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Characterization of oral bacterial diversity of irradiated
patients by high-throughput sequencing

Yue-Jian Hu1,2, Qian Wang1, Yun-Tao Jiang1, Rui Ma1, Wen-Wei Xia1, Zi-Sheng Tang1, Zheng Liu1,
Jing-Ping Liang1 and Zheng-Wei Huang1

The objective of this study was to investigate the compositional profiles and microbial shifts of oral microbiota during head-and-neck

radiotherapy. Bioinformatic analysis based on 16S rRNA gene pyrosequencing was performed to assess the diversity and variation of

oral microbiota of irradiated patients. Eight patients with head and neck cancers were involved in this study. For each patient,

supragingival plaque samples were collected at seven time points before and during radiotherapy. A total of 147 232 qualified

sequences were obtained through pyrosequencing and bioinformatic analysis, representing 3 460 species level operational taxonomic

units (OTUs) and 140 genus level taxa. Temporal variations were observed across different time points and supported by cluster

analysis based on weighted UniFrac metrics. Moreover, the low evenness of oral microbial communities in relative abundance was

revealed by Lorenz curves. This study contributed to a better understanding of the detailed characterization of oral bacterial diversity of

irradiated patients.
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INTRODUCTION

Radiation therapy remains the primary treatment modality used for

patients with head and neck cancer. Many patients are submitted to

high doses of radiotherapy of large areas including dentition, oral

mucosa, maxilla, mandible and salivary glands.1–2 As a result of direct

or indirect effects of ionizing radiation, oral complications such as

radiation caries, mucositis, candidiasis and soft tissue necrosis are

inevitable, which in turn lead to a decrease in quality of life.

Previous studies on the mechanisms of radiation-induced oral com-

plications mainly focused on radiation dosimetry, effects on DNA,

changes in salivary flow and quality, etc.3–5 In addition, perturbation

on the microbiota may also contribute to an imbalance in the oral

microecosystem and play an important role in oral health mainten-

ance.6 Thus, a better understanding of the oral microbiota is essential

for effective preventive oral care programs in relation to patients

receiving radiotherapy.

Dental plaque harbors a highly diverse resident community of

microorganisms. A few decades ago, most of our knowledge on the

composition of the oral microbiota was based mainly on culture tech-

niques.7 With the advent of molecular techniques such as denaturing

gradient gel electrophoresis (DGGE) and terminal restriction frag-

ment length polymorphism (T-RFLP), it has been found that cul-

ture-dependent methods appear to underestimate oral microbiota

diversity. To date, more than 700 taxa have been identified from the

oral microbiota based on information derived from culture and

molecular approaches.8–9 Culture-independent molecular techniques

are capable of surveying entire bacterial communities and characteri-

zing an enormous diversity of oral microbiota, bypassing the need to

culture bacteria. To avoid inefficiency and underestimation caused by

cultivation techniques, molecular fingerprinting and high-throughput

sequencing have already been used to explore changes of oral micro-

flora in healthy individuals,10–12 but have not so far been applied to

assess radiation-induced shifts of the oral ecosystem.

In this study, a high-throughput sequencing technique—pyrose-

quencing—was used to estimate the detailed diversity of plaque

microbiota of irradiated patients. Moreover, this study aimed to assess

the temporal variation in plaque microbiota during radiotherapy.

MATERIALS AND METHODS

Subjects characteristics and radiotherapy protocols

This study was approved by the ethics committee of Shanghai Jiao

Tong University. After we had obtained written informed consent,

eight patients who were scheduled to receive head-and-neck radiation

therapy were included as study subjects at our institution. The average

age was about 45 years, with life expectancy of at least 2 months.

Patients who received previous head-and-neck irradiation or chemo-

therapy were excluded. None of the patients received antibiotics

during therapy or within 3 months before the study, nor did they have

Sjögren’s syndrome13 or any disease characterized by xerostomia. The

protocol of radiation technique has been previously described in detail
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by Shao et al.14 The primary field was irradiated through lateral

parallel-opposed portals with 6-MV photons, 2.0 Gy/30 fractions.

Each patient received 10 Gy per week for 6 weeks, with cumulative

dose of 60 Gy. The parotid and submandibular glands were directly

adjacent to the target volume and could not be spared.

Microbial sampling

For each of the eight subjects, supragingival plaque samples were

collected at seven time points (once per week for 7 weeks) before

and during radiotherapy using the method mentioned in the

Manual of Procedures for Human Microbiome Project (http://hmpdacc.

org/tools_protocols/tools_protocols.php) with minor modifications.

Plaque samples were obtained from the maxillary first molar accor-

ding to the above mentioned protocols. Briefly, after the sampling site

had been isolated with cotton rolls and dried with a gentle stream of air

from an air-water syringe, a sterile Gracey curette was used to remove

all of the supragingival plaque from the buccogingival surfaces of the

maxillary first molar with as many strokes as necessary. The collected

plaque sample was released from the curette by agitation in 300 mL of TE

buffer (10 mmol?L21 Tris-HCl (pH 7.5) and 1 mmol?L21 ethylene

diaminetetraacetic acid). The microbial samples were immediately

transported on ice to the laboratory for further DNA extraction and

pyrosequencing analysis. All samples were collected at seven time points

within 7 weeks. The samples collected at the time point PT (prior to

treatment, no dose received) was used as a control group. The following

6-week treatment period included 10 Gy (the first week of radio-

therapy), 20 Gy (second week), 30 Gy (third week), 40 Gy (fourth week),

50 Gy (fifth week) and 60 Gy (sixth week, the end of radiotherapy).

DNA extraction and pyrosequencing analysis

The plaque samples were lysed in a Mini-Beadbeater-16 (Biospec

Products, Bartlesville, OK, USA) according to the manufacturer’s

instructions. The total genomic DNA was obtained from the lysate

using a Bacterial Genomic DNA Extraction Kit (QIAGEN, Valencia,

CA, USA). All DNA was stored at 220 6C before further analysis.

Polymerase chain reaction (PCR) amplification of the 16S rDNA

hypervariable V1–V3 region12 was carried out using the forward pri-

mer 8F and reverse primer 533R, and pyrosequencing was performed

with standard Roche 454 GS-FLX protocols.15 The primer sequences

and 8-bp barcode were removed. The sequences that were less than

200 bp, contained ambiguous bases or homopolymeric stretches, or

checked as chimeric artifacts were discarded. The qualified sequences

were submitted to the SILVA database (SILVA 106; http://www.arb-

silva.de) for taxonomic analysis. MOTHUR (version 1.25.1; http://

www.mothur.org/) was applied to generate the operational taxonomic

units (OTUs) and OTU rarefaction curves. Community richness and

diversity indices (ACE, Chao1, Good’s coverage, Shannon Weaver and

Simpson diversity indices) were also determined by the MOTHUR

program at the 0.03 level. The profile heat map was generated by the

R program (http://www.r-project.org/). Lorenz curves were created in

Excel (Office 2007; Microsoft Corporation, Redmond, WA, USA).

RESULTS AND DISCUSSION

Overall sequence data

A total of 189 305 sequences were generated and 147 232 qualified

sequences were used for further analyses. A total of 3 460 OTUs were

identified from all samples based on 3% sequence dissimilarity. The

average number of sequences at each time point was 21 033 (2 629 per

sample, s.d.5392.9). Good’s coverage was around 98% for the all

sequences at seven time points, indicating that about two additional

phylotypes would be expected for every 100 additional sequences

obtained (Table 1). This level of coverage indicated that the 16S

rRNA sequences identified at these time points represented most of

the bacterial sequences present in the plaque samples.16 The richness

of bacterial communities of plaque before and during radiotherapy

was estimated by rarefaction curves. For instance, the rarefaction

curves of control group (PT, Figure 1) presented different slope at

three dissimilarity levels (3%, 5% and 10%), which reveals the rela-

tionship between OTUs and sampling depth. Generally, the cutoff of

3% dissimilarity was used in species level analyses. However, the steep

slope on the rarefaction curve at 3% cutoff suggested that the number

of OTUs or the bacterial richness of the plaque samples was not yet

completely revealed by the current number of sequences. How many

Table 1 Comparison of phylotype coverage and diversity estimation at 3% dissimilarity in observed diversity richness (OTUs), estimated OTU

richness (ACE and Chao 1), Good’s coverage (Good) and diversity indices (Shannon and Simpson)

Time point Average number of sequences per sample (s.d.) OTUs ACE Chao1 Good Shannon Simpson

PT 2 823 (138.8) 1 024 2 344 1 866 0.979 4.46 0.0384

10 Gy 3 031 (148.1) 1 038 2 420 1 882 0.980 4.61 0.0291

20 Gy 2 251 (180.2) 836 2 190 1 610 0.976 4.20 0.0402

30 Gy 2 618 (144.7) 895 2 016 1 544 0.981 4.51 0.0294

40 Gy 2 983 (183.7) 731 1 780 1 365 0.985 3.87 0.0504

50 Gy 2 736 (143.3) 815 2 244 1 633 0.981 4.00 0.0474

60 Gy 1 963 (101.4) 580 1 515 1 103 0.982 3.96 0.0410
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Figure 1 Rarefaction curves of control group (PT, prior to treatment). The

relationship between OTUs found and number of sequences sampled was

observed at 3%, 5% and 10% dissimilarity levels and the corresponding curves

were plotted. OTU, operational taxonomic unit.
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sequences are sufficient or what sampling depth is needed depends on

the goal of the study. As few as 100 sequences per sample were suffi-

cient to detect the major patterns of variation among the microbial

communities in the guts of diverse mammals.17 Depth of coverage of

about 1 000 sequences per sample seems to provide a good balance

between number of samples and depth of sampling.18 The number of

sequences analyzed in our study (2 629 per sample) was well above that

recommended and can be considered reasonable. Compared with the

oral microbial communities determined by cultivation or traditional

cloning and sequencing, these results from pyrosequencing analysis

showed much higher diversity. However, if the goal is complete cha-

racterization of all phylotypes in a sample or group, additional sequences

will be required to determine the detailed diversity of oral microflora,

especially when many species are rare or the diversity is high.

Composition of the bacterial community

The current technology is generally much more effective in the iden-

tification of higher level taxonomic assignments such as phyla, orders

and genera, than species or strains.19 After eliminating unclassified

sequences (4 038 sequences, 2.7%), 140 different genera were identi-

fied from pooled samples of seven time points. The top three genera in

the control group (PT) included, in order of prevalence at the time

point PT, Neisseria (16.19% of the sequences taxonomically assigned at

the genus level), Streptococcus (15.58%) and Capnocytophaga (15.04%).

By contrast, the top three genera varied significantly across different

time points during radiotherapy (Figure 2). Among all genera, 11

genera (Streptococcus, Actinomyces, Veillonella, Capnocytophaga,

Derxia, Neisseria, Rothia, Prevotella, Granulicatella, Luteococcus and

Gemella), which were found in all subjects, varied in relative abundance
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Figure 2 Heat map analysis of the top 75 genera detected among seven time points. The color of each column represents the number of sequences of corresponding

genus. The phylogenetic trees generated by the R program were used to estimate the distances based on genus composition.
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during the course of radiotherapy (illustrated in detail in Figure 2).

Although from our data, it is not possible to draw any conclusions

regarding their pathogenicity, pathogenic taxa are suspected from pre-

vious studies. Streptococcus and other caries-related bacteria such as

Veillonella and Actinomyces fluctuated significantly and accounted for

a large proportion of the bacterial communities. These top three genera

interact with each other in the oral cavity, and they may play an impor-

tant role in the development of dental caries.20–22 It is known that

Granulicatella is very fastidious and difficult to cultivate. In our study,

this genus was dramatically reduced in dental plaque following radi-

ation. It is therefore tempting to speculate that Granulicatella is unlikely

to contribute to the pathogenesis of post-radiation diseases such as

radiation caries. Derxia, which has also been found in tropical soils,23

and Luteococcus, which was also isolated from human blood and the

peritoneum,24–25 fluctuated differently, but little information about its

pathogenicity in oral cavity is available so far. Other predominant gene-

ra, such as Rothia, Prevotella, Capnocytophaga and Neisseria, might be

involved in the susceptibility of an individual to periodontal disease.16

It was possible that the observed bacterial composition might

be influenced by biases in the 16S rRNA sequencing technology.

There were multiple possible sources of bias including the method

of DNA extraction, PCR amplification, target region selection,

sequence screening, etc. For example, the genus Prevotella may be

predominant when the hypervariable V1–V3 region is targeted.26

However, this region can provide results similar to Sanger sequencing

and obtain representational characterization of microbial communi-

ties. In addition, most of the pyrosequencing contain none or only a

few errors which are caused by homopolymers (repeated nucleotides).

These errors may be interpreted as a rare OTU, inflating richness

estimates.19 In consideration of the complexity of Next Generation

Sequencing platform, more effort should be made to reduce the biases

of current technology.

Among all genera, 50% of all sequences were comprised of the

top five genera including Streptococcus, Veillonella, Actinomyces,

Capnocytophaga and Derxia. Moreover, the top 10 and top 30 genera

constituted roughly 80% and 90% of the total sequences in relative

abundance, respectively. Therefore, it was reasonable to speculate that

the overall sequence distribution was unequal. When dealing with the

issue of evenness, the Lorenz curve developed by Max O. Lorenz was

originally used to assess inequality of social wealth distribution, and

has been recently introduced to studies of biodiversity.27 In this

research, the sequence distribution of communities before and during

radiotherapy was represented by Lorenz curves (Figure 3). Ideally, a

perfectly equal sequence distribution would be one in which every

genus has the same number of sequences (line of perfect equality in

Figure 3). However, the shapes of Lorenz curves in our study were far

away from the perfect evenness line, indicating that the microbial

communities were dominated by several major taxa and the genera

evenness was low, even though the diversity was high.

Cluster analysis

The assessment of differences between microbial communities is criti-

cal for understanding large-scale trends in microbial ecology. By com-

paring the compositions of oral communities from different time

periods, we can learn how specific factors affect community develop-

ment and how species or individuals associate with each other.28

Cluster analysis using weighted UniFrac metrics (Figure 4) found that

samples before radiotherapy (PT) and the early stages of radiotherapy

(10 Gy, 20 Gy and 30 Gy) formed a cluster distinct from the time

points at later stages of radiotherapy (40 Gy, 50 Gy and 60 Gy), indi-

cating that there existed temporal variations in microbial communi-

ties through the course of treatment. Comparing the cluster analysis

with the phylogenetic tree generated by the R program showed similar

results for the distances based on genus composition (Figure 2).

In summary, the bacterial diversity and temporal variation of oral

microbiota in patients receiving head-and-neck radiotherapy were

investigated by pyrosequencing. The detailed richness and relative

abundance of 140 genera were found and the temporal fluctuations

of the microbial communities were also observed across seven time

points before and during radiotherapy. Moreover, the low evenness

of genera in relative abundance was revealed by Lorenz curves. The

present study demonstrated that high-throughput pyrosequencing
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facilitated the evaluation of microbiome in the diseased condition.

This technique provided valuable information about the profiles of

oral microbial communities and potential pathogens during radio-

therapy, and may help guide the clinical medication and microbial

intervention during the course of treatment.
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