterium at lower temperatures. Several psychrophiles 
have higher genome contents encoding for compatible sol-
ute biosynthesis and uptake genes that could accumulate 
compatible solutes in molar concentrations, with glycine 
betaine, glycerol, mannitol, trehalose, sarcosine, sucrose, 
and sorbitol (Mykytczuk et al. 2013; Ghobakhlou et al. 
2015; Goordial et al. 2016) that could restore osmotic bal-
ance and cell shrinkage. Fungi synthesize certain compatible 
solutes to cope with osmotic pressure and dehydration in 
the cryosphere such as mannitol that acts as a cryoprotec-
tive (Feofilova et al. 1994). Psychrophiles produce antifreeze 
proteins (AFPs) that bind to ice and inhibit ice development 
and recrystallization. AFPs preserve the liquid present in 
the close vicinity of cells (Raymond et al. 2008). These 
AFPs also stabilize cell membranes, structural integrity, 
and position the cell for increase contact towards nutrients 
and oxygen in the phototrophic region (Lorv et al. 2014; 
Bar Dolev et al. 2016; Voets 2017). Another protein called 
ice-nucleating proteins (INPs) reported in psychrophiles 
prevent cryoinjury of the cell by inhibiting intracellular ice 
formation (Lorv et al. 2014). Cold-adapted bacteria produce 
a high concentration of extracellular polymeric substances 
(EPS) at low temperatures (Mykytczuk et al. 2013; Caruso 
et al. 2018) which could form a protective shell around the 
cells. EPS produced by psychrophilic microorganisms could 
act as osmoprotective, ROS scavenging, and cryoprotective 
(Ewert and Deming 2013; Deming and Young 2017). Along 
with low temperature adaptation, biosurfactant (glycolipid) 
reported from Antarctic yeast showed ice recrystallization 
inhibition activity (Kitamoto et al. 2001), also such biosur-
factants act as osmolytes (Perfumo et al. 2018). The main 
adverse effect of low temperature is on the cellular reaction 
rate of mesophilic microorganisms that either halts their cel-
lular growth or cause death due to cellular lysis. However, 
psychrophiles produce enzymes that perform high catalytic 
activities in cold environments, therefore, optimally grow 
at low temperatures (Santiago et al. 2016; Collins and Ger-
day 2017). Psychrophiles overcome the obstacle of reduced 
enzyme activity by developing a changed system for the 
transportation of nutrients and waste products; altered cel-
lular processes of transcription and translation, and cell divi-
sion cycle, and decrease the fluidity of membrane to grow in 
low temperature (D’Amico et al. 2006). Cold-adapted organ-
isms produce chaperones that efficiently fold proteins and 

DNA/RNA and stabilize the secondary structures of these 
molecules at low temperatures. Psychrophiles upregulate the 
production of protein and DNA/RNA chaperones as cold 
acclimation proteins (Lim et al. 2000). Recently by adapt-
ing omics approaches have discovered various traits that 
are common to psychrophiles (Tribelli and Lopez 2018). 
One such trait is the metabolic adjustment at sub-zero tem-
perature that takes place in psychrophiles such as the down-
regulation of primary metabolic pathways and replacement 
with alternate secondary pathways and accumulations and 
digestion of spare compounds. Cellular metabolic routes like 
glycolysis, tricarboxylic acid cycle, electron transport chain, 
and pentose phosphate pathway get downregulated in cold-
adapted microorganisms (Medigue et al. 2005; Piette et al. 
2011; Tribelli et al. 2015). Such metabolic reprogramming 
could protect oxidative stress and conserve energy for long-
term survival. Another important protective mechanism 
adapted by psychrophilic microorganisms is the production 
of pigments. Psychrophiles reported from ice-cores and gla-
ciers were capable to produce pigments (Shen et al. 2018). 
Melanin pigment reported in fungi protects stresses such as 
ionizing radiation, desiccation, oxidizing agents, and UV 
radiations (Butler and Day 1998; Gorbushina 2003). Ant-
arctic fungal species having melanin were reported, which 
were resistant to UV radiation (Hughes et al. 2003). Sev-
eral fungal strains produce mycosporines that absorb UV 
radiations (Sommaruga et al. 2004). Similarly, psychrophilic 
bacteria produce carotenoid as a protection mechanism in 
cryospheric environments (Vila et al. 2019). Moreover, these 
pigments also play role in photoprotection (in combination 
with other molecules like mycosporine and scytonemin like 
amino acids, and act as a protector against intense light range 
and UV irradiation), act as cryoprotectants, antioxidants, 
and antimicrobials (Dieser et al. 2010; Pandey et al. 2018).

Role of pigments in cold‑adapted microbes

In general, pigments are secondary metabolites produced by 
microbes and are not necessarily produced by all kinds of 
microorganisms. Cold-adapted bacteria and fungi inhabit-
ing cryospheric environments produce a diverse range of 
pigments (Table 1). The pigment production by microbes 
in extremely low temperature environments is a mechanism 
to survive ecological stresses. They consume pigment mol-
ecules as an energy source (Madigan et al. 2012), for the 
process of photosynthesis (Siefirmann-Harms 1987), as a 
confrontation tool against stress (Martin-Cerezo et al. 2015), 
oxidants, extreme temperature and desiccation (Wada et al. 
2013), and for safety against UV irradiation (Becker-Hapak 
et al. 1997). Moreover, pigments also act as an antimicro-
bial agent against other bacteria (Suresh et al. 2015) and 
sometimes act as a shield to protect the cell against natural 
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antimicrobial compounds secreted by other bacteria (van 
Duin et al. 2002). High diversity of pigment molecules are 
reported from microorganisms inhabiting in glaciers (Foght 
et al. 2004), ice cores (Zhang et al. 2008), and marine sur-
face waters (Agogué et al. 2005) which shows that this pig-
ment production is essential to cope with the environmental 
stresses in the cryosphere. Such as carotenoid modulate 
the cellular membrane fluidity of bacteria as an adaptive 
strategy in the cryosphere. Polar microbial communities are 
concurrently exposed to UV radiations, highly active photo-
synthetic radiations, and extremely low temperatures which 
make them more prone to photo-damage (Roos and Vincent 
1998). Therefore, the adaptation of protective strategies by 
microorganisms is crucial in these habitats. In such harsh 
environmental conditions, pigment production efficiently 
decreases photo-damage and could provide resources for 
osmoregulation, thus provide tolerance against salinity, des-
iccation, and freeze–thaw cycles and prevent serious dam-
ages such as inhibition of metabolic processes and cellular 
repair mechanisms (Mueller et al. 2005). Depend upon the 
composition and concentration of pigments, the production 
could visibly provide coloration to snow such as green due 
to chlorophylls, various yellow shades due to xantophylls, 
and orange to red due to carotenoids (Anesio et al. 2017).

Pigments produced by cold‑adapted 
bacteria and fungi

Carotenoid

Carotenoids are the main natural pigments widely produced 
by plants and microorganisms and initially were reported 
by H.W.F Wackenroder (Wackenroder 1831). Currently, 
carotenoids signify the largest and highly diverse known 
group of natural pigments, and 1183 carotenoid structures 
are compiled from 702 source organisms by Carotenoid 
Database Japan (https ://carot enoid db.jp). Carotenoid is the 
family of tetraterpenoids consists of an extensively conju-
gated polyene, which absorbs blue light and appears from 
yellow to red in shade (Fraser and Bramley 2004). The struc-
ture of carotenoids acquires the form of a polyene hydro-
carbon chain that is occasionally terminated by rings with 
or without extra oxygen atoms. Carotenoids are classified 
into carotenes, which are hydrocarbons (torulene, lycopene, 
and α- to ε-carotenes) or xanthophylls that possess keto, 
hydroxyl, and/or carboxyl groups (lutein, zeaxanthin, toru-
larhodin, and astaxanthin,) (Table 2). Naturally, carotenoids 
are extensively produced by plants and microorganisms as 
a photo-protectants. The color of carotenoids ranging from 
yellow to deep red depending on the structure (Alija et al. 
2005; Rao and Rao 2007). The maximum absorption capac-
ity of carotenoids is ranged from 440 to 520 nm, having a 

stronger molar absorption coefficient (ca.  105 L  mol−1 cm−1) 
(Marizcurrena et al. 2019). Cryospheric habitats especially 
glacial environment provide suitable conditions for pigment 
production by microorganisms. These pigments also protect 
the bacterial cells either screening or absorbing UV radia-
tion (Dieser et al. 2010). Carotenoids safeguard microbial 
cells from photo-oxidative injury and other environmental 
stresses at low temperatures either by inhibiting the ROS 
generation through thermal degeneracy of the extra energy 
or satisfying the excited states of singlet oxygen and chloro-
phyll (Tian and Hua 2010). Moreover, these pigments play 
a crucial role in the physiological plasticity of Antarctic 
microorganisms, efficiently respond to a lower temperature 
and freeze–thaw cycles (Singh et al. 2017). Additionally, 
carotenoids play a role in cell differentiation and regulation 
during cell cycles.

Several studies reported carotenoid producing bacteria 
and fungi from low temperature environments (Table 1). 
Vila et al. (2019) reported 30 bacterial strains capable of 
carotenoids production from Fildes Peninsula, King George 
Island, Antarctica. Kim et al. (2015) isolated carotenoid pro-
ducing Planococcus faecalis from stools of Antarctic pen-
guins. Carotenoid production was reported in heterotrophic 
bacteria from Antarctica as a strategic tool against ecologi-
cal stresses (Dieser et al. 2010). The accumulation of C-50 
carotenoid (Bacterioruberin and its glycosylated derivatives) 
observed in psychrotrophic Arthrobacter agilis from an Ant-
arctic sea ice sample. This accumulation of pigments might 
be responsible for the regulation of cellular membrane fluid-
ity at low temperatures (Fong et al. 2001). Moreover, sev-
eral polar and non-polar carotenoid pigments produced by 
Antarctic strains of Sphingobacterium antarcticus and Mic-
rococcus roseus (Chattopadhyay and Jagannadham 2001). 
Silva et al. (2019) reported carotenoid producing bacterial 
strains isolated from the Antarctic continent. Three differ-
ent carotenoids such as zeaxanthin, β-cryptoxanthin, and 
β-carotene were reported from Antarctic bacterium Sphingo-
bacterium antarcticus. Similarly, carotenoid producing cold-
adapted Penicillium sp was reported in the Himalaya region 
of India (Pandey et al. 2018). Several carotenoid-producing 
yeasts were reported in Italian alpine glaciers (Amaretti et al. 
2014). Vaz et al. (2011) reported multiple yeasts isolates 
from Antarctica capable of carotenoid production.

Prodigiosin

Prodigiosin is a red linear tripyrrole pigment primarily 
reported from Serratia marcescens (Boger and Patel 1987). 
Prodigiosin was named after its extraction from Bacillus 
prodigious later given the name of S. marcescens (Gerber 
1975). Prodigiosin produces only in later growth stages of 
bacteria (Harris et al. 2004). Biosynthesis of prodigiosin 
is controlled by quorum sensing (Thomson et al. 2000). 

https://carotenoiddb.jp
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Certain proposed eco-physiological roles of prodigiosin 
are; air diaspora of bacteria (Burger and Bennett 1985), 
metabolic precursor for NAD(P)H or proline (Hood et al. 
1992), light energy storage (Ryazantseva et al. 1995), ion 
exchange (Seganish and Davis 2005), energy spilling func-
tion in S. marcescens (Haddix et al. 2008) and acts as an 
antimicrobial agent to provide a competitive advantage 
within communities (Starič et al. 2010). Borić et al. (2011) 
studied that prodigiosin is protective against UV radiation 
in Vibrio sp. DSM 14379. Prodigiosin was extracted from 
psychrotrophic bacterial strain Janthinobacterium lividum 
isolated from Alaskan soil (Schloss et al. 2010). Shen et al. 
(2018) reported several red pigment-producing bacterial 
strains inside deep ice core collected from the Yuzhufeng 
Glacier, Tibetan Plateau. Centurion et al. (2019) reported 
genes in Antarctic volcanic island sediments responsible 
for the biosynthesis of 3-oxoacyl-[acyl-carrying protein] 
reductase (K00059) enzyme that belongs to the fatty acid 
synthesis pathway type II associated to the production of 
prodigiosin.

Melanin

Melanin is dark in color (brown to dark green, or fully 
black) and higher molecular weight biological pigment 
found in hair, feather, skin, eyes, scales, and some inte-
rior membranes. Melanin is chemically a polymerized 
product of phenolic and/or indolic compounds (Tarangini 
and Mishra 2014). Melanin is further classified into 
three groups based on structure and color (i) pheomela-
nins (red or yellow), (ii) eumelanins (black-brown), and 
(iii) allomelanins (black to dark brown) (Table 2). Due 
to variations in the occurrence and structure of melanin, 
its biosynthesis is not from a single route (Solano 2014). 
Melanin synthesis has been associated in providing resist-
ance against UV- and visible light-irradiations, confronta-
tion the attack of cell wall enzymes, fortification against 
oxidizing and reducing agents, and acts as an antiviral 
agent to enhanced the competitive and survival abilities 
in environmental stresses (Castro-Sowinski et al. 2007; 
Solano 2014). Melanin is a strong absorber of UV radia-
tions and provides strong protective functions to microbes 
that’s why extreme low temperature ecosystems are suita-
ble habitats for microbial biosynthesis of melanin (Gessler 
et al. 2014).

In general, melanin pigment is insoluble both in organic 
and aqueous solvents, however, Kimura et al. (2015) isolated 
bacteria strain Lysobacter oligotrophicus from the Antarc-
tic environment that produced water-soluble heteropolymer 
(Lo-melanin). Lo-melanin protects against UV radiation and 
scavenges ROS. Melanin is commonly present in polar dark 
septate hyphae, and guards hyphae against low temperatures 
and play a crucial role in their persistence (Robinson 2001). 

Chyizhanska and Beregova (2009) isolated melanin from 
Antarctic yeasts. An Antarctic fungus, Friedmanniomyces 
endolithicus produces highly melanized thick-walled cells 
that protected cells from UV radiation (Onofri et al. 2004). 
Similarly, Rosa et al. (2009) isolated melanin-producing 
endophytic fungal strains from the leaves of Deschampsia 
antarctica and about 80% were black molds. In the Ant-
arctic rocky deserts, rock-inhabiting fungi produce mela-
nin pigments that protect the cells from extreme cold and 
heat, polychromatic UV radiations, extreme pH and osmotic 
conditions, and provides tolerance towards potentially toxic 
metals (Selbmann et al. 2015). Melanin was purified from 
cold-tolerant and oligotrophic bacterium L. oligotrophicus 
isolated from the Skarvsnes region, East Antarctica (Fukuda 
et al. 2013). UV-B radiations induced melanogenesis in L. 
oligotrophicus cells, that protected the suspensions of E. 
coli DH5α cells from UV radiations by melanin solutions. 
In short, melanin biosynthesis by microorganisms can play 
crucial roles in low temperature environments such as to 
cope with low temperature, protection against UV radia-
tions, freeze–thaw cycling and desiccation, scavenging ROS. 
These microbes could be a microbial model for exobiologi-
cal/astrobiological studies.

Violacein

Violacein is violet or purple bisindole water-insoluble pig-
ment and first reported from Chromobacterium violaceum 
from the Amazon River in Brazil (Durán et al. 1953). In 
nature, violacein protects cells from UV radiations (Füller 
et al. 2016). Several studies have reported the antibacte-
rial, antiviral, anticancer, antiulcerogenic, antileishmanial, 
and enzymatic modulation activities of violacein pigments 
(Duran et al. 2007; Soliev et al. 2011). The maximum UV 
absorption capacity of violacein is λ = 260 nm, which sug-
gests its crucial role in the protection of cells from visible 
and UV radiations (Marizcurrena et al. 2019). In nature, vio-
lacein is associated with biofilm production (Pantanella et al. 
2007) and its production is regulated by quorum sensing thus 
acts as a marker of quorum sensing molecules (Burt et al. 
2014). Violacein plays a vital role in protecting bacterial 
cells from predation (Choi et al. 2015). Apart from several 
other habitats, violacein has been reported from several low 
temperature environments. Lu et al. (2009) reported a novel 
psychrophilic bacterium from Xinjiang glaciers, China, 
capable of violacein production. Violacein producing psy-
chrophilic Janthinobacterium svalbardensis bacterium was 
isolated from Glacier, Spirsbergen, Arctic region (Ambrožič 
et al. 2013). Kim et al. (2012) reported violacein producing 
psychrophilic bacterium Janthinobacterium sp. from alpine 
glacier cryoconite. Hakvag et al. (2009) reported violacein 
producing Collimonas sp. from Arctic coastal water in Trøn-
delag, Norway. Similarly, Nakamura et al. (2002) reported 
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Table 2  Types of pigments from cold-adapted microorganisms, their applications, and chemical structures

Pigments Applications Structures

Lycopene
((all-E)-Lycopene)

Food additives, Antioxidant activities, Antimicrobial activi-
ties, and as Sun protector

  
C40H56 (psi,psi-Carotene)

Torulene
(Torulin)

Antioxidant activity, Cosmetics additives, Anti-cancerous 
activities, and Antimicrobial activities

  
C40H54 (3′,4′-Didehydro-beta,psi-carotene)

Beta-carotene
(β-Carotene)

Food colorant, Antioxidant activity, and Precursor of vita-
min A in food

  
C40H56 (beta-Carotene)

Xanthophylls
(lutein)

Feed additives, Protection against
free radicals, and use in the pharmaceutical industry

  
C40H56O
((3R,3′R,6′R)-beta,epsilon-Carotene-3,3′-diol)

Prodigiosin Dyeing agent in the textile industry, Coloring agents in 
the food industry, Antibacterial antiviral, and anticancer 
activities

  
C20H25N3O (4-Methoxy-5-[(Z)-(5-methyl-4-pentyl-2H-

pyrrol-2-yliden)methyl]-1H,1′H-2,2′-bipyrrol)
Melanin Antibacterial activity against antibiotic-resistant pathogens, 

Antioxidant activity, and cytotoxic activity

  
C18H10N2O4 (6,14-dimethyl-4,12-diazapentacy-

clo[8.6.1.12,5.013,17.09,18]octadeca-1(17),2,5,9(18),10,13-
hexaene-7,8,15,16-tetrone)

Pheomelanin Markers in fossils, Antioxidant activity, Photoprotective 
effects

  
C34H29N6O12S3 (Pheomelanin)

Eumelanin Antioxidant activity, Biomedical activities

  
C25H13N3O13 (Eumelanin)

Violacein Dyeing agent in the textile industry, Food industry, Antibac-
terial, fungicidal and antiviral activities, Antioxidant and 
cytotoxic activities, Use in cosmetics and medicine

  
C20H13N3O3 (3-[2-hydroxy-5-(5-hydroxy-1H-indol-3-yl)-1H-

pyrrol-3-yl]indol-2-one)
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violet pigment-producing psychrotrophic bacterium from 
the water tank keeping rainbow and exploited its pigment 
for antibacterial potential. Shivaji et al. (1991) isolated the 
bacterium of Janthinobacterium genus that produced vio-
lacein and further Durán et al. (2007) evaluated the pig-
ments for several therapeutic activities. Mojib et al. (2010) 
extracted violacein-like purple violet pigment from Janthin-
obacterium sp. reported from Proglacial Lake Podprudnoye, 
Schirmacher Oasis, Antarctica that inhibited the growth of 
Mycobacterium smegmatis and Mycobacterium tuberculo-
sis. At low doses, the same pigment showed activity against 
methicillin-resistant and multiple drug-resistant clinical 
strains of Staphylococcus aureus (Huang et al. 2012).

Indigoidine

Indigoidine is a brilliant blue, water-soluble pigment synthe-
sized by very few microorganisms (Sutthiwong et al. 2014) 
namely Erwinia chrysanthemi (Reverchon et  al. 2002), 
Phaeobacter sp. (Cude et al. 2012), Streptomyces chromo-
fuscus (Yu et al. 2013) and Vogesella indigofera (Day et al. 
2017), and the biological and environmental role of indi-
goidine is unclear, however, it has been described that this 
pigment could protect against oxidative stress (Reverchon 
et al. 2002). Indigoidine also possesses antimicrobial activi-
ties as stated in Leisingera isolates (Gromek et al. 2016). 
Consequently, microbes producing indigoidine could have 
advantage of competition in the environment due to the 
antibiotic and antioxidant properties of indigoidine. Further-
more, indigoidine acts as intracellular signaling molecules 
related to motility (Reverchon et al. 2002; Cude et al. 2012). 
Additionally, indigoidine provides adaptability to microbial 
cells such as Vogesella sp. reported from Andean Patagonia 
in iron-rich environments (Day et al. 2017). Several isolates 
of Antarctic genus Arthrobacter were reported to produce 
indigoidine (Sutthiwong et al. 2014). Arthrobacter genus 
(family Micrococcaceae) are more common in Antarctic 

surroundings such as sediments and soils (Reddy et al. 2003; 
Dsouza et al. 2015). Bacteria belong to this genus produce 
different pigments including blue indigoidine (Sutthiwong 
et al. 2014). Kobayashi et al. (2007) reported indigoidine 
production from Shewanella violacea DSS12 a piezophilic 
and psychrophilic bacterial strain isolated from deep-sea 
sediments of the Ryukyu Trench. Liao et al. (2019) studied 
the multipartite genomes and sRNome of Arctic Pseudoalte-
romonas fuliginea BSW20308 and reported upregulated 
genes encoding indigoidine biosynthetic.

Scytonemin

Scytonemin is a secondary metabolite of small hydrophobic 
alkaloids having yellowish-brown color (Table 2). Cyano-
bacteria when get exposed to UVA-blue wavelengths, scy-
tonemin was produced (Fleming and Castenholz 2007). Scy-
tonemin and its methoxylated and methylated derivatives are 
mostly reported in the upper portion of the microbial mats; 
that could protect the cells from extreme environments, 
which makes this pigment a potential biomarker molecule 
for studying the presumed exobiology habitats. Exposure of 
cyanobacteria to UV radiation produces scytonemin along 
with several other protective metabolites (Sinha et al. 1998). 
Therefore, these molecules might have performed a crucial 
role in Antarctica during the initial life stages on this planet 
(Dillon and Castenholz 1999). The palaeolimnological 
investigation that was carried out in 62 east Antarctic lakes 
revealed that the composition of pigments was different in 
different depths of lakes and higher scytonemin was reported 
in shallow lakes. Since cyanobacteria regulate their pigment 
production, this difference of pigment contents could be due 
to the light-harvesting ability of pigments at different depths 
(Sabbe et al. 2004). Several Antarctic cyanobacterial gen-
era that are capable to produce scytonemin are reported in 
Table 1.

Table 2  (continued)

Pigments Applications Structures

Indigoidine As bioindicator, Antimicrobial activities, and the Textile 
industry as a dyeing agent

  
C10H8N4O4 (3-(5-amino-2-hydroxy-6-oxo-1H-pyridin-3-yl)-

5-iminopyridine-2,6-dione)
Scytonemin Anti-inflammatory and Anti-proliferative drugs, Antioxidant 

agents, Use in cosmetics

  
C36H20N2O4 (3E,3′E)-3,3′-Bis(4-hydroxybenzyliden)-1,1′-

bicyclopenta[b]indol-2,2′(3H,3′H)-dion)
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Applications of microbial pigments

Versatile pigments produced by microorganisms are more 
focused during present research due to their extensively 
observed applications in textile industries, food industries, 
and biomedical purposes. Global trade of naturally derived 
pigments has been increased by 29% and reached 600 
million USD from 2007 to 2011 (Tuli et al. 2015). This 
indicates that the pigments produced by microorganisms 
would dominate the organic market and pigment industries 
very soon (Ramesh et al. 2019). Such economic growth 
and vast applications of pigments rationalize the explo-
ration of new sources of natural pigments. Cryospheric 
environments might provide the best source for the explo-
ration of novel pigments producing microorganisms. Bio-
technological applications of psychrophilic microorgan-
isms remained a dream for decades. However, in the early 
1990s researchers started focusing their possible useful-
ness in genetic bioengineering, food and mining industries 
(Gounot 1991). Currently, several of these expectations 
are being confirmed, since psychrophilic microorgan-
isms and their secondary metabolites are now acting as 
sustainable and priceless resources for biotechnological 
development. Among other invaluable products, pigments 
produced by these psychrophilic microorganisms are the 

center of focus in modern research. Table 1 illustrates the 
microorganisms isolated from cryospheric environments 
producing pigments of potential applications in industries 
(Fig. 2). General applications of microbial pigments are 
as following.

Industrial applications

Textile industry

Textile industries use 1.3 million tons of synthetic dyes and 
precursors (worth of 23 billion USD) 15% of which leak as 
effluents during their use (Venil et al. 2013; Chequer et al. 
2013). Unluckily, enough portion of these dyes escape the 
conventional processes of wastewater treatment and exist as 
a potentially toxic environmental pollutant with adversities 
on public health and environment (Ogugbue and Sawidis 
2011). Consequently, a great concern exists to replace the 
synthetic dyes in the textile industry with environmentally 
friendly dyes. Pigments obtained from microorganisms are 
environmentally friendly that is considered appropriate for 
the textile industry (Chadni et al. 2017). Violacein, a mul-
tipurpose pigment extracted from C. violaceum is capable 
of dyeing both natural and synthetic fibers and has gained 
increasing importance in textiles (Wan et al. 2014; Venil 

Fig. 2  Schematic representation of the pigments applications obtained from cold-adapted microbes
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et al. 2016). Prodigiosin a bright red pigment from Vibrio 
sp. is suitable for dyeing a range of fibers including nylon, 
acrylics, wool, and silk (Alihosseini et al. 2008). Simi-
larly, prodigiosin reported from Serratia sp. BTW J8 was 
demonstrated to color various fabric types such as chiffon, 
cotton, pure silk, poplene, century cotton, organdi, dupoil 
silk, terrycotton, polyester, and nylon (Krishna 2008). The 
blue pigment indigoidine produced by fungal host Rho-
dosporidium toruloides possesses potential applications 
in the dye industry (Wehrs et al. 2019). Pigment extracted 
from J. lividum shows a bluish-purple color tone on cot-
ton, silk, and wool, while with vinylon and nylon it appears 
dark blue (Shirata et al. 2000). Likewise, the yellow pigment 
extracted from Thermomyces exhibited a higher dyeing affin-
ity for silk fabric compared to other fabrics (Poorniammal 
et al. 2013). Similarly, red and deep blue pigments reported 
from Streptomyces strains NP2 and NP4 exhibited sub-
stantial variations in dyeing ability depending upon fabric 
materials. For instance, acrylic and polyamide fibers were 
vibrantly stained, however, cellulose and cotton fibers were 
weakly stained (Kramar et al. 2014). In the view of such 
extensive use of microbial pigments in the textile industry 
could increase their market value; therefore, new microbial 
sources are crucial to explore for pigment production and 
cryosphere inhabit broad microbial diversity capable of pig-
ment production.

Food industry

One important goal in the food industry is to develop foods 
having an attractive appearance that has been achieved with 
synthetic dyes. Progressively, food industries are now using 
natural food colorants, since certain synthetic food colorants 
have demonstrated adverse health problems after consump-
tion. Due to the shortage of natural food additives resources, 
their demand is increasing particularly in the food indus-
try (Aberoumand 2011). This demand can be fulfilled by 
providing a more natural and healthy means of food colors 
offering a clean and safe tag declaration. Scientists have iso-
lated food-grade pigments from bacterial strains that might 
provide a natural food colorant having tremendous stability, 
health safety profile and also act as antioxidants and preserv-
atives (Nigam and Luke 2016). Pigment approval as food 
color and nutritional supplements greatly depend upon the 
health safety of consumers and product freshness. Thus, the 
use of pigmented molecules in food, cosmetics, medicine, 
and other medical devices is under the control of the Federal 
Food, Drug, and Cosmetic Act (Chapter VII, Sect. 721) and 
authorization should be taken before use for the specific time 
(https ://www.fda.gov/).

Several microbial pigments like astaxanthin from Xan-
thophyllomyces dendrorhous, a red pigment obtained from 
Monascus sp., β-carotene produced by Blakeslea trispora, 

lycopene from Fusarium sporotrichioides and Erwinia 
uredovora, riboflavin reported from Ashbya gossypii, and 
Arpink red™ from Penicillium oxalicum were supplemented 
in different food items to enhance its appeal (Dharmaraj 
et al. 2009). For instance, carotenoids obtained from bacteria 
are used in feed as pro-vitamins and coloring agent in food 
industries (Nelis and De Leenheer 1991). Carotenoids are 
studied to be used as coloring agents for soft drinks, cooked 
sausages, and baked items (Konuray and Erginkaya 2015). 
It can also protect food from intense light and maintain the 
food quality by acting as a sunscreen (Chattopadhyay et al. 
2008). Spray-dried prodigiosin from S. marcescens has been 
applied effectively as a coloring agent in milk, yogurt, and 
carbonated drinks (Namazkar and Ahmed 2013). Violacein 
obtained from bacterial sources has been successfully used 
in food industries (Dufosse 2018). Canthaxanthin is used in 
food items such as fish, candy, cheese, fruits, meat, snacks, 
beverages, wine, and beer. Currently, several pigments 
obtained from microorganisms are approved and used in 
foods for several purposes (Nigam and Luke 2016).

Biomedical applications

Antimicrobial activities

Infectious diseases are the second major reason for global 
human deaths and third in developed countries after non-
contagious diseases (WHO 2018). In the recent few dec-
ades, new drug entry in the market has been decreased and 
microbial resistance against antibiotics is increasing. This 
increasing trend of microbial antibiotic resistance amplified 
the demand for novel antimicrobial agents. As an alternative 
to antibiotics, several microbial pigments have been suc-
cessfully evaluated for antimicrobial activities. Umadevi and 
Krishnaveni (2013) studied pigments extracted from Mic-
rococcus luteus that exhibited inhibitory potential against 
wound pathogens such as Pseudomonas sp. Klebsiella sp. 
and Staphylococcus sp. Carotenoids extracted from Holo-
monas sp. exhibited antimicrobial potential against antibi-
otic-resistant S. aureus, Klebsiella sp., and Pseudomonas 
aeruginosa, and ophthalmic S. aureus, Streptococcus pyo-
gens, and E. coli (Ravikumar et al. 2016). Vasanthabhar-
athi et al. (2011) studied the inhibitory potential of crude 
melanin obtained from Streptomyces against E. coli. Pigment 
extracted from Streptomyces hygroscopicus was effective 
against pathogens such as vancomycin and methicillin-resist-
ant S. aureus, β-lactamase producing E. coli, P. aeruginosa 
and Klebsiella sp. (Berlanga et al. 2000; Selvameenal et al. 
2009). Violacein obtained from C. violaceum and J. livi-
dum showed promising antibacterial activities (Durán et al. 
2007). Violacein reported from C. violaceum ATCC 12472 
showed tremendous antimicrobial activity against S. aureus 
and inhibition of its biofilm formation (Batista and da Silva 

https://www.fda.gov/
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Neto 2017). Similarly, Antarctic bacterial violacein in lower 
concentrations showed activity against avirulent M. tuber-
culosis (Mojib et al. 2010). A combination of violacein with 
antibiotics such as kanamycin and cefadroxil minimize the 
inhibitory concentration of drugs against S. aureus (Subra-
maniam et al. 2014). Additionally, violacein extracted from 
J. lividum exhibited fungicidal activity against white root 
rot causing Rosellinia necatrix (Shirata et al. 1997). Pro-
digiosin obtained from Vibrio ruber DSM 14,379 exhibited 
bacteriostatic activity against E. coli and Bacillus subtilis 
(Danevčič et al. 2016). Furthermore, prodigiosin intracel-
lularly produced by S. marcescens IBRL USM 84 inhibited 
the growth of tested bacteria (Ibrahim 2008). Prodigiosin 
revealed promising antibacterial activity against pathogens 
such as S. aureus, S. pyogenes, P. aeruginosa and Klebsiella 
pneumoniae (Nwankwo et al. 2017). Pigments extracted 
from endophytic fungi Monodictysc astaneae demonstrated 
antibacterial activity against Vibrio cholera, K. pneumoniae, 
and S. aureus (Visalakchi and Muthumary 2010). Suryawan-
shi et al. (2017) studied the strong antimicrobial activity of 
prodigiosin against E. coli, S. aureus, and Candida albicans. 
Similarly, several prodiginine compounds are reported hav-
ing fungicidal activities against fungi such as Penicillium, 
Aspergillus, Candida, and Cryptococcus sp. (Stankovic et al. 
2014).

Throughout human history, several viral outbreaks 
occurred and still occurring such as the Western African 
Ebola virus epidemic and the recent Coronavirus pan-
demic COVID-19 accompanied with moderate to high 
mortality rate. This urge that the discovery of novel anti-
viral drugs is critically important as many viral infections 
lack vaccines and effective treatments. Researches showed 
some initial successes using microbial pigments as antivi-
ral agents. Violacein possesses antiviral potentials against 
poliovirus, simian rotavirus SA II, and herpes simplex 
virus (HSV) (Durán et al. 2007). In vitro effects of vio-
lacein are also evaluated against Acquired Immuno Defi-
ciency Syndrome (AIDS) related lumphoma (Duran et al. 
1996). Andrighetti-Fröhner et al. (2003) studied the anti-
viral activities of bacterial extracted violacein and inhibi-
tion of HSV-1 and Poliovirus-2 (PV-2) replication was 
observed. Similarly, an in-silico examination of prodigi-
osin by targeting proteins of Human Immunodeficiency 
Virus (HIV), Hepatitis B virus (HBV), influenza A virus 
(H1N1) and Hepatitis C virus (HCV) was performed (Suba 
et al. 2013). The outcome proposed potential antiviral 
activities of prodigiosin pigment against all tested viruses 
excluding HCV, where no binding interactions with active 
sites were reported. Moreover, compounds of quinone such 
as naphthoquinones, anthraquinones, and benzoquinones 
possess strong antiviral potential (Koyama 2006; Gessler 
et al. 2013). Several compounds obtained from Phoma spe-
cies exhibited the inhibition of HIV integrase (Rai 2009). 

Phenazine compounds extracted from Streptomyces and 
Pseudomonas species have been demonstrated promising 
antiviral activities (Schneemann et al. 2011). Therefore, 
microbial pigments are potential agents to administered as 
a novel source of medications against pathogens.

Antioxidants activity

The rise of free radicals inside the body increases the risks 
of chronic diseases such as diabetes, autoimmune disor-
ders, and cancer (Phaniendra et al. 2015). To evade this, 
antioxidant compounds are used which donate electrons to 
free radicals and neutralize them to protect cellular dam-
age (Lobo et al. 2010). Antioxidants are obtained either 
from natural or synthetic sources, however, synthetic anti-
oxidants are losing demand due to possible side effects on 
the human body (Ahmed et al. 2013). Therefore, micro-
bial-based antioxidants are gaining ground in the pharma-
ceutical industry. Pigments from microorganisms such as 
carotenoid, xanthomonadin, and naphthaquinone showed 
antioxidant potential (Tuli et  al. 2015). Carotenoids 
extracted from Antarctic bacterium Pedobacter exhibited 
solid antioxidant activity with protection against oxidative 
harm (Correa-Llantén et al. 2012). Osawa et al. (2010) 
demonstrated promising antioxidant abilities of rare C-50 
carotenoids such as sarcinaxanthin monoglucoside, sarci-
naxanthin diglucoside, and sarcinaxanthin, reported from 
a halophilic bacterium Micrococcus yunnanensis. Moreo-
ver, Shindo and Misawa. (2014) extracted rare and new 
carotenoids from the novel bacterial isolates and these pig-
ments exhibited strong antioxidant activities. Similarly, 
flexirubin (red carotenoid), obtained from Fontibacter 
flavus showed antioxidant activity against 2, 2-diphenyl-
1-picryl-hydrazyl-hydrate (DPPH), nitric oxide, hydroxyl 
radical, and inhibition of lipid peroxidation (Prabhu et al. 
2013). Additionally, melanin reported from fungal isolate 
Streptomyces glaucescens (El-Naggar and El-Ewasy 2017) 
and anthraquinones obtained from endophytic Stemphy-
lium lycopersici (Li et al. 2017) were characterized as 
antioxidants. Another valuable bacterial pigment violacein 
obtained from C. violaceum exhibited antioxidant protec-
tion in gastric ulceration (Antonisamy and Ignacimuthu 
2010). Violacein can also safeguard the cellular lipid 
membranes from peroxidation due to hydroxyl radicals 
(Stafsnes and Bruheim 2013). Several studies reported 
melanin obtained from Pseudomonas sp, S. glaucescens 
NEAE-H, and Bifidobacterium infantis were found anti-
oxidant agents (Huang et al. 2011; Tarangini and Mishra 
2014; Zerrad et al. 2014). These reports recommend that 
pigments obtained from microorganisms could be used 
as antioxidant agents to prevent several chronic diseases.
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Anticancer activity

Cancer is one of the most lethal diseases in human history. 
Till now, several anticancer medicines have been designed 
and are in the stage of the clinical trial. However, success 
limitations, adverse effects, and resistance towards treat-
ments are the major challenges in cancer treatment (Foo 
and Michor 2014). Therefore, search for novel and effective 
anticancer agents with least or no side effects is of great 
interest. Several kinds of research conducted on microbial 
pigments as anticancer agents exhibited promising results. 
One such study on novel red pigment extracted from Ath-
robacter sp. G20 exhibited anticancer potential against the 
oesophageal cancer cell line (KYSE30) (Afra et al. 2017). 
A yellow pigment reported from Streptomyces griseoauran-
tiacus demonstrated strong cytotoxic activity against cervi-
cal cancer cells (HeLa) and HepG2 and resulted in a lower 
number of viable cells (Prashanthi et al. 2015). Carotenoid 
extracted from Kocuria sp. QWT-12 revealed anticancer 
potential against breast cancer cell lines and lung cancer 
cells (Rezaeeyan et al. 2017). Similarly, carotenoids from 
Haloferax volcanii killed 53.52% of human liver carcinoma 
cell lines (Sikkandar et al. 2013). Black melanin extracted 
from S. glaucescens exhibited significant cytotoxic activ-
ity against the HFB4 skin cancer cell line (El-Naggar et al. 
2017). Dihydroxyphenylalanine melanin obtained from 
Streptomyces sp. MVCS6 exhibited dose–response antican-
cer activity against the cervical cancer cell line (Sivaperu-
mal et al. 2015). Wang et al. (2012) studied prodigiosin 
obtained from Pseudoalteromonas sp. having a cytotoxic 
effect against U937 leukemia cells. Strong anticancer activ-
ity of prodigiosin obtained from S. marcescens is reported 
against human cervical cancer cells and laryngeal cancer 
cells (Maheswarappa et al. 2013). Cheng et al. (2017) evalu-
ated the influence of prodigiosin reported from Vibrio sp. 
against human oral squamous carcinoma cells (OSCC) and 
found that the prodigiosin arrests their cell cycle. Recently, 
prodigiosin showed a reduction of the intracellular signaling 
pathway during the cell cycle and induced apoptosis in lung 
cancer cells and also showed in vivo tumoricidal activity 
(Chiu et al. 2018). Interestingly, a combination of natural 
compounds with chemotherapy drugs enhance its efficacy 
and reduce their toxicity. Prodigiosin when combined with 
paclitaxel against MCF7 breast cancer cells (Ho et al. 2009) 
and doxorubicin (Dox) against OSCC cell lines (Lin and 
Weng 2018) an efficient synergistic effect was reported. 
Violacein obtained from C. violaceum induced cytotoxicity 
and apoptosis activity in Chinese hamster lung fibroblast 
V79 cells (Melo et al. 2000) and leukemia cell lines (Melo 
et al. 2003; Ferreira et al. 2004). Additionally, violacein 
also increased apoptosis in colon cancer cells (Kodach et al. 
2017) and human breast cancer cells (Alshatwi et al. 2016). 
Several anthraquinone derivatives from marine-derived 

fungi are capable of tumor cell inhibition (Fouillaud et al. 
2016). Anthraquinone derivatives from fungus Alternaria 
sp. have been studied for anticancer activity against human 
breast cancer cell lines (Huang et al. 2011). In light of the 
above studies, the microbial pigment could be potential 
chemotherapeutic agents for cancer treatment.

Bio‑indicators

Bioindicator bacteria are bacteria that can monitor environ-
mental health and reveal the qualitative status of the envi-
ronment by changing their behavior and specific physiologi-
cal characteristics (Parmar et al. 2016). One such change 
is the production and/or alteration of certain pigments in 
pigmented bacteria that could be effectively used as bioin-
dicators. For instance, violet pigmented bacteria along with 
Sporocytophaga and Flexibacter species were bioindicators 
of polluted drinking water (Schindler and Metz 1989). Indi-
goidine production by Vogesella indigofera is suppressed 
by  Cr6+ in a concentration-dependent manner which is an 
indication of chromium concentration and toxicity in the 
environment (Gu and Cheung 2001). The existence of carot-
enoid in Lecanoraceae lichens has been confirmed to depend 
upon the pollution level in the atmosphere of the surround-
ing environment, where they reside by analyzing the carote-
noid content of fungi acting as bioindicator (Ibarrondo et al. 
2016). Using the gene clusters encoding prodigiosin bio-
synthesis in S. marcescens and violacein biosynthesis from 
C. violaceum demonstrate the implementation of reporter 
systems for the signal of biosynthetic gene expression (Dom-
röse et al. 2017). The participation of melanin pigments in 
protection from environmental stress like UV radiation and 
potentially toxic metals is regarded as a bioindicator due 
to its overproduction in adverse conditions (Egorova et al. 
2011). Similarly, cyanobacteria naturally present in water 
sources could act as excellent bioindicators for heavy metals, 
since in the presence of heavy metals, the carotenoids con-
tent in these cyanobacteria reduces (Wong and Teo 2014).

Miscellaneous applications

Pigment-producing microbes in cryospheric environments 
could act as a potential source of electrons and may be 
employed for developing dye-sensitized solar cells (DSSC) 
that would be a potential alternative of conventional pho-
tovoltaic-silicon cells based. Consequently, DSSC might 
signify a remarkable alternative that could somewhat solve 
the energy requirement at Antarctic regions. For instance, 
the orange-xanthophyll pigment extracted from UVC-
resistant Hymenobacter sp. (Marizcurrena et al. 2017) was 
exploited for DSSC development (Órdenes-Aenishanslins 
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et al. 2016; Montagni et al. 2018). Similarly, Pezzella et al. 
(2019) studied the eumelanin and graphene integration and 
observed improved electrical conductivity which shows the 
scope of eumelanin in bioelectronics. Bacterial pigments 
can be used as biodegradable ink on plastic materials. The 
hue and chroma values are observed in red and violet color 
suggestive of prodigiosin and violacein pigments isolated 
from S. marcescens and C. violaceum, respectively (Venil 
et al. 2017). Astaxanthin from radioresistant Deinococcus 
sp. exhibiting radio-protective and antioxidant activities 
can be incorporated in cosmetics including sunblock and 
sunscreen (Sajjad et al. 2017). The bacterial pigments pro-
digiosin and violacein exhibiting antioxidant and antimicro-
bial activities represent a new paradigm for sunscreens that 
utilize substances of biological origin (Suryawanshi et al. 
2015). These pigments can be a potential ingredient in a 
range of commercial sunscreen products. Indigoidine can 
be used as an organic semiconductor with numerous appli-
cations in carbon dioxide capture devices, electrochemical 
cells, super capacitors, batteries, etc. (Yumusak et al. 2019).

Conditions optimization for pigment 
production

Microbial survival depends upon a wide range of nutrients 
and physicochemical factors that further control the produc-
tion of metabolites illustrated in Fig. 3. In general, microbes 
could adapt three routes for metabolites production. These 
routes are; natural production of metabolites; metabolites 
production under strained environmental conditions; and 
stimulation of metabolites production by supplementing 
certain nutritional requirements along with physiological 
parameters (Ramesh et al. 2019). Detail description of pig-
ment extraction has been reviewed from microalgae (Amaro 
et al. 2016), yeast (Yurkova et al. 2008), fungi (Rai 2009; 
Ahmad et al. 2015), and bacteria (Stafsnes and Bruheim 
2013). Psychrophilic microorganisms produce several pig-
ments to cope with the life-endanger challenges in the cryo-
sphere. Cold-adapted algae are extensively studied for pig-
ment production, however, little is known about the pigment 
production potential of cold-adapted bacteria and fungi due 
to several reasons such as their unique physiological and 
nutritional requirements, slow and unseen growth in the 
environment, and less exploration in axenic form. To obtain 
pigments from cold-adapted microorganisms identifying 
suitable substrates and evaluation of physicochemical fac-
tors are essential for better growth and higher pigment yield.

Pigment production takes place intracellular or/and 
extracellular depending on pH, temperature, light, several 
media constituents (Buck et al. 1974), sampling sites and 
cultivation conditions (Stafsnes and Bruheim 2013). Under 
laboratory conditions, the microbial pigment production 

is ephemeral in nature. However, higher yield could be 
obtained if several factors such as medium components and 
environmental parameters are optimized in an understand-
able way (Ramesh et al. 2019). Such as a study conducted 
by Pandey et al. (2018) stated that additional supplemen-
tation of maltose as a source of carbon in potato dextrose 
broth boosted the orange pigment production by a psychro-
philic strain of Penicillium sp. followed by fructose and 
glucose, however, supplementation of lactose inhibited this 
production. Pandey et al. (2018) found that extra nitrogen 
source could not enhance the pigment production, how-
ever, minerals salts like  MgSO4 and  KH2PO4 can enhance 
the production of pigment. Maximum pigment production 
was observed in Monascus sp. supplemented with maltose 
(Omamor et al. 2008). Pradeep and Pradeep (2013) reported 
maximum pigment production from Fusarium moniliforme 
by supplementing glucose in the medium. In the case of 
filamentous fungi, Carbon/Nitrogen (C/N) ratio is extremely 
essential in pigment production (Gmoser et al. 2017). A 
decrease in pigment production was reported by Cho et al. 
(2002) and Gunasekaran and Poorniammal (2008) during a 
higher C/N ratio. Similarly, high phosphate concentration 
and acidity caused the reduction of pigment production and a 
trace amount of sulfate vitiate pigment production (Reichen-
bach et al. 1974). Singgih et al. (2015) studied Neurospora 
intermedia N-1 for carotenoid production in the presence of 
maltose (2% w/v) as a carbon source. Moreover, minerals 
salts having different cations were found to improve the pro-
duction of pigments (Pradeep and Pradeep 2013). Organic 
acid produced by Monascus ruber inhibits pigment produc-
tion (Hajjaj et al. 2000). The addition of certain substrates 
such as wheat, rice meals, and light stimulation enhanced 
carotenoid production in yeasts and fungi (De Carvalho 
et al. 2014). ZoBell and Upham (1944) reported an increase 
in pigment production when bacteria were cultured in sea-
water supplemented with neopeptone, bacto-tryptone, and 
beef extract at 4 °C. Ghosh et al. (2007) reported that metha-
nol acted as a sole carbon source induced the production 
of pink pigment in Acinetobacter wofii. The yellow–green 
pigment was produced by Pseudomonas fluorescens sup-
plemented with succinate as a sole carbon source, while this 
production was stopped with the addition of malic and cit-
ric acids as substrate (Margalith 1992). Moreover, the influ-
ence of light and dark on pigment production was studied 
and Myxococcus xanthus, Mycobacterium marinum, Rho-
dotorula glutinis, and Dacryopinax spathularia produced 
carotenoids during the presence of light. S. marcescens pro-
duced red pigment on solid peptone-glycerol agar plates, and 
unable to produce pigment in liquid medium except when 
supplemented with silica gel (Yamashita et al. 2001). Chen 
et al. (2013) reported that the prodigiosin production was 
enhanced when peptone and starch were supplemented as a 
source of carbon and calcium alginate beads were added as 
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a porous carrier. Similarly, Lu et al. (2009) reported sucrose 
and casein as best carbon and nitrogen sources, respectively, 
for violacein production by J. lividum XT1 bacteria reported 
from the glacier in Xinjiang China.

To obtained higher pigment yield, pH and temperature 
optimization are essential as they affect the metabolic 
growth and physical activities of microorganisms. Being 
cold-adapted organisms, the temperature is a vital fac-
tor to be optimized for pigment production. Pandey et al. 
(2018) reported maximum pigment production at low 
temperature (15 °C) and acidic condition (pH 5) by Peni-
cillium sp. Chattopadhyay et al. (1997) studied Antarctic 
psychrotrophic bacterium M. roseus that produced higher 
carotenoid pigment at 5 °C compared to 25 °C. Similarly, 
Lu et al. (2009) reported an optimal temperature of 15 °C for 
violacein production by psychrotrophic bacteria. M. tuber-
culosis produced carotenoid pigments under acidic stress 
(pH 5–6) (Saviola 2014), and different pigment production 
was reported in other Mycobacterium species (Robledo 
et al. 2011). Overproduction of pigment at lower tempera-
tures shows the phenomenon of ecological resilience among 
cold-adapted microorganisms that combat the deadly envi-
ronmental conditions. Similarly, enhancement of pigment 
production below optimum temperature range could be an 
adapting reaction that compensates the downregulation of 
metabolic processes at low temperatures (Gmoser et al. 
2017). Several genes are responsible for the biosynthesis 

of pigments in microorganisms. To enhance the pigment 
production mutagens such as UV light, 1-methyl-3-nitro-
1-nitrosoguanidine, and ethyl methanesulfonate were used 
in Haematococcus pluvialis and microwave in S. marcescens 
(Nigam and Luke 2016), which shows these mutagens could 
enhance the pigment yield when used precisely. In addi-
tion, alteration in genes (knockout or promotion of genes) 
and mutagenesis practices can increase the pigment produc-
tion (Venil et al. 2014). Different substrates such as trypto-
phan, phenylalanine, tyrosine, and several physicochemical 
parameters can efficiently stimulate pigment production by 
microorganisms.

Essential pigments from fungal strains can be obtained 
under optimum growth conditions by solid, semi-solid, and 
submerged fermentation (Vendruscolo et al. 2010; Akilan-
deswari and Pradeep 2016) using a diverse range of sus-
tainable substrates (Gupta and Aggarwal. 2014). However, 
parameters such as pH, temperature, agitation, aeration, and 
culture medium directly influence the production of pigment 
and should be kept at an optimized level (Medentsev et al. 
2005). Moreover, several solvents such as acetone, chloro-
form, cyclohexane, acetonitrile, ethanol, dichloromethane, 
pyridine, hexane, and water are used to extract fungal pig-
ments. The solvent choice is crucial for pigment extraction 
and depends upon the polarity of the studied molecules. 
After extraction and purification of pigments, it should 
be handled carefully and must be kept under optimum 

Fig. 3  Schematic representation of pigment extraction from cold-adapted microbes at low temperature
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temperature, and pH to preserve its original colorimetric 
characteristics. Pigment storage in dry powder form is more 
preferable because of its higher stability and low water activ-
ity (De Carvalho et al. 2014).

Challenges in pigments obtained 
from psychrophiles

Antarctic region and the adjacent Southern Ocean is the rich 
source of psychrophilic microorganisms capable of pigment 
production. However, in 2014 the bioprospection is defined 
during XXXVII Antarctic Treaty Consultative Meeting held 
in Brasilia. According to this definition, bioprospection is 
“any activity of search, identification, description, collec-
tion, survey, monitoring, cultivation, replication, or any 
other scientific investigation processes, performed on indig-
enous biological species with the initial intention to con-
sider potential industrial or commercial derived products or 
applications, notably through the development of patentable 
material or process.” According to this definition, research 
curiosity on the biological resources of Antarctica is grow-
ing for commercial use. However, several reports highlighted 
that due to the lack of clear governing and ownership rules 
for these resources causes appropriation by those who dis-
cover it and subsequently develop patent (UNU-UNEP 2009; 
Jabour 2010; UNEP 2012; Puig-Marcó 2014). In 2008, Ant-
arctic Treaty Committee launched an online database for 
bioprospecting in Antarctica that provides up-to-date infor-
mation about bioprospecting in Antarctica. This database 
also provides information about commercialized products 
obtained from biological samples indigenous to Antarctica. 
The records in the database contained many patents related 
to microbial metabolites having potential biotechnological 
applications (UNEP Report 2012). The increase in patents 
shows that Antarctic microorganisms are a precious source 
of marvelous potential profits. However, one of the lead-
ing challenges is the assurance of sustainable exploitation 
of indigenous biological resources of Antarctica which 
is yet to decide that how positive benefits of bioprospect-
ing could achieve without inducing major damage to the 
indigenous environment. Since the uncontrolled prospect-
ing actions that would include logistical labors to reach 
the biological resources and their definite outcomes could 
make the process unsustainable and compromise the indig-
enous microbial diversity (Hughes et al. 2015). In addition, 
the commercial based research activities and their secrecy 
could compromise the main pillar of the Antarctic Treaty 
System (Article III), viz., the unrestricted cooperation and 
free exchange of information among all parties (Yarzábal 
et al. 2016). Furthermore, the emerging profitable interest 
in biological resources raised several key policies, moral 
and ethical queries: Who would be the owner of these 

biological resources? How should they be exploited and 
used? And whom should be benefited and to what extent? 
Although, few of these questions are included in the 2014 
SCAR1-sponsored Antarctic and Southern Ocean Horizon 
Scan (Kennicutt et al. 2014, 2015). However, several cur-
rent uncertainty and absence of policies for these biological 
resources should be addressed to the territorial and commer-
cial sensitivities to agree upon common agreement to protect 
the local environment. For instance, the Nagoya protocol 
that entered into force in October 2014 by over 70 countries 
under international law for the fair and equitable sharing of 
benefits derived from the utilization of genetic resources 
(Smith et al. 2017). Like Nagoya protocol, countries should 
be placed under an obligation to establish legislative, admin-
istrative and/or political measures regarding the access to 
common cold reservoirs such as Arctic and Antarctic. This 
will aim to provide equal chances of obtaining common 
cold resources for commercial or academic development 
by a country or organization. Moreover, to commercialize 
any kind of microbial pigments, huge investment along with 
research work for characterization, optimization processes, 
possible toxicological testing, regulatory approval, and pen-
chant by the consumers are greatly essential (Ahmad et al. 
2015; Dufossé et al. 2016; Carvalho et al. 2016). Similarly, 
optimized fermentation conditions, design and type of biore-
actor to achieve desired productivity of microbial pigments 
(Venil et al. 2014) along with the downstream processing 
of product purification are quite essential to be considered 
especially for microorganisms from unusual environments 
such as cryosphere. Therefore, widespread research is essen-
tial to convey the microbial pigments from laboratories to 
markets, since its demand is higher than supply.

Conclusion

The demand for natural pigments obtained from microorgan-
isms is now increasing due to the adverse effects causing by 
synthetic dyes. Therefore, new potential sources are crucial 
to explore for pigment-producing microorganisms. One such 
environment is the cryosphere which inhabits microorgan-
isms that produce natural pigments as a protective shield 
against life-endangered ecological stresses. Exploration 
of these microorganisms would certainly provide promis-
ing sources of novel pigmented molecules having wider 
biotechnological applications. These unexplored microbes 
especially novel species could be the potential source for 
pigments that could be used to develop novel drug com-
pounds as well as in the textile and food industries. Efforts 
should be done to produce cost-effective production of 
pigments from these microbes by optimization, and strain 
improvement through genetic engineering to get rid of toxic 
synthetic dyes. Sustainable exploitation of these biological 
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resources from the cryosphere should be focused to prevent 
environmental disruption. Several cryospheric environments 
such as Antarctica should be considered a common legacy 
for mankind and the international community should declare 
a clear ethical and moral policy for certain questions includ-
ing possession of these resources. It is obvious that due to 
unique qualities, the applications of these pigments obtained 
from cold-adapted microorganisms would be broader and 
will start many newer domains in biotechnology.
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