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Background: Zinc-alpha 2-glycoprotein (AZGP1), a secreted protein with ubiquitous

tissue expression, has been controversially linked to the risk of cardiovascular disease.

In a cohort of kidney transplant recipients, we measured serum AZGP1 levels after

transplantation over a 2 year period and tested for an association with pulse wave velocity

as an important parameter indicating future cardiovascular events.

Methods: Annual blood sampling and pulse wave velocity measurements were

longitudinally performed in 113 kidney transplant recipients. AZGP1 was measured in

serum samples using standard ELISA. Association of AZGP1 with pulse wave velocity

was longitudinally assessed during follow up of 2 years by mixed longitudinal modeling.

Results: AZGP1 serum levels declined significantly after kidney transplantation. This

decline was dependent on allograft function as indicated by inverse correlation with

eGFR. When corrected for eGFR multivariable analysis revealed an inverse correlation

between AZGP1 and pulse wave velocity. This analysis further showed independent

associations of older age, higher blood pressure, and higher calcium phosphate product

with higher pulse wave velocity.

Conclusions: Improved kidney function after transplantation leads to a decline in

AZGP1 serum levels. Independent of kidney function and other cardiovascular risk factors

lower AZGP1 levels are associated with higher pulse wave velocity in the 2 years after

kidney transplantation. These data suggest that AZGP1 might be a potential biomarker

for cardiovascular health and a target for improving cardiovascular outcome.

Keywords: AZGP1, ZAG, arterial stiffness, kidney transplantation, cardiovascular disease, pulse wave velocity

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death in patients with end stage renal disease
(ESRD) (1). Although, kidney transplantation confers a clear survival advantage for ESRD patients,
transplant recipients still have a markedly elevated risk of progressive CVD (2), due to their
exposure to classical risk factors (diabetes, hypertension, dyslipidemia) as well as additional risk
factors, such as transplant dysfunction, chronic inflammation and exposure to immunosuppressive
therapy (3, 4). Given the high CVD burden in kidney transplant recipients it is of great interest
to decipher the underlying mechanisms, establish prediction tools and evaluate biomarkers which
allow better functional understanding and risk stratification.
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Zinc-alpha 2-glycoprotein, AZGP1 (often also abbreviated
as ZAG) is a secreted 43 kDa protein which is expressed by
many tissues leading to a serum concentration of 30–70µg/ml in
healthy individuals. Despite a multitude of possible implications
in different diseases, understanding of this protein’s definitive
role is still lacking. AZGP1 has been suggested to modify
metabolic functions, blood pressure (BP), cancer metastasis,
neurological disease and CVD (5–10). As AZGP1 is partially
cleared by the kidney, increased serum levels can be observed
in patients with kidney dysfunction (11–13). Importantly, there
is a discrepancy in reported effects of AZGP1 on CVD between
patients with and without chronic kidney disease (CKD). While
higher AZGP1 levels were associated with reduced incidence of
coronary heart disease and atherosclerosis in non-CKD patients
(14, 15), higher AZGP1 levels were shown to correlate positively
with CVD in ESRD patients (16). It is therefore interesting,
that so far, AZGP1 has not been investigated in the context of
kidney transplantation.

Here, we first examined whether serum AZGP1 levels change
after kidney transplantation. Secondly, we tested the correlation
between AZGP1 levels and pulse wave velocity (PWV) as a
measure of arteriosclerosis and cardiovascular health at the time
of transplantation and 1 and 2 years afterwards.

MATERIALS AND METHODS

This single-center longitudinal-retrospective study included
113 patients from a previously well-characterized cohort of
kidney transplant recipients (17). Patients received a kidney
allograft at the transplant center of Hannover Medical School
between January 2014 and June 2016. At the time of
transplantation and during annual follow-up visits (379.1± 90.0
and 781.5 ± 116.2 days post-transplant) blood samples were
taken and PWV analysis was performed. Data on underlying
disease, transplantation history, previous treatments, and current
medication were taken from the medical charts and/or by patient
interview. The study was approved by the institutional review
board (#504) and performed according to the Declaration of
Helsinki. All patients gave written informed consent.

CV Risk Factors Determination and
Definition
Height and weight were measured and body mass index
(BMI) was calculated. BP measurements were carried out
by an automated sphygmomanometer (DINAMAP V100; GE
Healthcare) after a resting phase of 5min. Hypertension was
defined as systolic office BP values ≥130 mmHg and/or diastolic
BP ≥80 mmHg and/or current antihypertensive drug treatment.
Normotension was defined as BP <130/80 mmHg without
antihypertensive treatment, controlled hypertension as BP
<130/80 mmHg with treatment, uncontrolled hypertension as
BP ≥130/80 mmHg with treatment, and untreated hypertension
as BP ≥130/80 mmHg without treatment. Dyslipidemia was
defined as total cholesterol ≥200 mg/dl and/or low-density
lipoprotein (LDL) ≥130 mg/dl and/or high-density lipoprotein
(HDL) <40 mg/dl in men and HDL <50 mg/dl in women (18).

Residual renal function was defined by the use of diuretics while
on dialysis.

Laboratory Measurements
Blood and urine samples were analyzed in a central laboratory
(Synlab, Heidelberg, Germany) for full blood count, electrolytes,
creatinine, cystatin C, total cholesterol, high-density lipoprotein
cholesterol (HDL), low-density lipoprotein cholesterol (LDL),
high-sensitive C-reactive protein, and parathyroid hormone.
The estimated glomerular filtration rate (eGFR) was calculated
by using the creatinine-based CKD-EPI formula (19). AZGP1
(µg/ml) was measured in serum samples after storage at
−80◦C in 113 individuals using a commercial enzyme-linked
immunosorbent assay (Biovendor, Modrice, Czech Republic),
according to the manufacturer’s instructions. Investigators were
blinded to patients’ data and all measurements were performed in
duplicate. The assay sensitivity was 0.673 ng/ml. The intra-assay
coefficient of variation was <5%.

Pulse Wave Velocity
Carotid-femoral PWV was evaluated according to the
recommendations of the Task Force III on clinical applications
of arterial stiffness using the oscillometric Vicorder System
(Skidmore Medical Limited, Bristol, UK; software Ver. 4.0)
(20, 21). Measurements were performed in triplicates, with at
least 10 heart cycles per measurement. The mean of the three
measurements was used for further analysis.

Statistical Analysis
The statistical analysis was performed using SPSS Version
24.0 (IBM, New York). Data are presented in means ±

standard deviation or percentage and absolute numbers.
Continuous variables were compared by t-test or ANOVA and
correlation was evaluated with Spearman correlation coefficient.
Categorical variables were analyzed by Chi-squared test. We
investigated the association of serum AZGP1 with PWV
using longitudinal mixed models during the follow up of 2
years after transplantation. A P-value < 0.05 was considered
statistically significant.

RESULTS

Clinical characteristics of the study cohort are presented in
Table 1. A total of 113 patients (65 % male, n = 73) aged 51.1
± 14.7 years were enrolled (age range 18–78 years). At the time
of transplantation mean BMI was 26.6 ± 4.3 kg/m2 (range 17.4–
37.2). Forty-nine percent (n= 55) had been diagnosed with CVD
(coronary artery disease, post myocardial infarction, chronic
heart failure, left ventricular hypertrophy, atrial fibrillation,
peripheral artery disease, or a history of stroke). Twenty percent
(n = 23) suffered from diabetes mellitus and 96 % (n = 108) had
arterial hypertension. The dialysis vintage mean was 80.6 ± 45.9
months (range 12–198). Of all recipients, 85 % (n = 96) had not
undergone a previous transplantation and 19 % (n = 21) were
preemptively transplanted.

Mean AZGP1 serum levels were 116 ± 34.4µg/ml (range
46.6–231.8, n = 113) at the time of transplantation. We found
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TABLE 1 | Clinical characteristics of the study cohort (n = 113) at the time of

transplantation.

Clinical characteristics

Sex

Female 40/113 (35%)

Male 73/113 (65%)

Age (years) 51.1 ± 14.7 (18–78)

Body mass index (kg/m2 ) 26.6 ± 4.3 (17.4–37.2)

Cardiovascular diagnosis 55/113 (49%)

Hypertension 108/113 (96%)

Dyslipidemia 11/113 (10%)

Diabetes mellitus 23/113 (20%)

Underlying renal disease

Diabetes 14/113 (12%)

Vascular 18/113 (16%)

Glomerulonephritis 38/113 (34%)

Interstitial 5/113 (4%)

Hereditary 24/113 (21%)

Systemic 4/113 (4%)

Unknown 5/113 (4%)

Others 14/113 (12%)

Dialysis vintage (months) 80.6 ± 45.9 (12–198)

Peritoneal dialysis 7/113 (6%)

Hemodialysis 85/113 (75%)

Preemptive Tx 21/113 (19%)

Living donation 37/113 (33%)

Immunosuppression

Calcineurin inhibitors 110/113 (97%)

mTOR inhibitors 14/113 (12%)

Mycophenolic acid 110/113 (97%)

Steroids 112/113 (99%)

Continuous values are given as mean ± standard deviation with the range in brackets.

Categorical values are given as numbers and percentages. The denominator shows the

number of available observations for each parameter, and the numerator indicates the

number of patients who fulfill that measure. Cardiovascular diagnosis include coronary

artery disease, post myocardial infarction, chronic heart failure, left ventricular hypertrophy,

atrial fibrillation, peripheral artery disease, or a history of stroke. mTOR, mammalian target

of rapamycin.

no correlation between AZGP1 serum levels and underlying
renal disease (P = 0.654), preemptive vs. non-preemptive
transplantation (P = 0.804), dialysis modality comparing
peritoneal vs. hemodialysis (P = 0.967) and residual renal
function while on dialysis (P = 0.264). During the follow up of 2
years serum AZGP1 levels dropped significantly (Figure 1). One
year after transplantation, AZGP1 levels decreased by 38 % (72
± 23.1µg/ml, range 10.7–136.4, n = 97) and by 43 % (66 ±

22.6µg/ml, range 15.6–150.9, n = 69) at 2 years post-transplant
(P < 0.001, Figure 1). Correlation analysis confirmed an inverse
correlation of AZGP1 with renal allograft function as estimated
by eGFR (CKD-EPI, creatinine) at the time of transplantation
(r = −0.235, P = 0.012), after 1 year (r = −0.470, P < 0.001)
and after 2 years (r = −0.246, P = 0.045, Table 2). For all other
investigated parameters, including PWV, correlation effects were
negligible, or interpreted as clinically irrelevant.

FIGURE 1 | Serum AZGP1 levels of kidney transplant recipients at the time of

transplantation (Tx), 1 year (1Y) and 2 years (2Y) after transplantation. nTx =

113, n1Y = 97, n2Y = 69. Graph shows individual values with means and

corresponding standard deviations. Groups were compared by mixed-effects

analysis.

We performed a longitudinal mixed model analysis of
PWV and AZGP1 alone (Model A), AZGP1 together with
eGFR (Model B) and AZGP1 together with eGFR and other
known modifiers of arterial stiffness (age, sex, BP, and calcium-
phosphorus product; Model C) (Table 3). While there was no
significant association in Model A, AZGP1 and eGFR, both,
had a significant negative association with PWV in Model B.
This effect remained stable for AZGP1 in Model C, indicating
an inverse correlation between AZGP1 and PWV. The final
multivariate model (Model C) revealed lower AZGP1, older age,
higher systolic BP and higher calcium phosphorus product to
be independently associated with higher PWV. eGFR showed a
trend for negative association with PWV in Model C (P = 0.08).

DISCUSSION

Although kidney transplantation offers clear survival benefits
compared to dialysis, CVD remains one of the leading causes
of premature death after transplantation (22). As AZGP1 has
been identified as a potential modifier of CVD (14–16), we
first assessed serum AZGP1 changes after kidney transplantation
over a period of 2 years. We found a continuous decline in
AZGP1, which paralleled eGFR improvement. This finding is
consistent with the concept that better kidney function reduces
the protein’s half-life (23). Additionally, the uremic milieu may
stimulate overproduction of AZGP1 in white adipose tissue (24).
However, the contribution of adipose tissue to systemic AZGP1
is questionable, because adipocyte secretion is mainly local (25).
There was no clear correlation between AZGP1 and BMI, total
cholesterol, LDL, or HDL, which is consistent with previous data
by us and others suggesting that the postulated adipokine role of
AZGP1 might be less relevant in CKD patients (11, 13, 26).

Secondly, we determined the potential relevance of AZGP1
as a biomarker for CVD prediction after transplantation. For
this purpose we investigated whether AZGP1 levels correlated
with PWV development as a surrogate parameter for arterial
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TABLE 2 | Spearman correlations of AZGP1 serum levels and indicated variables for the corresponding time points.

Variable At the time of transplantation 1 Year follow-up 2 Years follow-up

r P-value n r P-value n r P-value n

Recipient age (years) 0.058 0.545 113 0.143 0.163 97 0.1 0.411 69

Dialysis vintage (months) 0.157 0.136 92 0.019 0.871 77 0.145 0.302 53

Body mass index (kg/m2 ) −0.026 0.785 113 −0.151 0.167 85 −0.069 0.577 67

eGFR (ml/min/1.73 m2) −0.235* 0.012 113 −0.470** <0.001 96 −0.246* 0.045 67

Calcium (mmol/L) −0.095 0.32 111 −0.095 0.362 94 −0.161 0.197 66

Phosphorus (mmol/L) 0.112 0.241 111 0.127 0.223 94 −0.124 0.323 66

PTH (pg/ml) 0.125 0.192 111 0.226* 0.029 94 0.19 0.133 64

Albumin (g/L) 0.114 0.233 111 −0.004 0.97 94 −0.088 0.481 66

CRPHS (mg/L) −0.174 0.067 111 0.076 0.465 94 0.192 0.123 66

Cholesterol (mg/dl) 0.077 0.425 111 0.240* 0.02 94 0.226 0.068 66

HDL (mg/dl) −0.012 0.897 111 0.072 0.489 94 −0.011 0.929 66

LDL (mg/dl) 0.156 0.102 111 0.094 0.367 94 0.194 0.119 66

PWV (m/s) −0.157 0.105 107 −0.098 0.382 82 −0.077 0.554 62

eGFR, estimated glomerular filtration rate; PTH, Parathyroid hormone; CRPHS, high sensitive C-reactive protein; HDL, High density lipoprotein cholesterol; LDL, Low density lipoprotein

cholesterol; PWV, Pulse wave velocity.

*P < 0.05, **P < 0.01. Variables with P < 0.05 are in bold.

TABLE 3 | Longitudinal mixed model analysis of PWV and AZGP1 alone (Model A), AZGP1 together with eGFR (Model B) and AZGP1 together with eGFR, age, sex,

blood pressure, and calcium-phosphorus product during the follow up of 2 years after transplantation.

Mixed Model analysis of PWV

Variable Model A Model B Model C

Estimate SE P-value Estimate SE P-value Estimate SE P-value

Intercept 7.3891 0.2638 <0.0001 8.1501 0.3528 <0.0001 1.9669 0.8467 0.0210

Time since Tx (days) 0.000594 0.000447 0.1851 0.000769 0.000443 0.0838 0.000721 0.000337 0.0334*

AZGP1 (µg/ml) −0.00316 0.002357 0.1807 −0.00811 0.002790 0.0040** −0.01031 0.002792 0.0003***

eGFR (ml/min/1.73 m2) −0.01879 0.005908 0.0016** −0.00874 0.004827 0.0805

Age (years) 0.05682 0.005190 <0.0001***

Sex (male vs. female) 0.1016 0.1627 0.5329

Systolic BP (mmHg) 0.02116 0.004499 <0.0001***

Ca*PO4 product 0.2169 0.09065 0.0175*

BP, Blood pressure; Ca*PO4, Calcium phosphorus product; eGFR, estimated glomerular filtration rate; PWV, Pulse wave velocity; Tx, Transplantation; SE, Standard error.

*P < 0.05, **P < 0.01, ***P < 0.001. Variables with P < 0.05 are in bold.

stiffness over 2 years after transplantation. Our analysis revealed a
significant inverse association of AZGP1with PWV. Importantly,
this association was only observed when corrected for eGFR.
While this pattern is compatible with previous observations in
non-CKD patients showing a correlation between higher AZGP1
levels and reduced incidence of coronary heart disease and
atherosclerosis scores (14, 15), it is in conflict with findings in
dialysis patients where higher AZGP1 levels positively correlated
with cardiovascular events and mortality (16). This discrepancy
could be explained by the dominating effects of non-traditional
uremia associated risk factors in ESRD patients as opposed
to a more traditional risk factor constellation in patients after
kidney transplantation (27). According to this notion, our data
suggest that the beneficial role of AZGP1 might be restored

in transplant recipients. Strategies to increase AZGP1, such
as pharmacologic inhibition of sodium-glucose cotransporter 2
(28), could therefore be an option to improve cardiovascular
health and clinical outcome of kidney transplant recipients and
should be tested in future studies.

We recognize several limitations inherent to our study: Due to
the observational study design we cannot draw conclusions about
potential cause-effect relationships. Moreover, findingsmight not
be transferable to other transplant centers and more diverse
populations because this is a single-center study with a limited
patient number and follow-up period. Another limitation of our
study is the lack of clinical endpoints. Although PWV has been
validated in transplant patients (29, 30) as a surrogate endpoint
for CVD, longitudinal PWV data are conflicting, describing
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a decrease (31), no change (29), or –as in our cohort- an
increase (32, 33) after transplantation. It has been suggested
that this heterogeneity might be due to differences in follow-up
time, showing a decrease in shorter studies and an increase in
longer studies (34). Taking these considerations into account, our
findings need to be validated in a multi-center study with clinical
CV outcome events over a longer period of time to draw stronger
conclusions and confirm if AZGP1 can be a useful biomarker.

In summary, our study provides valuable novel results: (1)
Kidney transplantation reduces AZGP1 concentrations which are
elevated in ESRD. (2) Lower AZGP1 is independently associated
with higher PWV in renal transplant recipients. (3) Protective
effects of AZGP1 on the cardiovascular system seem to be
restored after kidney transplantation. Together, this suggests that
AZGP1 might be a potential biomarker for cardiovascular health
in kidney transplant recipients and that it should be explored as a
target for improving cardiovascular outcome.
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