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Abstract: Necrotizing enterocolitis, a potentially fatal intestinal inflammatory disorder affecting
primarily premature infants, is a significant cause of morbidity and mortality in neonates. While
the etiology of the disease is, as yet, unknown, a number of risk factors for the development of
necrotizing enterocolitis have been identified. One such risk factor, formula feeding, has been shown
to contribute to both increased incidence and severity of the disease. The protective influences afforded
by breastfeeding are likely attributable to the unique composition of human milk, an extremely potent,
biologically active fluid. This review brings together knowledge on the pathogenesis of necrotizing
enterocolitis and current thinking on the instrumental role of one of the more prominent classes of
bioactive components in human breast milk, glycosaminoglycans.

Keywords: necrotizing enterocolitis; inflammation; neonatal; intestine; prematurity; human
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1. Introduction

Necrotizing enterocolitis (NEC) is a common intestinal inflammatory disorder developing during
the neonatal period. The disease progresses rapidly from subtle abdominal distension to necrosis,
intestinal perforation, multi-organ failure, and, in severe cases, death [1,2]. Because of better
survivorship among the smallest premature infants [3], as well as a dearth of treatments for the
disease [4], the incidence and health burden of NEC have only grown in recent decades [1]. Mortality
rates often approach 30% in infants born less than 1500 g, and range higher in those babies requiring
surgical intervention [1]. Infants surviving NEC often suffer from long-term morbidities related to both
the disease and its treatment, including neurodevelopmental delays, retinopathy, and short-bowel
syndrome [5,6].

Although the exact etiology of the disease is still unclear [7], a number of risk factors have been
identified. These include, among others, prematurity and low birthweight status, developmental
immaturity of both the intestine and immune system, inappropriate microbial colonization of the gut,
and formula feeding [8]. What few advances have been made in NEC treatment recently revolve
around the growing understanding of the importance of optimal infant nutrition, particularly that
provided by human breast milk (HM), sourced either from the mother or a donor [5,9,10].

HM functions in several critical biological roles in neonates, including support for intestinal
development and maturation, protection against pathogens, and basic dietary sustenance for
growth [9,11]. In babies fed exclusively HM, enteric infections are reduced by approximately 50%
compared to infants fed bovine-based formula [12,13]. In the preterm population specifically, infants fed
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exclusively HM, as opposed to at least partial bovine-based feedings, experience significant reductions
in morbidity and mortality [14]. In very low birthweight (VLBW, <1500 g) infants, feedings composed
of at least 50% HM in the first two weeks of life correlate with a six-fold decrease in the incidence
of NEC [15]. Additional studies [16–18] have also indicated HM, particularly that sourced from the
biological mother, reduces the incidence and severity of NEC in preterm infants. Donor milk, while
arguably preferable to bovine-based formula [19], loses effectiveness through the pasteurization process,
and is also not age-matched to the developmental stage of the infant to whom it is donated [20,21].
Thus, studies utilizing donor HM have shown mixed results when examining utility in protection
against preterm pathogens, NEC, and mortality [22–24].

This narrative [25,26] review briefly summarizes what is known about the pathogenesis of NEC in
premature infants, and expands upon the potential role of glycosaminoglycans, bioactive components
of HM, in protection from NEC.

2. Pathogenesis of Necrotizing Enterocolitis

The pathogenesis of NEC appears to be highly complex and multifactorial. Data predominantly
implicate developmental immaturity of the intestinal immune system [27], as well as an altered
microbiome [28,29], in the development of a dysfunctional intestinal barrier [30] in necrotizing
enterocolitis. While the sequence of events in NEC etiology remains unclear, the disease is likely
initiated by an excessive stimulation of toll-like receptor 4 (TLR4) by Gram-negative bacteria [31] in
the ileum of the premature infant. Activation of this receptor [32–38] leads to extensive inflammation,
denoted by apoptosis of enterocytes along the luminal border, impaired replacement of these enterocytes,
increased release of proinflammatory cytokines and chemokines, and, in total, breakdown of the
intestinal barrier [39–41]. This impaired intestinal barrier allows for greater bacterial translocation [42],
leading to increased inflammation via direct contact of pathogenic bacterial antigens with the mucosal
immune system [43]. Neutrophil recruitment to the intestinal border and production of reactive
oxygen species (ROS) further contributes to this inflammation [1,44,45]. TLR4 activation of the
underlying endothelium initiates microvascular complications, including a reduction in endothelial
nitric oxide synthase (eNOS), resulting in intestinal ischemia and necrosis [38,46,47]. Altogether, a
positive feedback loop of inflammation is created, overwhelming any counterregulatory attempts by
the host. Inflammation spreads systemically, leading to full-blown NEC and complications in organs
as distant as the brain [48]. Our understanding of the clinical picture in NEC is muddied by a lack
of appropriate animal models through which researchers can replicate most aspects of the human
condition, and subsequent inability to translate findings in these animal models to the bedside. In
particular, our limited understanding of the immature innate and adaptive immune systems and
developing microbiome, and potential interplay of these two factors, hinders abilities to target effective
treatments for NEC.

2.1. Developmental Immaturity

2.1.1. Innate Immune System

The innate immune system in the small intestine is comprised of both a physical barrier of
intestinal epithelial cells (IECs) and their biochemical products, and an underlying and complementary
immunological barrier [49]. The physical barrier is often considered to include intestinal alkaline
phosphatase, a loose layer of mucus [50], tight junctions linking IECs, and antimicrobial proteins
(AMPs) released by a specialized lineage of IECs, Paneth cells [51].

A number of developmental differences in IECs and the innate intestinal immune system have been
associated with the pathogenesis of NEC. For example, goblet cell numbers and levels of their signature
mucin, Muc2, are reduced in both mouse models and premature human infants with NEC [32], likely
associated with developmental immaturity of the ileum [52]. Reductions in goblet cell numbers are
thought to contribute to increased severity and incidence of NEC [52,53], potentially due to increased



Nutrients 2020, 12, 546 3 of 20

levels of bacterial translocation across an epithelium now inadequately guarded by mucus [53,54]. In
addition, Paneth cells in premature infants are deficient both in number and function [55], altering
the levels of lysozyme and defensins [56,57] and likely contributing to the development of NEC via
associated changes in the microbiome [58].

Immune cells in the intestines of premature infants often appear to function differently than those
of term neonates and adults, predisposing these infants to the development of NEC. Neutrophils,
first responders to tissue injury, demonstrate impaired phagocytic ability, increased oxidative burst
products, and variable cytokine production in premature infants compared to term babies [59]. Intestinal
macrophages in preterm infants appear to be hyperreactive and produce excessive proinflammatory
cytokines [60–62]. In addition, dendritic cell morphology and functionality in preterm neonates appears
to differ from that of term babies [63], and in a mouse model of experimental NEC, the recruitment of
dendritic cells to the luminal border directly disrupts intestinal barrier function [64].

Alterations in inflammatory signaling also predispose premature infants to the development of
NEC by creating a host environment hyperreactive to both commensal and pathogenic organisms [33,65].
TLR4, specifically, is thought to play a crucial role in NEC [66] due to its abnormally increased expression
in prematurity, both in mice and human infants [67,68]. Increased TLR4 expression appears to precede
histological damage of the intestine in mouse NEC models, strongly implicating a role for TLR4 in the
pathogenesis of the disease [65,69].

2.1.2. Adaptive Immune System

Adaptive immunity in the small intestine, thought to be less effective than innate immunity
in a newborn [70], is dependent upon antigen-presenting cells (APC), primarily dendritic cells and
IECs. A number of differences in adaptive immune function exist in infants with NEC, many of
which are likely a developmental artifact of prematurity. Levels of secretory immunoglobulin A
(sIgA), an antibody produced by lamina propia B cells and recognized for its ability to maintain the
microbiome by neutralizing pathogenic bacteria [71], are reduced in premature infants compared to
term babies [72,73], with clear implications for the development of NEC. Additionally, a significant
role for T cells in the pathogenesis of NEC is becoming increasingly evident. For example, mice lacking
functional T and B cells are less susceptible to NEC, but transfer of functional T cells to these animals
increases susceptibility to the disease [34].

Intraepithelial lymphocytes (IELs), regulators and initiators of both innate and adaptive immune
responses to bacterial invasion [74], are dispersed within the intestinal epithelium [41]. The γδ subset
of IELs, created during embryogenesis, are more reactive in the neonate than in the adult [75], and
preterm infants with NEC show significantly lower levels of these specialized T cells compared to
healthy preterm babies [76]. Regulatory T cells (Tregs), T cells modulating the immune response and
promoting tolerogenicity, are decreased in both experimental mouse [34] and human [77] NEC. In
neonates, baseline levels of the Treg inhibitor STAT3 (signal transducer and activator of transcription 3)
are increased compared to those of adults [34]. In a mouse model of NEC, when a STAT3 inhibitor is
introduced, levels of Tregs increase and NEC severity is reduced [34].

Finally, T helper (Th) cell differentiation also appears to be dysregulated during NEC. In particular,
Th17 cells, characterized by production of the inflammatory interleukin 17A (IL-17A) cytokine, have
been shown to be upregulated in both murine and human NEC, and are thought to play a role in
intestinal barrier dysfunction [34]. In an experimental model of NEC, mice treated with all-trans
retinoic acid (ATRA), an inhibitor of Th17 differentiation [78], showed lower levels of Th17 cells,
increased populations of Tregs, and reduced NEC severity [34,79]. Interestingly, retinoic acid is
produced endogenously by IECs, but this production is thought to be largely dictated by luminal
commensal bacteria [80].
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2.2. Dysbiosis

Colonization of the infant intestine, previously thought to commence at birth, may originate in
the placenta [81], where the fetus is possibly surrounded by non-sterile amniotic fluid [82], though this
finding has been recently debated [83,84]. The main event responsible for infant intestinal colonization,
however, is likely birth [85]. Vaginal delivery of term infants results in initial colonization with
predominantly aerobic bacteria, including Streptococcus, Staphylococcus, and Lactobacillus [86]. As these
aerobic bacteria consume oxygen, the microbiome shifts to reflect greater populations of facultative
anaerobes, followed by strict anaerobes such as Clostridia and Bifidobacteria species [87,88]. These
obligate anaerobes produce short-chain fatty acids (SCFAs), anti-inflammatory lipids known to regulate
epithelial and immune cell development in the gut [89], and protect against the proliferation of
pathogenic bacteria [90]. In preterm infants, the development of the intestinal microbiome following
birth appears to follow a reasonably predictable progression from Bacilli to Gammaproteobacteria
to Clostridia [91]. The resulting intestinal population in preterm infants is characterized by lower
diversity, fewer species numbers, and a greater proportion of pathogenic bacteria, many of which
could initiate the TLR4 signaling cascade via lipopolysaccharide (LPS), compared to that of infants
born at term [92–95]. This errant microbiome in the premature infant, together with an immature
intestinal immune system, presents a mechanism for hyperinflammation and deterioration of the
critical intestinal barrier.

Dysbiosis can refer to improper proportions of microbial species, as well as a lack of diversity
and richness of species overall [96]. A skewed microbiome can also result from the gain or loss
of critical microbial populations, often negatively affecting the functionality of both the intestine
and its interwoven immune system. An appropriate microbiome is thought to be indispensable in
triggering the maturation of the mucosal immune system in the gut [97]. Support for the role of
dysbiosis in NEC is largely derived from studies in germ-free animals, in which the disease cannot be
reproduced [98–100]. Additionally, factors indirectly influencing microbial colonization in the infant,
such as antibiotic use in the mother [67], can increase NEC development risk in the infant. While a
single pathogen is not thought to induce NEC, a series of microbial shifts in the microbiome has been
associated with development of the disease [28], and these changes usually precede diagnosis [101],
implicating a potential role for dysbiosis in the pathogenesis of NEC. For example, infants with NEC
often have reduced populations of Bifidobacteria, Bacteroidetes, and Firmicutes anaerobes, particularly
Negativicutes, and increased levels of Proteobacteria and Actinobacteria [28,101–105]. This reduction
in anaerobes in NEC leads to a decline in the production of protective SCFAs [7,103,104], a further
complication of NEC-associated dysbiosis. Generally, the microbiome of infants developing NEC
appears to be characterized by reductions in both species richness and diversity [95,106,107], though
not all studies have noted these trends [101,105,108].

A number of factors beyond prematurity can influence the microbial colonization of the infant
intestine. The use of antibiotics, rampant in the premature infant population [109,110], is known to
increase the risk of NEC development, with risk correlating strongly to duration of treatment [111,112].
Antibiotic exposure in neonates may lead to increases in Proteobacteria, decreases in Actinobacteria,
and, as with all antibiotic usage, inadvertent selection for antibiotic-resistant strains [85,113–115].
Mode of delivery also strongly influences the development of the infant microbiome. Babies born via
caesarean section are often colonized by increased populations of Clostridium and Staphylococcus and
decreased levels of Bifidobacterium and Bacteroides compared to infants born vaginally [102,116,117].
Antacid use, particularly histamine-2 (H2) blockers, can disrupt the acid-base balance in the premature
intestine [118], predisposing the infant to NEC [119,120] by favoring populations of Proteobacteria
over those of Firmicutes [121,122]. Even endogenous factors may affect the relative proportions of
intestinal colonizers. For example, Paneth cell lysozyme and defensin secretion patterns, altered
in premature infants [56,57], can lead to irregular microbial colonization in infants [58,123]. Finally,
mode of feeding can direct the development of the neonatal microbiome. HM contains a microbiome
of its own [124], likely specialized for the infant with whom it is associated [125,126], and thus
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may be uniquely protective. While breastfeeding stimulates the expansion of Bifidobacterium, in
particular, and inhibits the growth of pathogenic bacteria [127,128], formula feeding often leads to
a slightly more diverse assemblage of Enterobacteriaceae, Bacteroides, Lactobacillus, Prevotella, and,
especially, Clostridium [87,129–131]. A number of biological components of HM are thought to help
shape the development of the infant microbiome, as well as prime intestinal immune development
and maturation.

3. Glycosaminoglycans in Milk

HM is a complex mixture of biologically active molecules known to play a role in infant nutrition,
protection from pathogens, and development and maturation of the intestinal immune system. The
composition of HM is not static, changing over time to meet the needs of a growing infant. Colostrum,
the first milk, is high in minerals, vitamins, hormones, and growth factors [132]. Transitional milk
replaces colostrum at approximately one week postpartum, and is high in fat and lactose [133].
Finally, mature milk follows at two weeks postpartum, consisting largely of water and nutritional
macronutrients necessary for infant growth [134]. All stages of HM, however, contain various
compounds necessary for development of the microbiome and protection of the infant from pathogens.
For example, oligosaccharides, commonly referred to as human milk oligosaccharides (HMOS), are
found in large quantities in HM and are largely unabsorbed, serving as prebiotics for commensal
gut bacteria [5], thereby bolstering and developing the innate immune system and microbiome in
neonates [135,136]. HM also contains immunoglobulins, such as sIga, which potentially serve as
prebiotics capable of assisting in the proper colonization of the newborn gut [137] while inhibiting
growth of pathogenic bacteria [138]. Glycosaminoglycans (GAGs), a class of polysaccharides found in
the extracellular matrix and outer surface of cells, are also prevalent in HM. Our understanding of the
potential functions of this class of molecules is still evolving, but their elevated concentrations in early
HM and a number of studies indicating protective capabilities of these molecules against pathogens
may indicate importance in the prevention of NEC.

GAGs, molecules composed of repeating, often highly sulfated disaccharides, include heparin,
heparan sulfate (HS), keratan sulfate (KS), hyaluronic acid (HA), chondroitin sulfate (CS), and dermatan
sulfate (DS) [139]. In HM, these GAGs, with the exception of HA, are bound to a protein core and
expressed as proteoglycans [140]. HA, uniquely, is neither sulfated nor assembled bound to a protein
core [141]. Once in the small intestine, pancreatic enzymes digest the proteins, resulting in free GAGs
(Figure 1a). Due to a lack of endogenous host enzymes in the small intestine capable of further
breaking down free GAGs [142], these molecules remain largely undigested through the majority of
the gastrointestinal tract [143], with eventual breakdown likely occurring in the cecum or colon [142].
In the case of HA, and potentially other GAGs, the resulting fragment sizes, whether created by
endogenous breakdown of the parent molecule or intentional supplementation of a specific molecular
weight, may differ vastly in function [144,145].

The composition of GAGs in milk differs greatly depending upon the source. In term HM, GAGs,
in sum, are approximately seven times more prevalent than in bovine milk, the basis of most infant
formulas [146]. Coppa et al. [146] determined, via a variety of methods, that large differences in GAG
relative composition also exist between the two milks (Figure 1b). CS accounts for 55% of the term
HM GAGs compared to only 21% of GAGs in bovine milk, but because of the reduced total quantity
of GAGs in bovine milk, this amounts to nearly 23 times as much CS in term human compared to
bovine milk. Term HM also has substantially higher levels of heparin (173 mg/L compared to 21 mg/L)
and HA (5 mg/L compared to 2 mg/L) and lower levels of DS (7 mg/L compared to 24 mg/L) than
bovine milk, though, interestingly, bovine milk is higher in HA by percentage (4.5% compared to 1.3%).
Additionally, GAGs present in term HM appear to be generally less sulfated compared with those in
bovine milk [146], though any impact of this difference on the infant has not been explored.
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Figure 1. Glycosaminoglycans, found in much greater quantities in human breast milk (HM), traverse
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A disparity in bioavailability also appears to exist between human and bovine milk.
Maccari et al. [143] compared the residual GAG content of the feces of term infants fed either
HM or formula, and noted significantly lower recovery of HM GAGs compared to those from
formula, indicating a much greater utilization of the GAGs derived from HM. In addition, a greater
proportion of highly sulfated GAGs, present at higher levels in bovine milk compared to HM,
appeared in the feces of both groups, potentially suggesting an inability of distal intestinal bacteria
to catabolize these compounds [147]. Differences in milk glycosaminoglycan composition, overall
quantity, and bioavailability may underly some of the protective effects of breastfeeding with regard to
NEC pathogenesis.

Notably, gestational age of the infant at birth and stage of lactation have prominent influences
on the GAG composition of HM. Coppa et al. [148] demonstrated that while preterm and term HM
have consistent proportions of the two foremost GAGs, chondroitin sulfate and heparin, the total
GAG content is approximately three times higher in preterm milk. The respective percentages of
CS and heparin are maintained as total GAG levels vary over the first month of lactation, with peak
levels of GAGs on day 4 of colostrum (9.3 g/L and 3.8 g/L in preterm and term HM, respectively)
and a subsequent decline to the end of the month (4.3 g/L and 0.4 g/L in preterm and term HM,
respectively). Interestingly, 50% (preterm) and 73% (term) of this reduction in GAG content is noted to
occur between days 4 and 10 [148]. Wang et al. [149] have established this progressive decrease of HM
GAG content occurs through at least the first six months of lactation. Additionally, differences in the
degree of sulfation occur during the lactation period, with HS sulfation increasing slightly over the
first six months and CS sulfation peaking at day 43 before subsequently declining [149]. While the
physiological rationale underlying GAG sulfation variability during the breastfeeding period has not
yet been appreciated, these changes in sulfation patterns are likely functionally significant [150].

Maternal characteristics may also alter both the GAG composition of HM and the ability of
the infant, indirectly, to break down those GAGs in the distal intestine. While Volpi et al. [151]
did not find GAG compositional changes among milk samples from mothers of varying ethnicities,
Mannello et al. [152] noted maternal health could directly influence GAG composition, as alterations in
the structure and sulfation levels of CS in the milk of a breast affected by invasive carcinoma differed
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with those in the unaffected breast of the same mother. Finally, Cerdó et al. [153] have established that
the microbiome of infants born to obese mothers is more capable of glycosaminoglycan degradation
compared with that of infants born to mothers of normal weight, with unspecified effects on the risk of
developing NEC. Further investigation into the potential impact of maternal obesity on GAG content
of HM and the ability of infants born to obese mothers to utilize HM GAGs would be of interest.

The utility of donor milk as a suitable substitute for formula has often been questioned,
particularly given the pasteurization process is known to reduce the bioactivity and concentration
of critical immunoglobulins, growth factors, and digestive enzymes [19]. HM contains active
glycosidases, enzymes capable of degrading glycoconjugates such as glycosaminoglycans in a time-
and temperature-dependent manner; however, these enzymes are unlikely to significantly alter the
composition of GAGs in donor milk, as little breakdown in glycoconjugates is seen with storage at
37 ◦C for up to 16 h [154]. Additionally, Coscia et al. [155] subjected donor milk samples to Holder
pasteurization, a method often utilized by milk banks, and noted the concentration and proportions of
HM GAGs are not significantly altered by the process. Thus, the current preference for donor milk over
formula may be warranted in this context, especially in at-risk, preterm infants, as GAG concentrations
and relative proportions remain largely unaffected by common storage and processing techniques.

4. Glycosaminoglycan Protection against NEC

In the small intestine, GAGs are believed to participate in a number of biological processes,
including molecular trafficking, maturation, and differentiation of a variety of cell types, modulation
of inflammatory events, structural support, and adhesion to bacteria in the intestinal lumen [156–159].
Importantly, GAG incorporation into the extracellular matrix and epithelial cell surface is thought to be
essential to a functional intestinal barrier [160]. Inflammation, particularly driven by proinflammatory
cytokine release, has been shown to disrupt endogenous production of sulfated GAGs [161]. In NEC,
impaired distribution of intestinal GAGs appears to mirror the patchy, skip lesion nature of the
disease [162]. While GAGs are not digested and incorporated into small intestinal tissue [143], their
supplementation through HM or other means may still provide significant benefits to the neonatal small
intestinal epithelium through their interaction with the epithelial surface or luminal contents [163],
especially in the context of their potential loss during inflammation. These extracellular interactions
of GAGs with IECs or luminal bacteria likely contribute substantially to the protective effects of HM
against NEC. While the precise function of GAGs in HM is incompletely understood (Figure 2), studies
attributing protective effects to individual GAGs, sourced either from HM extractions or biosynthetic
preparations, are accumulating, with the large majority focusing on CS, HA, and heparin.

Generally, GAGs are believed to exhibit antiviral and antibacterial properties [164]. HA has
been demonstrated to inhibit bacterial growth [165,166], and is a common matrix component of
bioengineered orthopedic scaffolding because of this bacteriostatic property. HM GAGs may also
influence the composition of the neonatal microbiome beyond growth constraints applied to certain
microbial species, resulting in a wide variety of potential physiological effects. Recently, several species
of human commensal bacteria, including strains associated with common probiotic formulas, have
been shown to actively degrade host GAGs in the intestine [167], lending some credence to the idea
that HM or formula-supplemented GAGs could act as prebiotics [168], promoting the growth of only
those commensal species outfitted with the enzymes necessary to metabolize these compounds. While
these prebiotic effects would be far more likely to affect the distal intestine as opposed to the ileum, the
ramifications of this potential GAG influence on the microbiome in total may include changes in NEC
susceptibility and require further investigation.
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Figure 2. Schematic of potential glycosaminoglycan mechanisms of protection in necrotizing
enterocolitis (NEC). CS: chondroitin sulfate; HA: hyaluronic acid; GAGS: glycosaminoglycans.

GAGs are also known to reduce microbial adhesion to IECs, often the initial step in infection.
Sava et al. [169] pretreated Caco-2 colonocytes with a mixture of heparin, HS, and CS, reducing the
capacity of Enterococci bacteria to adhere to the host cell surface. Hafez et al. [170] demonstrated
similar findings with regard to Staphylococci adhesion to host epithelial cells in the presence of free
GAGs. Treatment of HT-29 colorectal cells with heparin, a prominent GAG in HM, has also been shown
to reduce internalization of a number of bacterial species via a reduction in cellular adhesion [171].
Antimicrobial characteristics of GAGs have also been shown to extend to those isolated directly from
HM. For example, Newburg et al. [172] demonstrated CS or a CS-like compound extracted from HM
can inhibit binding of the gp120 human immunodeficiency virus (HIV) envelope protein to its receptor,
an essential early step in transmission of the virus. Coppa et al. [140] treated intestinal cell lines with
GAGs extracted from HM and demonstrated a reduction in pathogenic bacterial binding of intestinal
receptors, while Hill et al. [173] demonstrated the ability of HA 35 (biosynthetic HA of an intermediate
35 kDa size and with qualitatively similar effects to that of the inclusive HM HA fraction) to limit
intestinal adhesion of Salmonella Typhimurium.

GAGs present in HM may also work synergistically with the host immune system to both
upregulate endogenous defenses and tame the type of destructive, runaway inflammation characteristic
of NEC [174]. HA fragments of varied sizes have been shown to have protective effects on the intestinal
epithelium. Zheng et al. [175] noted exogenous administration of 750 kDa HA fragments ameliorated
disease in a colitis mouse model through a TLR4- and cyclooxygenase-2 (COX-2)-dependent repair of
the epithelium, while Riehl et al. [176] found similar protective effects in irradiated small intestinal tissue.
HA of 900 kDa size has also been shown to protect the intestinal epithelium of immunocompromised
mice through a reduction in inflammatory signaling [177]. Additionally, both HA 35 and a polydisperse
HM HA extract upregulate the antimicrobial protein human β-defensin 2 (HβD2) in human intestinal
epithelial cells and its ortholog in the murine large intestine [173,178].

Our group recently demonstrated the effectiveness of HA 35 in reducing the incidence and severity
of disease in a mouse model of necrotizing enterocolitis. Gunasekaran et al. [179] treated mouse pups
(age P14–16) with HA 35 (15 mg/kg or 30 mg/kg) once per day for three days prior to the initiation of
NEC. NEC was induced using a two-hit model of intraperitoneal dithizone injection followed by oral
administration of Klebsiella pneumoniae [55]. A stark reduction in proinflammatory cytokine release
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(tumor necrosis factor-alpha (TNF-α), GRO-α (growth-regulated oncogene-alpha), IL-12p70, and IL-6)
was seen with HA 35 treatment (either dose) compared to untreated NEC. These changes, coupled
with upregulation in tight junction proteins, likely led to the reduction in pathological intestinal
permeability and associated bacteremia, ultimately resulting in significantly improved pathology of
the ileum, substantially diminished disease severity, and significantly greater pup survival.

CS also exerts a number of well-documented effects on inflammation, including reductions in
pro-inflammatory cytokine and NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells)
levels [180], weakened COX-2 and NOS-2 (nitric oxide synthase-2) activities [181], and the upregulation
of a variety of antioxidant enzymes [182]. CS has demonstrated positive impacts in intestinal
bowel disease (IBD) [183,184], likely through anti-inflammatory effects [185] and increased epithelial
and mucosal tissue repair [183]. The anti-inflammatory effects of heparin, including reductions in
pro-inflammatory TNF-α and IL-6 signaling [186], have also been demonstrated in the context of
intestinal inflammatory diseases. Often utilized as a first line of treatment in IBD [187], heparin,
specifically low-molecular-weight or unfractionated heparin, has been shown to ameliorate disease
activity through a combination of anti-inflammatory and anticoagulative effects [188], resulting in
increased mucosal healing and improved intestinal barrier function [189].

Altogether, glycosaminoglycan-associated reduction in pathogen binding to host IECs, an
upregulation in intestinal defenses by GAGs, and a reduction in excessive inflammatory signaling is
likely to lead to an improvement in intestinal barrier function and a significant decline in bacterial
invasion and translocation, critical events in the pathogenesis of NEC [190,191]. Hall et al. [192]
established a line of goblet-like cells are more susceptible to invasion when bacteria are freely suspended
in bovine-based formula compared to HM. Hill et al. [173] demonstrated a polydisperse HM HA
extract is capable of protecting colonocytes from Salmonella infection in vitro. Mice treated with HA
35 are protected from Citrobacter rodentium infection via an upregulation in the critical tight junction
protein, ZO-1 (zonula occludens-1), resulting in reduced intestinal permeability and inhibited bacterial
translocation across colonic epithelium [193], similar to our findings in a murine NEC model [179].

Our group has also directly interrogated the ability of CS, the most common GAG in HM [146], to
limit both bacterial invasion (Figure 3a) and translocation (Figure 3b) in T84 colonocyte monolayers,
an in vitro model of the intestinal epithelium [194]. CS, at a concentration of 750 µg/mL given
prophylactically for 48 h prior to bacterial challenge, reduces invasion and translocation of SCB34
Escherichia coli, an invasive, multi-drug resistant bacterial strain isolated from a neonatal early-onset
sepsis case [195], by 75% compared to control. In this study, CS shows no effects on cell viability
while also reducing, though not significantly, the production of the inflammatory chemokine, IL-8.
Given the potent effects of GAGs on inflammation and prevention of infection, the availability of these
compounds in HM, and potentially their supplementation in formula following further systematic
review, may be critical to neonatal health in general, and specifically, in the prevention of NEC.
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Figure 3. The effects of chondroitin sulfate on E. coli invasion and translocation of T84 colonocyte
monolayers: (a) chondroitin sulfate (CS) was given prophylactically for 48 h prior to infection. A
dose-dependent reduction in bacterial invasion occurred with CS (M ± SEM), with 750 µg/mL showing
significantly lower bacterial invasion compared to control (** p = 0.0071; eta-squared = 0.0944); (b) CS
at 750 µg/mL was significantly protective by the third hour of inoculation (M ± SEM, ** p = 0.0018).
(Reprinted with permission of authors and SAGE Publishing [194]).

5. Conclusions

In this review, we assessed the GAG composition of sources of neonatal nutrition and relative
changes across the duration of infant feeding, as well as summarized the potential protective effects of
these GAGs against necrotizing enterocolitis. As common components of HM, GAGs are receiving
increased attention because of their demonstrated antimicrobial and anti-inflammatory effects, and
their potential to ameliorate intestinal inflammation and associated bacterial translocation of the
epithelium. The protective effects on host barrier function, combined with beneficial interactions
with, and positive influences on, luminal bacteria, likely serve to strengthen innate defenses against
gastrointestinal infection in the neonate. Additional studies are needed to further characterize the
effects of HM-derived GAGs on the intestinal epithelium, their interactions with specific bacteria, and
their influence on the neonatal intestinal microbiome in full, particularly in the contexts of prematurity
and NEC.
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