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Abstract

The COVID-19 pandemic has illustrated the importance of infection tracking. The role of

asymptomatic, undiagnosed individuals in driving infections within this pandemic has

become increasingly evident. Modern phylogenetic tools that take into account asymptom-

atic or undiagnosed individuals can help guide public health responses. We finetuned estab-

lished phylogenetic pipelines using published SARS-CoV-2 genomic data to examine

reasonable estimate transmission networks with the inference of unsampled infection

sources. The system utilised Bayesian phylogenetics and TransPhylo to capture the evolu-

tionary and infection dynamics of SARS-CoV-2. Our analyses gave insight into the transmis-

sions within a population including unsampled sources of infection and the results aligned

with epidemiological observations. We were able to observe the effects of preventive mea-

sures in Canada’s “Atlantic bubble” and in populations such as New York State. The tools

also inferred the cross-species disease transmission of SARS-CoV-2 transmission from

humans to lions and tigers in New York City’s Bronx Zoo. These phylogenetic tools offer a

powerful approach in response to both the COVID-19 and other emerging infectious disease

outbreaks.

Introduction

Public health programs are often challenged by outbreaks caused by novel or re-emerging

pathogens. Appropriate and immediate public health interventions are then required to pre-

vent an uncontrolled epidemic or global pandemic from developing [1, 2]. In the 21st century

alone, the world has experienced outbreaks of the Ebola virus, Zika virus, new strains of Influ-

enza viruses, and the present COVID-19 pandemic caused by SARS-CoV-2 [1, 3, 4].
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Whole-genome viral sequencing when applied in genomic epidemiology, plays an increas-

ingly important role in investigating many infectious disease outbreaks [5]. The COVID-19

pandemic reinforces the potential importance of these newer approaches. The primary goal of

any epidemiologic investigation is the mitigation and termination of disease spread. Analysis

at the nucleotide level using state-of-the-art sequencing technologies can be used for the char-

acterisation of pathogens and their transmission patterns [2, 6]. The viral genomes of in partic-

ular rapidly mutating RNA viruses, generate sufficient genetic diversity for the inference of the

pathogen’s transmission. Therefore, genomic epidemiology is becoming a feasible and useful

tool to infer viral epidemiological dynamics, solely through the use of viral genomic data. Such

data is increasingly available from diagnostic testing across the entire timeline of an epidemic

[1].

Complete and accurate inference of infection transmission networks can enable effective

protocols to be implemented to mitigate disease spread [1]. However, in practice, such an

approach is usually hampered by the inability to completely sample an entire population [7].

Unsampled sources of infection play a significant role in infectious disease transmission lead-

ing to the rise of unexpected clusters of infection. They also impede with estimating the burden

of infection in a population [7, 8].

Many of the challenges in the COVID-19 pandemic relate to the difficulties with tracking

virus spread within a community [9]. Some SARS-CoV-2 infected individuals may be asymp-

tomatic or pre-symptomatic, while being infectious to others. This leads to the presence of

unknown or unsampled sources of infection within a community [10]. These sources could

explain in part high infection rates, atypical clusters and even unaccounted for cross-species

transmissions as seen in this pandemic [8, 11]. Systemic ways of inferring SARS-CoV-2 trans-

mission networks is crucial to correctly estimate the number of asymptomatic or undiagnosed

sources, with the ultimate goal of reducing virus transmission.

A multitude of approaches aimed at inferring inter-host viral transmission using within-

host evolutionary dynamics exist. These include the work conducted by Didelot et al., Staple-

ton et al., and Xu et al. [7, 12, 13]. We have previously used and extended these well-established

methods to estimating HIV transmission and unknown sources of infection in a population

[14]. Moreover, these tools have been applied to infer the transmission of SARS-CoV-2 [15–

17]. In this study, we fine-tuned these tools and extended the analyses to infer both transmis-

sion networks and infer the presence of unsampled sources of infection. Using publicly avail-

able SARS-CoV-2 genomic data, we were able to get insights in sampling approaches, the

potential success of physical distancing, and show how certain infected clusters are connected

through the inference of unknown sources of infection. The pipeline was also able to infer the

SARS CoV-2 infection of the lions and tigers at the Bronx Zoo in New York City, USA whose

infection raised much interest [18].

Our analyses demonstrate the ability of phylogenetics using limited data sets to infer the

presence and of unsampled sources contributing to viral spread. This ability may assist in

answering questions regarding both the direction of transmission and how certain infected

populations are connected. The latter would be beneficial for better modeling of outbreaks and

assist with building focused public health responses.

Methods

Overview of the phylogenetic pipeline

The phylogenetic pipeline and approach used is shown in Fig 1. The process consisted of five

steps: 1. Data extraction, 2. Multiple Sequence Alignment (MSA), 3. Parameterization and

phylogenetic inference 4. Transmission tree generation and 5. Data visualization.
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Through multiple testing and iterations, and comparison to publicly available epidemiolog-

ical data, this multistep process was fine-tuned specifically for SARS-CoV-2. The generated

transmission networks of SARS-CoV-2 were again compared with preexisting epidemiological

data via literature reviews, to assess the validity of the inference of unsampled sources of infec-

tion. All the codes for the pipeline with examples can be found at https://github.com/

theLongLab/TransCOVID and described in more detail below.

Description of the Canadian, Russian, and New York State data sets

The selected data source was GISAID (https://www.gisaid.org/) [19]. We initially evaluated the

data from Canada, Germany, France, the African continent, South Korea, Russia, and New

York State for testing the methodology. We were able to finetune the pipeline so that it was

both robust in its application and inference capabilities (see below). For our final analysis we

focused on Canada, Russia, and New York State (S1 Table). Each data set offered different

types of challenges for appropriate parameter settings for each use case, and were good scenar-

ios to test the pipeline and its inferences.

The Canadian dataset was concise. The sampling rate at the time of data collection (January

of 2020 to July of 2020) was adequate with just over 4 million tests being performed (with a

weekly average of over 55 000 tests at 0.8% positivity), of which about 116 000 had tested posi-

tive. The public health interventions appeared to control the infection as there was a clear drop

in the average number of weekly reported cases from over 2000 cases to well below 500 by

early July [20]. The selected dataset spanned across several provinces, but the majority of data

available at the time was for 3 provinces namely, Quebec, Ontario, and British Columbia. The

Fig 1. Detailed overview of the proposed five-step pipeline. The parameters that were optimised to fit the dynamics

of the SARS-CoV-2 virus are depicted on the left.

https://doi.org/10.1371/journal.pone.0261422.g001
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entire Canadian dataset for the COVID-19 pandemic in that time interval was relatively well

documented allowing us to validate our results of inferred unsampled cases [21].

The dataset collected in Russia (March 2020 to September 2020) was similar to the above

dataset but appeared to be sampled at a lesser rate, suggesting a larger number of unsampled

sources to be remaining in the population. By late September, Russia, was performing a weekly

average of 90 000 tests, with over 2.2% being positive at over 7 200 cases. However, it was

reported that about 8 000 new cases were reported. Additionally, Russia observed a spike in

their COVID-19 cases post September 25th probably associated with difficulties rolling out

comprehensive mitigation protocols and contact tracing [22]. Based on the epidemiological

data available in the GISAID database, the pipeline needed to be optimized to correctly infer

the directions of transmission resulting in the accurate mapping of infected population clusters

under these circumstances [19].

The New York State data represented a different set of factors and assumptions to address.

During the study period (February 2020 to September 2020), New York state was considered a

COVID-19 epicenter with the second-highest cases numbers of COVID-19 in the USA in

March 2020. It also had a large population of people traveling into the region and physical dis-

tancing practices had not been strictly implemented [23, 24]. Similar to the Russian dataset the

New York State had a lower sampling rate in comparison to its rate of disease incidence [25].

Similar to Russian dataset New York State too showed a marked increases in the number of

cases from mid-June to September reporting over 1 000 new dases daily [22, 26]. These dra-

matic spikes in disease incidence and the accompanying lack of sampling could result in the

presence of potential hidden super spreader events to be present in the population data set.

Therefore, this would be a challenging data set for the phylogenetic pipeline. As further test, we

included the SARS-CoV-2 sequences obtained from the lions and tigers at the Bronx Zoo, New

York. The sequences from the zookeepers were not present in GISAID and therefore were not

included in the dataset to ensure the continuity of quality control standards of the data. We

expected the pipeline to be able to infer the cross-species transmission despite this, enabling us

to get a deeper insight on how well the pipeline could infer viral transmission chains.

Viral sequence collection and quality control

Both FASTA sequence data and the corresponding epidemiological data were downloaded

from GISAID (https://www.gisaid.org/) [19]. The accession numbers of the sequences used are

described in the S1 Table. We confirmed that the selected data had complete sequences with

high sequence coverage. According to the inhouse filter present in GISAID complete sequences

comprised of genomes with lengths greater than 29,000 nucleotides, high coverage were

sequences with less than one percent of undefined bases, and low coverage were those with

greater than five percent of undefined bases. Using a bespoke filtering algorithm, sequences

with complete collection dates (with day, month and year) and locations were selected ensuring

compatibility for the generation of timed phylogenetic trees in the subsequent steps.

Multiple Sequence Alignment (MSA)

MSA was performed using the Multiple Alignment using Fast Fourier Transform (MAFFT)

algorithm [27]. MAFTT was chosen due to its robustness in handling large datasets as well as its

speed and efficiency, which comes with minimal cost to the accuracy of the alignment [28–30].

Phylogenetic parameter selection

Phylogenetic reconstruction was performed through Bayesian time-trees employing BEAST

2.6.2 [31]. The analysis was conducted with activated tip dates, a Generalized Time Reversible
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(GTR) site model with a gamma category count of 4, a relaxed clock model, and a Birth-Death

Skyline Serial model as the prior. Parameter selection was influenced by our previous work on

HIV transmission and other publications using these tools for SARS-CoV-2 (see below) [14–

16, 32].

Phylogenetic tree generation

The total Markov chain Monte Carlo (MCMC) chain length stood at 1 billion which was per-

formed as 10 separate runs each of chain length 107. The individual runs were then merged

using LogCombiner 2.6.2 and the validity of the MCMC run was evaluated using Tracer 1.7.1

by reference to the Estimates Sample Size (ESS) of each inferred parameter [33]. It was ensured

that the ESS was greater than 200 for each parameter. Subsequently, the phylogenetic tree was

extracted through TreeAnnotator 2.6.3 using common ancestor node heights and a target tree

type of maximum clade credibility.

Transmission tree inference

Transmission tree inference was conducted using the Bayesian program TransPhylo; a dedi-

cated software designed to reconstruct transmission networks from timed phylogenetic data

[7]. TransPhylo is particularly well suited and has been used for different COVID-19 dataset

analyses [32]. TransPhylo enables the inference of transmission trees for an ongoing pandemic

complete with unsampled sources of infection and the date of infection. The identification of

unsampled sources was particularly important in identifying how certain clusters were con-

nected and understanding the direction of viral transmission. TransPhylo was executed with

parameters that represented viral generation times within 1 to 14 days with a median of 5.5

days and sampling times of 2 to 14 days with a median of 7 days. It should be noted that these

parameters had to be varied, usually within these boundaries based on the geographical region

of focus (See section “Parameter Optimization of the Pipeline” below).

Visualization of the viral transmission networks

Transmission data tables obtained using TransPhylo were visualized using Gephi 0.9.2 an

established network analysis software [34]. Gephi’s built-in clustering algorithms Force Atlas 2

[35] and Yifan Hu [36] were used to identify population clusters in the transmission network

as well as visualize the data in a comprehensible manner.

Parameter optimization of the pipeline

Using the five-step process of the pipeline, we examined the available data for Canada, Russia,

and New York State (GISAID accession numbers described in the S1 Table). The MCMC runs

conducted in both the inferences of the phylogenetic tree by BEAST and the transmission tree

by TransPhylo were statistically validated by examining their trace diagrams.

We ensured that all BEAST-generated results had Estimated Sample Sizes (ESS) above 200.

The detailed configuration of the BEAST2 and TransPhylo setups is depicted in Tables 1 and 2

respectively. Through multiple runs and tests, we settled upon these parameters based on the

statistical validity of the MCMC runs by obtaining sound values for Estimated Sample Size

(ESS) and ensuring the MCMC chains reach convergence for the different values.

Once the results were obtained the separate MCMC runs were combined using LogCombi-

ner and the trace diagram was viewed using Tracer. A sample of the Tracer overview diagram

for New York is shown in S1 Fig.
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As shown in Table 2 TransPhylo was executed with parameters that represented the distri-

bution of the generation times within 1 to 14 days with a median of 5.5 days. Similarly, sam-

pling times were represented by a distribution of 2 to 14 days with a median of 7 days.

These parameters were made variable in the MCMC chain as these distributions varied

based on the geographical region under study. These distributions take the form of gamma dis-

tributions, this is a common assumption made in epidemiology to explain both sampling and

infection dynamics in a population and is adopted by TransPhylo [7, 32]. However, we also

tested this assumption by checking whether the data does in fact fit to a gamma distribution

using the R package fitdistrplus [37].

Finally, along with the transmission network, TransPhylo provides a trace diagram of its

MCMC diagram (S2 Fig). This to ensure that the estimated parameter values have reached

convergence.

Statistical validation of the pipeline

We adopted a guided “trial-and-error” approach to validate our pipeline and ensure its scal-

ability. This approach consisted of testing parameters guided by our knowledge from our pre-

vious work on HIV [14], and through multiple passes of refinement of parameters obtained

through model testing the COVID-19 data using BEAST and those reported in the literature

[16, 38]. This allowed us to fine tune the parameters for the BEAST and TransPhylo models to

the COVID-19 data. We first experimented with small datasets ranging from a few hundred

sequences to ensure that the MCMC chains provided robust results.

As mentioned, the selection of MAFFT (Multiple Alignment Fast Fourier Transform) was

done based on its reliability as an accurate and fast tool for sequence alignments involving

large datasets such as ours and assumes a common ancestor [27–29].

Table 1. Parameter configuration for BEAST2 phylogenetic tree inference.

Criteria Parameter Validation/ comments

Site model Model Gamma Site

model

Gamma category count was set to five to enable variation for each site in the substitution model. Parameters

of GTR were kept constant

Substitution Rate 1.0

Gamma Category Count 5

Shape 1.0

Proportion variant 0.0

Subst Model GTR

Clock

model

Relaxed Clock Log-Normal Default parameters

Priors Birth Death Skyline Serial Model Default parameters

MCMC Chain Length 1 000 000 000 Separated into 10 × 107

https://doi.org/10.1371/journal.pone.0261422.t001

Table 2. Parameters configuration for TransPhylo transmission tree inference.

Criteria Parameter Validation

Generation time

distribution

Shape 1 Generation time was made variable so that it can be estimated using

the MCMC run.Scale 0.01917

Unfixed

Sampling time

distribution

Shape 1 Sampling time was made variable so that it can be estimated using the

MCMC run.Scale 0.03836

Unfixed

MCMC 200 000

https://doi.org/10.1371/journal.pone.0261422.t002
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Our first adjustments to the phylogenetic inference were made to the GTR site model as the

base substitution rate inferences were not sufficiently robust as they produced ESS values less

than 200. We were able to resolve this issue by increasing the Gamma category count to 5.

Secondly on increasing our data sizes to over a few thousand sequences, with more complex

problems (such as sequences from multiple species, sequences from regions with limited imple-

mentation of physical distancing) we observed another decline in ESS values. We were able to

mitigate this by increasing the chain length. This was incorporated by breaking the analysis into

10 identical runs with each MCMC chain length spanning to 107 and combining the results.

Due to the dynamic nature of the sampling rates and virus generation times based on the

region under study in the transmission inference by TransPhylo, we kept the parameters unfixed.

We also increased the chain length until consistency for the inferred values was reached.

Results

Using the richness of the GISAID (https://www.gisaid.org/) [19] data, we tested and optimized

the phylogenetic pipeline for the analysis of unsampled/undiagnosed sources of infection in

the context of the COVID-19 pandemic. Through consecutive tests, we examined the pipeline

in terms of its statistical soundness in addition to authenticating its inferences through fact-

checking with publicly available epidemiological and other data.

As described in the methods, for the validation process, we focused our analyses to the data

for Canada, Russia, and New York State as there was more additional data available apart from

sequencing data, such as for instance testing numbers. We felt that this information would

allow for a more detailed analysis with regard to inferring unknown sources of infection in

these regions over the other.

The MCMC runs conducted in both the inference of the phylogenetic tree by BEAST and the

transmission tree by TransPhylo were statistically validated by examining their trace diagrams.

We ensured that all BEAST-generated results had Estimated Sample Sizes (ESS) above 200.

Upon close inspection, certain parameter values were not entirely consistent with the avail-

able literature. Depending on the size of the data sets we found reproductive rates from 0.2 to

0.3 to values between 0.4 and 0.8. Several outliers giving a much higher value were also

observed, ranging anywhere from 1.0 to 2.5. It was determined that the majority of these values

were inaccurately small compared to literature [39, 40]. Billah et al. determined by analyzing

42 studies on three different databases, that the average worldwide reproductive rate ranged

from 2.39 to 3.44 [39]. Other studies for Russia, and the United States, but also those including

data from other areas such as France, Germany, China, South Korea, found reproductive rates

ranging from 0.26 to as high as 6.69, depending on the extent of the pandemic in those coun-

tries. [39–41]. The most likely reason for this is the short time span and the relatively small

number of samples. However, we observed that down the line these errors had minimal to no

effect when inferring transmission patterns and inferring infection dates, through TransPhylo.

It could be stated that this was mainly due to the fact that the viruses’ reproductive rate is

dependent on the region under study due to mitigation strategies and other regional factors.

Since our analysis were region based, we were able to account for this for the analyses for Can-

ada, Russia and New York State.

The analysis of the spread of SARS-CoV-2 in Canada

The first reported case of COVID-19 infection in Canada was seen in January of 2020 in

Ontario, Toronto followed by reports of documented infections in several regions of

British Columbia by early February followed by cases in Quebec and finally to the rest of

Canada by late March. During this time period, a more extensive sampling of infected
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individuals was carried out [42–44]. The transmission network diagram produced by the

pipeline (Fig 2) successfully inferred the transmission events consistent with the observa-

tions in these reports. In alignment with literature the pipeline inferred the first inci-

dence of infection to have occurred in Ontario in January of 2020. From the total

number of 1 496 nodes present in the transmission network, 963 of them were sampled

nodes and the remaining 533 nodes which accounted for 35.63% of the network were

inferred as unsampled sources. These inferences are consistent with the extensive testing

deployed across Canada during that period and estimations of undiagnosed individuals

[43]. There was a marked increase in the testing rate for COVID-19 in Canada beginning

from early March. By late March the Canadian diagnostic laboratories were performing

over 12 000 tests per week with an average of over 1 000 positive tests [45]. As such this

accrual of testing combined with the quantity of cases arising at this time is consistent

with our findings.

The transmission diagrams show the clustering of nodes within the same region as regions

started to slow the spread of SARS-CoV2 infection consistent with the promotion of physical

distancing practices in Canada by mid-March [46]. This observation would support the suc-

cess of infection prevention approaches such as the “Atlantic Bubble” (ie. the Provinces of

New Brunswick, Prince Edward Island, Nova Scotia, Newfoundland and Labrador) established

on the 3rd of July 2020 [47]. This success appeared evident when examining the transmission

of COVID-19 in Newfoundland (which belongs to the “Atlantic Bubble”). Based on the

sequences used, the phylogenetic pipeline inferred no in-province transmission events for

Newfoundland from March of 2020 to July 2020 which could lend support to the reported suc-

cess of the Atlantic Bubble. We believe, the transmission diagram obtained from the phyloge-

netic pipeline, could potentially be used to examine and easily visualize the effects of various

infection control protocols.

Fig 2. The transmission diagram obtained for the Canada dataset. The transmission diagram was colour coded

based on the regions from which the sampled nodes were generated. The first node of infection, originated in Ontario,

has been marked by a green arrow. The inferred unsampled sources of infection are coloured in red and the colour of

the arrow depicts the recipient node. The diagram clearly depicts the effect of physical distancing with clear isolation of

the nodes of the same colour. The unsampled nodes (35.63% shown in red) make up the rest of the transmission chain.

https://doi.org/10.1371/journal.pone.0261422.g002
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The analysis of the spread of SARS-Cov-2 in Russia

The transmission diagram of the Russian dataset (Fig 3) appears consistent with the literature,

despite the absence of extensive epidemiological data. TransPhylo inferred 61.06% as non-

sampled sources of infection, consistent with the apparent lower sampling. Kozlovskaya et al.

[48] state that the first COVID-19 cases identified in Russia were found in Moscow, and that

national transmission may have started from there, and would have been bolstered by new

arrivals to other cities. This is backed up by the presence of Moscow-derived samples appear-

ing at a large portion of larger cluster junctions in our transmission diagram (Fig 3), indicating

travel may have led to spread and clusters in cities such as Saint Petersburg. Additionally,

Komissarov et al. [49] have identified nine distinct transmission networks within the Russian

Federation, making use of similar data obtained from GISAID [49]. Several of the transmission

networks deduced by Komissarov et al. were transmissions from Moscow to Yakutia, from

Krasnodar to Orenburg, and from Moscow to Sverdlovsk. The intermingling of various

regions in our generated transmission pathways are consistent with this dynamic spread

reported for the Russian Federation (Fig 3). TransPhylo did also show transmission between

many regions and transmission through various inferred unsampled sources which could

potentially tie the transmission networks identified Komissarov together [49]. Additionally,

several larger transmission clusters were reported in Saint Petersburg, which are recapitulated

in our analyses. These patterns appear to coincide with outbreaks at the Vreden Hospital

which occurred somewhere from late-March to early-April [49].

Fig 3. The transmission network obtained from the Russian data set. The transmission network inferred

considerably large number of unsampled sources (61.06% shown in red) in contrast to the sampled sources. We can

see clustering of the nodes in areas as such as St. Petersburg (in green) from which a majority of the sampled sequences

are present (19.04%). However, this level of granularity was difficult to obtain for the other regions of Russia due to the

lack of sequences from these regions. In spite of this shortcoming due to the pipelines robustness we are able to better

understand the transmission by the filling in the potential links through the inference of unsampled sources of

infection, suggesting a highly dynamic spread of the virus through the population with no single source. Despite this it

was still able to infer transmission events that were authenticated by the available literature. The “source” of infection

in this network is an inferred unsampled node marked by a red arrow (almost center in the transmission diagram).

https://doi.org/10.1371/journal.pone.0261422.g003
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Analyses of the spread of SARS-CoV-2 in New York State and the inference

of cross-species transmission

The New York State dataset further tested the capabilities of the proposed pipeline. The result-

ing transmission diagram (Fig 4) appears to have an epicenter with a large number of

unsampled nodes overtaking the number of sampled cases. The central node’s inferred infec-

tion date of December 2019 coincides with the world’s first reported cases of COVID-19 [50].

Due to the large numbers of inferred unsampled sources of infection comprising of over

65.73% of the network coupled with the lack of clustering of nodes from the same region or

location, it appears that on average, in New York State there were potentially various introduc-

tions through travel and broad range of clusters of infection, and the available physical distanc-

ing practices did not appear to limit the spread. The available literature on the spread of

SARS-CoV-2 in New York State seems to be consistent with this notion [51–53].

The phylogenetic pipeline was also able to infer SARS-CoV-2 transmission from human to

animal. In April of 2020 seven tigers and four lions at the Bronx Zoo, New York City were

infected with SARS-CoV-2. The subsequent extensive analysis showed that the cross-species

transmissions were from a human to lion and human to tiger [18]. Our pipeline was capable of

making this inference from the genetic data available (Fig 5A). The pipeline was also inferring

a series of unsampled sources of infection that arose from sampled sources and linked to the

infection of the lions at the Bronx Zoo. The analysis also suggested that the subsequent

Panthera sp. infections were the result of animal to animal infections and not solely human to

animal transmission. To confirm the plausibility of this inference we analysed the epidemio-

logical data of the nodes surrounding the lion and tiger data points (Fig 5B). This revealed that

these sampled sources were obtained at laboratories (including the New York University

Fig 4. Transmission network diagram obtained from the New York State dataset. The number of inferred

unsampled sources (65.73% shown in red) greatly outnumber the sampled sources (34.27% shown in green). The clear

formation of a central cluster of nodes can be seen due to a high number of introductions of the infection into the

region from the outside. The Bronx Zoo area is circled and further shown in Fig 5.

https://doi.org/10.1371/journal.pone.0261422.g004
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Medical Center and QDX Pathology) less than 12 miles from the Bronx Zoo. Assuming that all

sources sampled at these sites lived in the area serviced by these laboratories, this information

reinforced the robustness of the pipeline.

Discussion

Our analysis clearly indicated that after finetuning the combination of Bayesian phylogenetics

and TransPhylo results in a pipeline able to infer transmission networks and including the

inference of unsampled sources of infection. This pipeline offers a significant addition to cur-

rent infectious diseases modeling approaches and gives valuable insights into the transmission

dynamics in a population, and the effect of public health interventions.

Through a process of repeated iterations and validation, we were able to fine-tune the five-

step phylogenetic approach. Using our previous work on HIV as the foundation of the pipeline

we meticulously calibrated the protocol to capture the dynamics of causative SARS-CoV-2 virus

and the COVID-19 pandemic. The “parameter optimised” pipeline inferred the key transmis-

sion events using genomic data without apparent extensive contact tracing. The main inconsis-

tencies we identified in the pipeline were observed in BEAST2 inferences of the “become

uninfectious rate” and “reproductive number”. Theses inconsistencies are most likely caused by

the comparatively small sample size and the limited sample available and the scarcity of data for

the period assessed. Normally one uses data spanning many years for such work, but this was

unavailable at the start of the COVID-19 pandemic. As more and more jurisdictions are includ-

ing routine and large-scale viral genomic data collection as part of their COVID-19/SARS--

CoV-2 surveillance, the lack of sampling will become less of an issue. Thus, the inference of

reproductive rates and analyzing the effects of public health would become more accurate.

Regardless, our analyses showed that even with the limited datasets, the final output being the

inference of transmission networks in a population appeared consistent with the literature.

The ability to infer the presence of unsampled sources of infection leads to a number of

interesting possibilities. Through the optimization of TransPhylo for COVID-19, we have

Fig 5. The inference of the cross-species human to lion transmission of the SARS-CoV-2 virus. (A) Colour coded

based on the host organism. Based on this analysis the virus transmitted from a cluster of human hosts (green) to the

lions (blue). Two lions have been initially infected from the human hosts and they, in turn, have infected the other

lions. (B) Colour coded based on the vicinity of the sampled region from the Bronx Zoo, New York City. The entire

cluster in that region is from areas that are less than 12 miles from the zoo.

https://doi.org/10.1371/journal.pone.0261422.g005
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been able to explore some of these in the context of zoonoses as can be seen in the New York

State dataset. TransPhylo works on the assumptions that the pandemic is ongoing and future

transmissions continue to occur even after the completion of sample collection. Using a Bayes-

ian approach with timed trees, we took great lengths to ensure that our pipeline produces the

most statistically sound tree. Together, with these assumptions and the optimization of the

tools’ sampling and infectious rates according to the region of study, we were able to infer

transmission networks consistent with the literature.

In all of our tests, the pipeline was able to infer the transmission of SARS-CoV-2 and gave a

rather clear perspective on the pandemic’s progression. The pipeline outcomes and inferences

matched the published literature. In the analysis of the Russian and Canadian datasets, we

observed the pipeline accurately inferred the evolution of the pandemic. We believe we were

also able in our transmission diagrams to see the effect of the countermeasures applied by pub-

lic health authorities on the pandemic. For instance, in the Canadian context the Atlantic Bub-

ble (i.e. the Atlantic Provinces of Canada has been mentioned a lot as demonstration how

travel restrictions could limit viral spread. Our analyses based on the data from GISAID,

would support this notion. We observed limited spread within the Atlantic Bubble, and all

introductions appeared to be linked other regions in Canada. It needs to be noted the sequence

data from the Canadian Atlantic Provinces was not extensive enough, so we cannot exclude

that transmission actually occurred at the local level not caught by the limited sequences

available.

The significant power of inferring unsampled sources of infection to complete a transmis-

sion network was probably most apparent in handling “problematic” data sets such as New

York State. At the time of data collection, New York State was a COVID-19 epicenter where

the rate of infection had clearly surpassed the sequence sampling rate. The population was

apparently highly mobile with people entering the state as well as local travel [51, 53]. The

transmission network diagram was able to infer this mobile population and connect the scat-

tered nodes from different regions in New York through the inference of unsampled sources

of infection. The pipeline was able to use partial genomic and epidemiological data to paint a

rather comprehensive picture of the pandemic’s status in the state, suggesting many different

smaller as well as larger transmission chains linking various geographic regions in the state.

We expanded this step further to infer the inter-species transmission of the virus from humans

to lions. The inclusion of viral sequences obtained from the lions at the Bronx Zoo resulted in

the generation of a transmission tree that depicted the lions being infected from human

sources. This was consistent the original reports [18]. The validity of the result was further con-

firmed by the surrounding nodes of sampled sources being from the neighboring areas sur-

rounding the Bronx Zoo. This cross-species transmission had intrigued health care workers

and researchers until it was validated by extensive laboratory testing [18]. The pipeline was

able infer this event using the available publicly available genomic data. Moreover, for the

Bronx Zoo case it is of interest that the pipeline also inferred animal to animal transmissions,

rather than only human to animal transmissions. It may therefore be of interest to apply these

approaches further to the data obtained from the various mink farm outbreaks to examine the

extend of human to animal, animal to animal, and animal to human transmissions in more

detail [54].

We recognize that the “Unsampled” individuals in our analysis, may have been tested and

have been found positive for SARS-CoV-2 but these sources were not sequenced. In regions

without extensive sequencing practices or infrastructure this is a common hurdle; and it will

not be feasible to sequence their entire symptomatic infectious population. It is in such envi-

ronments that our solution serves the highest practicality. By combining the unsampled num-

bers inferred by our pipeline with the number of SARS-CoV-2 positive test numbers in the
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population, it could give insight into the number of undiagnosed asymptomatic and pre-symp-

tomatic individuals in the population. Thereby providing the governing body with a more

detailed overview of the ongoing epidemic.

Our analyses is limited by the fact that we used public available data, and as such no com-

prehensively sequenced samples are available. This of course, could result in an underestima-

tion of the inference of unsampled individuals. However, despite this limitation the overall

picture emerging from the inferences were consistent with the literature. With more and more

sequencing data being available for different regions, the accuracy of inferring the correct

number of undiagnosed and asymptomatic individuals will increase. This while using anony-

mous data and without intensive contact tracing. The latter will again help improve epidemio-

logical modeling and interpreting the effects of public health interventions on infection

control and spread.

Conclusion

We were able to reconstruct the transmission patterns in a population and establish a clear pic-

ture of an infected population despite incomplete sampling. With the refinements we applied

to the pipeline we demonstrated the potential utility of these tools for COVID-19. We also

believe that these types of robust pipelines can truly be front-line tools in the battle against

infectious diseases beyond SARS-CoV-2.
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COVID-19 pandemic in Australia using genomics. Nature Communications. 2020;11. https://doi.org/10.

1038/s41467-019-13872-1 PMID: 31896763

PLOS ONE SARS CoV-2 transmission inference

PLOS ONE | https://doi.org/10.1371/journal.pone.0261422 December 15, 2021 14 / 16

https://doi.org/10.1038/s41564-018-0296-2
https://doi.org/10.1038/s41564-018-0296-2
http://www.ncbi.nlm.nih.gov/pubmed/30546099
https://doi.org/10.1146/annurev-virology-110615-035747
http://www.ncbi.nlm.nih.gov/pubmed/27501264
https://doi.org/10.1007/978-3-540-75855-6_12
https://doi.org/10.1080/10408363.2020.1783198
https://doi.org/10.1080/10408363.2020.1783198
http://www.ncbi.nlm.nih.gov/pubmed/32645276
https://doi.org/10.1038/s41579-020-0354-7
http://www.ncbi.nlm.nih.gov/pubmed/32367066
https://doi.org/10.1136/bmj.h1314
http://www.ncbi.nlm.nih.gov/pubmed/25964672
https://doi.org/10.1093/molbev/msw275
https://doi.org/10.1093/molbev/msw275
http://www.ncbi.nlm.nih.gov/pubmed/28100788
https://doi.org/10.1126/science.abe3261
http://www.ncbi.nlm.nih.gov/pubmed/33303686
https://doi.org/10.1016/j.ygeno.2020.04.016
http://www.ncbi.nlm.nih.gov/pubmed/32353474
https://doi.org/10.1073/pnas.2008373117
http://www.ncbi.nlm.nih.gov/pubmed/32632012
https://doi.org/10.1016/j.tmaid.2020.101830
https://doi.org/10.1016/j.tmaid.2020.101830
http://www.ncbi.nlm.nih.gov/pubmed/32755673
https://doi.org/10.1038/s41598-018-37186-2
http://www.ncbi.nlm.nih.gov/pubmed/30626917
https://doi.org/10.1371/journal.pmed.1002961
https://doi.org/10.1371/journal.pmed.1002961
http://www.ncbi.nlm.nih.gov/pubmed/31671150
https://doi.org/10.3390/microorganisms8020196
https://doi.org/10.3390/microorganisms8020196
http://www.ncbi.nlm.nih.gov/pubmed/32023939
https://doi.org/10.1038/s41467-019-13993-7
http://www.ncbi.nlm.nih.gov/pubmed/31911652
https://doi.org/10.1038/s41467-019-13872-1
https://doi.org/10.1038/s41467-019-13872-1
http://www.ncbi.nlm.nih.gov/pubmed/31896763
https://doi.org/10.1371/journal.pone.0261422


17. Farah S, Atkulwar A, Praharaj MR, Khan R, Gandham R, Baig M. Phylogenomics and phylodynamics

of SARS-CoV-2 genomes retrieved from India. Future Virology. 2020; 15: 747–753. https://doi.org/10.

2217/fvl-2020-0243

18. McAloose D, Laverack M, Wang L, Killian ML, Caserta LC, Yuan F, et al. From people to panthera: Nat-

ural sars-cov-2 infection in tigers and lions at the bronx zoo. mBio. 2020; 11: 1–13. https://doi.org/10.

1128/mBio.02220-20 PMID: 33051368

19. Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID’s innovative contribution to global

health. Global Challenges. 2017; 1: 33–46. https://doi.org/10.1002/gch2.1018 PMID: 31565258

20. Berry I, Soucy J-PR, Tuite A, Fisman D. Open access epidemiologic data and an interactive dashboard

to monitor the COVID-19 outbreak in Canada. Canadian Medical Association Journal. 2020; 192:

E420–E420. https://doi.org/10.1503/cmaj.75262 PMID: 32392510

21. Zhao N, Liu Y, Smargiassi A, Bernatsky S. Tracking the origin of early COVID-19 cases in Canada.

International Journal of Infectious Diseases. 2020; 96: 506–508. https://doi.org/10.1016/j.ijid.2020.05.

046 PMID: 32425633

22. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. The

Lancet Infectious Diseases. 2020; 20: 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1

PMID: 32087114

23. Greenstone M, Nigam V. Does Social Distancing Matter? SSRN Electronic Journal. 2020 [cited 23 Dec

2020]. https://doi.org/10.2139/ssrn.3561244

24. Barbanel J. New York City Has Gotten 14,000 Complaints About Social-Distancing Violators. WSJ.

2020. Available: https://www.wsj.com/articles/new-york-city-has-gotten-14-000-complaints-about-

social-distancing-violators-11587482276. Accessed 23 Dec 2020.

25. Centers for Disease Control and Prevention. CDC COVID Data Tracker. Centers for Disease Control

and Prevention. 2020. pp. 6–7. Available: https://covid.cdc.gov/covid-data-tracker/#cases_

casesper100klast7days

26. Graziosi G. Coronavirus: More than 1,000 New Yorkers test positive in a day for first time since June |

The Independent. In: Independent [Internet]. [cited 6 Nov 2021]. Available: https://www.independent.

co.uk/news/world/americas/coronavirus-new-york-cases-today-covid-19-andrew-cuomo-b628330.html

27. Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: A novel method for rapid multiple sequence alignment

based on fast Fourier transform. Nucleic Acids Research. 2002; 30: 3059–3066. https://doi.org/10.

1093/nar/gkf436 PMID: 12136088

28. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive

sequence choice and visualization. Briefings in Bioinformatics. 2019; 20: 1160–1166. https://doi.org/10.

1093/bib/bbx108 PMID: 28968734

29. Nakamura T, Yamada KD, Tomii K, Katoh K. Parallelization of MAFFT for large-scale multiple

sequence alignments. Hancock J, editor. Bioinformatics. 2018; 34: 2490–2492. https://doi.org/10.1093/

bioinformatics/bty121 PMID: 29506019

30. Yamada KD, Tomii K, Katoh K. Application of the MAFFT sequence alignment program to large data—

reexamination of the usefulness of chained guide trees. Bioinformatics. 2016; 32: 3246–3251. https://

doi.org/10.1093/bioinformatics/btw412 PMID: 27378296

31. Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al.

BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. Pertea M, editor.

PLOS Computational Biology. 2019; 15: e1006650. https://doi.org/10.1371/journal.pcbi.1006650

PMID: 30958812

32. Didelot X, Kendall M, Xu Y, White PJ, McCarthy N. Genomic Epidemiology Analysis of Infectious Dis-

ease Outbreaks Using TransPhylo. Current Protocols. 2021; 1: 60. https://doi.org/10.1002/cpz1.60

PMID: 33617114

33. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior Summarization in Bayesian Phylo-

genetics Using Tracer 1.7. Systematic Biology. 2018; 67: 901–904. https://doi.org/10.1093/sysbio/

syy032 PMID: 29718447

34. Bastian M, Heymann S, Jacomy M. Gephi: An Open Source Software for Exploring and Manipulating

Networks Visualization and Exploration of Large Graphs. Available: www.aaai.org

35. Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a continuous graph layout algorithm for

handy network visualization designed for the Gephi software. PLoS ONE. 2014; 9: e98679. https://doi.

org/10.1371/journal.pone.0098679 PMID: 24914678

36. Hu Y. Efficient, High-Quality Force-Directed Graph Drawing. Methematica Journal. 2006; 10: 37–71.

Available: https://pdfs.semanticscholar.org/be33/ebd01f336c04a1db20830576612ab45b1b9b.pdf

37. Delignette-Muller ML, Dutang C. fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical

Software. 2015; 64: 1–34. https://doi.org/10.18637/JSS.V064.I04

PLOS ONE SARS CoV-2 transmission inference

PLOS ONE | https://doi.org/10.1371/journal.pone.0261422 December 15, 2021 15 / 16

https://doi.org/10.2217/fvl-2020-0243
https://doi.org/10.2217/fvl-2020-0243
https://doi.org/10.1128/mBio.02220-20
https://doi.org/10.1128/mBio.02220-20
http://www.ncbi.nlm.nih.gov/pubmed/33051368
https://doi.org/10.1002/gch2.1018
http://www.ncbi.nlm.nih.gov/pubmed/31565258
https://doi.org/10.1503/cmaj.75262
http://www.ncbi.nlm.nih.gov/pubmed/32392510
https://doi.org/10.1016/j.ijid.2020.05.046
https://doi.org/10.1016/j.ijid.2020.05.046
http://www.ncbi.nlm.nih.gov/pubmed/32425633
https://doi.org/10.1016/S1473-3099(20)30120-1
http://www.ncbi.nlm.nih.gov/pubmed/32087114
https://doi.org/10.2139/ssrn.3561244
https://www.wsj.com/articles/new-york-city-has-gotten-14-000-complaints-about-social-distancing-violators-11587482276
https://www.wsj.com/articles/new-york-city-has-gotten-14-000-complaints-about-social-distancing-violators-11587482276
https://covid.cdc.gov/covid-data-tracker/#cases_casesper100klast7days
https://covid.cdc.gov/covid-data-tracker/#cases_casesper100klast7days
https://www.independent.co.uk/news/world/americas/coronavirus-new-york-cases-today-covid-19-andrew-cuomo-b628330.html
https://www.independent.co.uk/news/world/americas/coronavirus-new-york-cases-today-covid-19-andrew-cuomo-b628330.html
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/nar/gkf436
http://www.ncbi.nlm.nih.gov/pubmed/12136088
https://doi.org/10.1093/bib/bbx108
https://doi.org/10.1093/bib/bbx108
http://www.ncbi.nlm.nih.gov/pubmed/28968734
https://doi.org/10.1093/bioinformatics/bty121
https://doi.org/10.1093/bioinformatics/bty121
http://www.ncbi.nlm.nih.gov/pubmed/29506019
https://doi.org/10.1093/bioinformatics/btw412
https://doi.org/10.1093/bioinformatics/btw412
http://www.ncbi.nlm.nih.gov/pubmed/27378296
https://doi.org/10.1371/journal.pcbi.1006650
http://www.ncbi.nlm.nih.gov/pubmed/30958812
https://doi.org/10.1002/cpz1.60
http://www.ncbi.nlm.nih.gov/pubmed/33617114
https://doi.org/10.1093/sysbio/syy032
https://doi.org/10.1093/sysbio/syy032
http://www.ncbi.nlm.nih.gov/pubmed/29718447
http://www.aaai.org
https://doi.org/10.1371/journal.pone.0098679
https://doi.org/10.1371/journal.pone.0098679
http://www.ncbi.nlm.nih.gov/pubmed/24914678
https://pdfs.semanticscholar.org/be33/ebd01f336c04a1db20830576612ab45b1b9b.pdf
https://doi.org/10.18637/JSS.V064.I04
https://doi.org/10.1371/journal.pone.0261422


38. Komissarov AB, Safina KR, Garushyants SK, Fadeev A V, Sergeeva M V, Ivanova AA, et al. Genomic

epidemiology of the early stages of the SARS-CoV-2 outbreak in Russia. Nature Communications.

2021;12. https://doi.org/10.1038/s41467-020-20168-2 PMID: 33397888

39. Billah MA, Miah MM, Khan MN. Reproductive number of coronavirus: A systematic review and meta-

analysis based on global level evidence. Flacco ME, editor. PLOS ONE. 2020; 15: e0242128. https://

doi.org/10.1371/journal.pone.0242128 PMID: 33175914

40. Al-Raeei M. The basic reproduction number of the new coronavirus pandemic with mortality for India,

the Syrian Arab Republic, the United States, Yemen, China, France, Nigeria and Russia with different

rate of cases. Clinical Epidemiology and Global Health. 2020; 9: 147–149. https://doi.org/10.1016/j.

cegh.2020.08.005 PMID: 32844133
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