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Recent progress in theoretical systems biology, applied mathematics and
computational statistics allows us to compare the performance of different
candidate models at describing a particular biological system quantitatively.
Model selection has been applied with great success to problems where a
small number—typically less than 10—of models are compared, but recent
studies have started to consider thousands and even millions of candidate
models. Often, however, we are left with sets of models that are compatible
with the data, and then we can use ensembles of models to make predic-
tions. These ensembles can have very desirable characteristics, but as I
show here are not guaranteed to improve on individual estimators or predic-
tors. I will show in the cases of model selection and network inference when
we can trust ensembles, and when we should be cautious. The analyses
suggest that the careful construction of an ensemble—choosing good predic-
tors—is of paramount importance, more than had perhaps been realized
before: merely adding different methods does not suffice. The success of
ensemble network inference methods is also shown to rest on their ability
to suppress false-positive results. A Jupyter notebook which allows carrying
out an assessment of ensemble estimators is provided.
1. Introduction
In physics, simple and elegant symmetry relationships have often led the way to
theoreticalmodels [1].Most importantly EmmyNoether’s theoremhas been pivo-
tal in establishing the correspondence between continuous symmetries and
conservation laws in physics [2]; it has been instrumental in the derivation of
physical laws of nature. Biology has not been able to draw on such fundamental
principles [3], to a large degree because most processes are intrinsically dissipa-
tive (meaning energy is produced and consumed) and hence the conditions
where Noether’s theorem holds simply do not apply. Instead, biological
models have often had a heuristic element or described the rates of change
in (often macroscopic) observables (e.g. species of plants or animals, or
molecular species).

Writing down the set of equations is an important starting point in model-
ling as it forces us to express our assumptions in a precise form. Which form to
choose is, however, not unambiguously obvious. Instead, we often rely on data
to decide between the different options. Statistical model selection [4] provides the
tools to make such decisions, balancing the ability of a model to fit the data with
the model’s complexity. As larger and larger models, even models for whole
cells [5–8], are being considered model selection problems will presumably
become the norm, especially when models are constructed exhaustively or
automatically [9–16].
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In some, probably many, situations model selection will
not be able to decide on a single best model. Instead, many
models may have comparable support. In such a situation,
we may then base analysis or predictions on the ensemble
of models that are supported by the data [17]. Each model’s
contribution to the prediction etc. is weighted by the relative
support it has received. Such estimates or predictions based
on ensembles have been referred to as exploiting the
‘wisdom of crowds’ [18]. This refers to the notion that
groups of individuals/models are more likely to be better
than those based on a single individual/model. This concept,
however, also relates to much earlier work, Charles Mackay’s
‘Extraordinary Popular Delusions and the Madness of
Crowds’ [19], a 19th century account of how popular opinion
can support quite extraordinary and plainly wrong opinions
and concepts.

Ensemble estimators have a surprisingly long history,
outlined in [20], and aspects such as bagging, boosting and
stacking [21] are firmly established in the statistical learning
literature; see, for example, [22] for a comprehensive treat-
ment. There has been interest in evolutionary biology [23];
and following [18], there have been further developments
in systems and computational biology, e.g. [24,25]. But in
the context of network inference, combining different net-
work reconstruction methods has sometimes been viewed
as necessarily optimal [26]. Below, we show that this is not
automatically the case. In turn, I will show that model aver-
aging and ensemble estimation are susceptible to poorly
defined sets of candidate models; and that the behaviour of
ensemble approaches to network reconstruction depends
strongly on the composition of the ensemble. For very good
ensembles, the advantage comes mainly from reducing
the number of false-positive edges. Both problems share a
dependence on the quality of the ensemble, and we map
out and quantify these influences; we also provide self-
contained Julia code for further in silico experimentation
and analysis of ensemble prediction methods.
2. Model selection and multi-model inference
We assume that we have a universe of models, M,

M ¼ {M1, M2, . . . , MN},

that are potential mechanisms, by which some data, D, have
been generated. For simplicity, we consider a finite number of
models, N. Furthermore, for each model, Mi, we assume that
we have a data generating function, fi(θi), parametrized by a
parameter vector θi which is chosen from some suitable
continuous parameter space,

ui [ Vi # Rn:

Coping with the size of the parameter space is one of the essen-
tial challenges of parameter estimation and model selection.

We start from a Bayesian framework [27], where we seek
to determine the posterior distribution over parameters,

Pr(ui jD) ¼ Pr(D j ui)pi(ui)
Pri(D)

, (2:1)

where Pr(D j ui) is the likelihood, πi(θi) the prior over the par-
ameters for model Mi, and Pri(D) ¼ Ð

Pr(D j u)pi(u) du (here,
we make the dependence on the choice of model explicit
through an index) is known as the evidence.
In the Bayesian framework model selection is a (rela-
tively) straightforward extension, and the model posterior is
given by

Pr(Mi jD) ¼ Pr(D jMi)p(Mi)
Pr(D)

¼
Ð
Vi
Pr(D j u)pi(u) dup(Mi)

Pr(D)
, (2:2)

where analogously to equation (2.1), we have the model pos-
terior, Pr(Mi jD), and model prior, π(Mi). The denominator
terms in equations (2.1) and (2.2) are notoriously hard to evalu-
ate for all but the simplest cases, and a large amount of
ingenuity and work has been invested into computational
schemes [27,28], includingMarkov chainMonte Carlo, sequen-
tial Monte Carlo and related approaches. Often even the
likelihood is prohibitively expensive to evaluate and so-called
approximate Bayesian computation schemes have been devised
to make Bayesian statistical inference possible [29].

Alternatives to the Bayesian framework, such as likelihood-
based inference and optimization of cost functions [30], result
in point estimates for the parameters, e.g. the value of θ 0 that
maximizes the probability of observing the data,

û 0
L ¼ argmaxu 0Pr(D j u 0): (2:3)

Similarly, we can determine themaximum a posteriori estimate by
finding the mode of the posterior distribution [27],

û 0
B ¼ argmaxu0Pr(u

0 jD): (2:4)

Compared to analysis of the posterior distribution, such local
estimates lose a lot of relevant information, but some charac-
teristics can still be recovered by considering the local
curvature of the likelihood, i.e. the information matrix, or cost-
function surface around the (local) extremum identified in
this manner [31,32].

Model selection frameworks that are based on likelihood
inference rely on criteria to find the optimal model among a
set of candidate models. The Akaike information criterion (AIC)
[4,33] for model Mi is given by

AICi ¼ �2 log (Pr(D j û, Mi))þ 2ni, (2:5)

with û given by equation (2.3), and ni the number of par-
ameters of model Mi. The AIC is probably the most widely
used model selection criterion, despite the fact that it is
biased in favour of overly complicated models as the
amount of available data increases. The Bayesian information
criterion does not suffer in the same way; it is defined as

BICi ¼ �2 log (Pr(D j û, Mi))þ ni log (n), (2:6)

with ν representing the size of the data or number of samples.
Several other information criteria exist (discussed e.g. in
[4,34]), but they all share in common the purpose of balan-
cing model complexity with model fit. The BIC can be
derived as an approximation to the full Bayesian model
posterior probability, which achieves this balance implicitly.

If model selection cannot pick out a clear winner, then
either (i) further analysis should be used to design better,
more informative experiments that can discriminate among
thesemodels [35–37]; or (ii) these models should be considered
as an ensemble [4,25]. The former has definite attractions as it
will lead to an increase in our understanding if we can discard
some of the models/mechanistic hypotheses.

The latter approach, basing analysis and especially predic-
tions on an ensemble of models has become a popular concept
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in machine learning. Most notably, in the context of biological
network inference the ‘wisdom of crowds’ concept [18] has
been important in popularizing inference based on several
models. Here, we are considering model averaging where
contributions from different models may be weighted by
their relative explanatory performance. In the Bayesian frame-
work, we can use the posterior probability directly. In the
context of an information criterion Ii for model i, we define [4]

Di ¼ Ii � argminiIi, (2:7)

and then determine the model weight as

wi ¼ exp (�Di)PN
i¼1 exp (�Di)

: (2:8)

The model weights (e.g. the Akaike weight if Ii is the AIC) pro-
vide the relative probability ofmodelMi to be the correctmodel
conditional on the data D and the set of models, M, con-
sidered. Model averaging in this framework can serve as a
variance reduction technique [4,21].
7:20200419
3. Statistical physics of model selection and
ensemble estimation

In order to simplify the discussion, we define a relationship
between the model probability (always implicitly understood
to be either a posterior or relative model probability), pi, and a
cost or energy, ϵi, [8] as

pi ¼ exp (�bei)
Z

, (3:1)

with the normalization constant Z (the partition function)
given by

Z ¼
XN
i¼1

exp (�bei):

With this in hand, we can straightforwardly consider different
model selection/averaging frameworks in a similar manner.

In general, the true data-generatingmodel (a natural system)
will not be represented perfectly by any of the models inM; we
denote this truemodel by@ � M. But ifweare interested in find-
ing out whether @ has a certain characteristic ϕwewould obtain
this from the appropriate ensemble average

Pr(f [ @) ¼
XN
i¼1

pi1(f is part of Mi), (3:2)

where 1(x) is the conventional indicator function, i.e.

1(x) ¼ 1 if x is true,
0 otherwise:

�

Equation (3.2) is based on three, potentially strong assumptions.

1. The model universe, M, is ‘complete’ in the sense that
we expect M to contain any model, Mk, which we might
expect to be a reasonable description of @ (always
remembering that @ � M).

2. It is decidable if ϕ is part of Mi, 8Mi [ M.
3. ϕ has played no part in the construction of the model

probabilities, pi, equation (3.1).

The first assumption is arguably the strongest assumption.
In principle, we can update M �! M0 by adding additional
models in light of data; specifying new priors π 0 for the
models M0

i [ M0 will require some care. One important
condition that M (and M0) must fulfil is that models must
not appear more than once in the set. This is important to
keep in mind as we are increasingly relying on automated
generation or exhaustive enumeration of models.

With fixed D and M equation (3.2) is, however, a good
approach for ensemble-based prediction and estimation. It
also encompasses Bayesian model averaging and multi-model
inference based on information criteria [4].
3.1. The effective model space
We first analyse a simple casewhere all models in our universe
have associated costs drawn from a suitably well behaved
probability distribution, q(η) [8], with positive support and
associated density, fq(ϵ), over the model energies, ϵi, such that

ei � q(h): (3:3)

Because ϵi is a random variable, the relative weight, ωi = exp
(−ϵi), will also be a random variable, and we can obtain the
probability density function, f(ω), via change of variables as

f(v) ¼ q(�log (v))
jvj : (3:4)

For different choices of q(ϵ), we can now investigate
the distribution over model weights. For example, if ϵi∼
Gamma(α, θ) (where α and θ denote the shape and scale
parameters, respectively), then

f(v) ¼ � log (v)a�1v1=u

vG(a)ua
, (3:5)

with Γ( · ) the Gamma function. The Gamma distribution is a
flexible and generic distribution and is chosen for its general-
ity rather than any particular property and our discussion
here does not depend on its specifics. Some representative
distributions over ϵ and the corresponding distributions
over ω are shown in figure 1a,b.

The distribution over model costs, ϵ, affects the distri-
butions over model weights, ω. This is important to realize
when deciding on how to triage model sets for further
analysis and prediction [38]: generally, inference based on all
models weighted by ωi is neither practical nor desirable, as
manymodels with lowweightwill mask the information avail-
able in the good models. If, for example, we only include
models with ω∈ [0.9, 1.0] then the average model cost

�ev.v0 ¼
ð1
v0
� log (v)f(v) dv

(because ϵ =−log (ω)) for these sets will be 0.005 (blue), 0.0015
(green), 6 × 10−4 (purple) and 9 × 10−5 (orange), see figure 1c.
The (unknown) distribution over costs can affect multi-model
inference quite profoundly. But for model universes that are
enriched for good models (i.e. many models Mi with low
values of ϵi) selecting a subset of models based on even a
fairly conservative threshold for the model weights ωi can
result in a sufficiently large model sets for further prediction.
3.2. A simple test case for multi-model inference
Here, we study a very simplistic scenario in which we have three
types ofmodels, borrowingandadaptingBox’s [39] terminology:

Useful Models which capture important aspects of @ and
which have an associated cost ϵ1.
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Useless Modelswhich are qualitatively and quantitative poor
descriptions of reality and have an associated cost ϵ2≫ ϵ1.

Nuisance Models which are qualitatively different from
reality, but which can quantitatively capture aspects of @
by chance; their costs are random variables, η.

Nuisance models are here assumed to be models where the
quantitative agreement with data is unrelated to the data
generating mechanism @. Purely machine-learning-based
models are one way in which we can realize such nuisance
models [40]; for small datasets D, poorly designed experi-
ments, or simply lack of prior knowledge, there are many
ways in which model fit may only be a poor reflection of
reality, and this can also give rise to nuisance models [41].

For concreteness let these three differentmodel classes have
sizes ν1, ν2 and ν3 =N− ν1− ν2, and assume that h � U [0,e2], i.e.
nuisance models are at worst as bad as useless models. Then
the number of nuisance models that have lower associated
costs than the useful models is given by

e1
e2

n3:

The relative influence of nuisance models can be studied
by contrasting three features, ϕ1, ϕ2, and ϕ3, with the following
properties:

ϕ1: equally represented with frequency ξ among models of
all classes.

ϕ2: only represented among useful models.
ϕ3: only represented among ‘nuisance’ models.

With equation (3.2) we can obtain Pr(fi [ @) for any
property with frequencies ξi in the classes i = 1, 2, 3,

Pr(f1 [ @) ¼ n1j1 e�e1 þ n2j2 e�e2 þ (n3j3=e2)
Ð e2
0 e�h dh

n1 e�e1 þ n2 e�e2 þ (n3=e2)
Ð e2
0 e�h dh

¼ n1j1 e�e1 þ n2j2 e�e2 þ (n3j3=e2)(1� e�e2 )
n1 e�e1 þ n2 e�e2 þ (n3=e2)(1� e�e2 )

:

(3:6)
First, for ϕ1, we trivially obtain

Pr(fi [ @) ¼ j: (3:7)

For the more interesting probability for ϕ2 under the model
averaging framework, we obtain

Pr(f2 [ @) ¼ n1j1 e�e1

n1 e�e1 þ e�e2 (n2 þ (n3=e2)(ee2 � 1))
, (3:8)

and finally, for a characteristic shared by and confined to the
set of nuisance models, we obtain

Pr(f3 [ @) ¼ (n3=e2)(1� e�e2 )
n1 e�e1 þ e�e2 (n2 þ (n3=e2)(ee2 � 1))

: (3:9)

From equations (3.8) and (3.9), we see that multi-model
averaging is prone to propagate wrong results if nuisance
models are frequent and some receive good quantitative
support (i.e. low model costs, ϵ). Equally worrying, the
same scenario can make it hard for true aspects of @ to receive
sufficient support through equation (3.8) if there are many
nuisance and useless models included in the data.

To illustrate this further we can consider the case where
ξ2 = 1 and ξ3 = 1 (meaning every useful model exhibits charac-
teristic ϕ2, and every nuisance model characteristic ϕ3) and
ask when is Pr(f3 [ @) . Pr(f2 [ @)? We obtain

n3 . e2n1
e�e1

1� e�e2
. e2n1 e�e1 : (3:10)

Thus, if useful models are sufficiently rare in the model set
(say ν1 < 0.1) the nuisance models’ characteristics will have
high weight in the ensemble average; see also figure 2.
None of the parameters ν1, ν2, ν3, ϵ1, ϵ2 are, of course,
known, and we cannot know which class a model belongs
to a priori. Thus model averaging is not a panacea and
requires careful consideration of which models are included
in the prediction set.
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4. Ensemble estimation and network inference
Network inference can also benefit from ensemble methods
[18,24,42] but here, too, potential pitfalls arise. We are consid-
ering directed networks, with V nodes, and L edges; the
adjacency matrix, A, is a convenient way to specify such net-
works, if we indicate the presences and absences of edges,
by one and zero, respectively, in its entries,

Aij ¼ 1 if there is an edge from i to j,
0 otherwise:

�

In network inference, we seek to determine whether the data
D suggest statistical relationships among pairs of nodes vi, vj
that may indicate a functional relationship, represented by
an edge connecting the nodes. We consider k different algor-
ithms, Okk ¼ 1, . . . , k, which predict the presence A(k)

ij ¼ 1 or
absence A(k)

ij ¼ 0 of a link from i to j. If we have for the false
positive and false-negative probabilities for method κ,

sk ¼ Pr(1 j edge is not part of the true network) (4:1)

and

tk ¼ Pr(0 j edge is part of the true network), (4:2)

we can assess how beneficial the ensemble estimators are for
the quality of the inferred networks.

4.1. Ensembles of identical estimators
The simplest case, which is already instructive as a baseline, is
where all methods have identical performance, sk ¼ s and
tk ¼ t, 8k ¼ 1, . . . , k. If the performance of the inference
methods is statistically independent, then the number of agree-
ing inference methods is a binomial random variable. If we set
a threshold on the minimum number of concordances among
inference methods, k0, we observe for the overall probability
of scoring a true edge from the ensemble,

ePr(1 j edge is in @) ¼
Xk
k¼k0

kk(1� t)ktk�k, (4:3)
while the probability of a false negative is

ePr(1 j edge is not in @) ¼
Xk
k¼k0

kksk(1� s)k�k: (4:4)

To illustrate the outcome of such a simple estimation procedure,
we assume a network loosely based on expected Homo sapiens
network sizes [43] (22 000 nodes and 750 000 interactions).
In figure 3,we consider 10 ensembles andbase the ensemble esti-
mator on the minimum number, k0, of methods that have to
predict an edge. If k0 is too small, then there will be too many
positives as is the cases here; a majority-vote rule, i.e. here k0 =
6, would do an acceptable job in terms of precision, recall
and F1 statistics [21], but this does depend on the false positive
ratio in particular (as biological networks are sparse), as well as
the size of the ensemble of inference algorithms,
O ¼ {O1, O2, . . . , Ok}.
4.2. Ensemble estimators can be worse than individual
estimators

We are interested in ensemble estimators because we know
that individual estimators are far from perfect. But ensembles
are not guaranteed to always improve on individual estima-
tors. We compare an ensemble of equally well performing
estimators with a single estimator. The ensemble false
negative probability, T, is given by

T ¼
Xk
k¼k0

k
k
tk(1� t)k�k

¼ k
k0

tk0 (1� t)k�k0
2F1 1, k0 � k; k0 þ 1;

t
t� 1

� �
, (4:5)

where 2F1 is the hypergeometric function [47] (see appendix
B for an approximation for small arguments). From this, we
can determine when the ensemble false negative rate, T,
will be greater than t, i.e.

t ,
k
k0

tk0 (1� t)k�k0
2F1 1, k0 � k; k0 þ 1;

t
t� 1

� �
:
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Equally, we obtain for the ensemble false positive rate, S,

S ¼ k
k0

tk0 (1� s)k�k0
2F1 1, k0 � k; k0 þ 1;

s
s� 1

� �
: (4:6)

For low thresholds, k0, the ensemble error rate can be
greater than that of the individual estimator; this is
because the stringency of the ensemble prediction is then
reduced, as the cumulative probability of a sufficiently
small number of estimators to ‘accidentally’ agree is greater
than the error rate of the individual estimator. We show
this for two false negative rates, t = 0.1 and t = 0.05, in
figure 4a,b.
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positives are over-controlled (by demanding a larger number of methods to score an edge), the recall deteriorates. This is reflected in (a,b,d,e), showing the numbers
of true and false positives (we generated 1000 random inferred networks). (c,f ) The precision, recall and F1 statistics [21] (see also appendix A) as a function of the
minimum number of methods that need to positively score an edge. Increasing the false-positive and false-negative error rates from 0.1 to 0.25 for the poor
estimators results in marked deterioration of the ensembles. And even a small number of the bad predictor can profoundly affect the ensemble performance.
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4.3. Heterogeneous ensembles of network inference
methods

We next focus on the case of a small set of predictors, k =
10, and two classes of methods: a set of good methods with
error rates t1 and s1; and a set of poor methods with error
rates t2 > t1 and s2 > s1. In figure 5, we show, again for a
case modelled on a likely human gene regulation network,
the likely true- and false-positive predictions arising from
ensembles with different numbers of good versus poor
edge prediction methods. The basic lesson is that good
methods have to outnumber bad methods; otherwise,
especially the precision will suffer. Here, we have chosen a
simple majority-vote criterion. To bring precision and F1 stat-
istic up to a satisfying level (say in excess of 0.7) requires
essentially purging the ensemble of the weakly performing
methods (i.e. k1 * 8). This only points to the extent to
which poor methods can compromise the performance of
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ensemble estimators (and the accompanying Jupyter
notebook can be used to explore this further).

In sparse networks especially, poor estimators will result in
inflation of false-positive results, and lead to overall poor per-
formance: in a directed network there are N × (N− 1) possible
interactions, but this is still vastly greater than the number of
existing edges. For example, in the case of the human network
wewould have of the order of 4.8 × 108 potential interactions of
which only some 750 000 are expected to exist. So even for s2 =
0.5 therewould be about 470 000 caseswhere ten suchmethods
would agree and score an edge, and 1.8 × 108 false predictions,
if a simple majority vote rule were applied.
O3

Figure 6. Illustration of different predictors which capture different aspects of
the data. If predictors O1, O2 and O3 have particular performance preferences
for certain types of interactions then combining them may improve the
ensemble estimation. But this depends crucially on the false-positive rate.
In an ideal scenario, we would also be able to exploit the individual strengths
of the predictors to reduce the ensemble false negative rate; the mathemat-
ical formalisms exist [20,22,54,55], but we need to be able to quantify the
individual predictors’ behaviours better.
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5. Discussion
We have shown that ensemble estimators are not as robust
as has sometimes been claimed [26], or incorrectly surmised
from the success of community average results in the DREAM
competition [18]; there, of course, it had already been shown
that certain, carefully selected, subsets of estimators give better
results than others [24].

For the analysis of multi-model inference frommechanistic
models, we can distill two points: (i) ensembles of mechanis-
tic models that are reasonably defined [48] (i.e. their
construction incorporates any available mechanistic insights;
duplicate models are avoided; the model is predictive and
can be used to generate data that can be compared with real
observations/data) can be combined with the aid of model
selection criteria or Bayesian posterior model probabilities
with relative ease and safety; (ii) the inclusion of ‘nuisance
models’ can hamper ensemble approaches if they come to
predominate the model universe M. Such situations could
become more likely as model spaces are explored exhaustively
[16] or automatically [12]. Because of the formalism connecting
different model selection criteria, equation (3.1), these are
general results, and do not depend on the particular model
averaging procedure chosen (as also clear from the analysis
in [20]). So, in essence, the construction of the models in M
[3,49] will determine the robustness of model averaging or
ensemble approaches to prediction and analysis. Little is to
be gained by increasing the size of M beyond the (already
quite large) set of reasonable models.

In the context of network inference, the situation is similar.
We find that the poor performance of some methods can drag
down the performance of an ensemble estimator or network
predictor. So like in the construction of the model universe
M before, the make-up of the ensemble of network inference
methods, Okk ¼ 1, . . . , k, does matter considerably (as was
also found in the empirical study of [18]). Majority vote will
typically be a sound criterion for a set of reasonable estimators,
though not necessarily optimal from the perspective of pre-
cision and F1 measures. This is because biological networks
are sparse and false-positives will predominate the inferred
networks unless they are carefully controlled. For a set of
statistically similar powerful inference methods, a conserva-
tive criterion for scoring edges will improve on the overall
performance of the individual estimators, however.

The problem of network inference has long been known to
be challenging. One reason for this (in addition to the large-
scale testing problem) is that we do not have a fair way to
score and compare the performance of different network infer-
ence approaches. The most promising existing approaches are
typically computationally expensive and rigorous in silico
assessment of performance as well as the factors influencing
performance is often seen as computationally prohibitively
expensive. There is also a danger of biasing simulated data in
favour of a given method and the DREAM competition has
aimed—with some success we feel—to avoid this, and other
approaches have followed suite. Clearly, more effort in this
domain is needed and computational cost should not preclude
rigorous assessment [50]. This situation is mirrored in other
areas of genomics and systems biology, e.g. pseudo-temporal
ordering approaches have until recently [51] rarely been
rigorously tested. But what is also needed are approaches
which allow us to assign confidence to inferred networks, or,
more specifically, predicted interactions without recourse to a
gold-standard [52]. Here, measures based on biological
expectations/knowledge offer promising routes for filtering
out poor methods [53] (see figure 6).

One of the potential initial attractions of using a panel of
network inference algorithms is that different methods may
capture different aspects of the data and in concert may
provide a more complete representation of a ‘true’ network
of functional relationships among the genes in an organism
under a given scenario. While appealing this notion needs
to be viewed with caution [56]. Combining the most powerful
methods by leveraging their individual strengths is possible
in principle [20,22,54,55], but requires us to characterize
each method Oi reliably and independently.
6. Conclusion
In summary, unless we know the constituency of the model
universe, M, or the ensemble of predictors, Ok, we have lim-
ited ways of telling whether we are dealing with a madness of
crowds or a wisdom of crowds scenario. However, the present
analysis shows that ensemble procedures will be robust as
long as the ensembles are carefully constructed. In the context
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of biological network inference, reduction in false-positives is
the primary cause of their success. Without a robust and trans-
ferable way of assessing the strengths and weaknesses of
different methods, we cannot (yet) use tools from decision
theory that pool these strengths for diverse and heterogeneous
ensembles [54,55]. Currently, the best advice, in light of the
analysis carried out here, is to be ruthless in weeding out
poorly performing methods for network inference, or models
with low weight for multi-model averaging. So there is no
need, for example, to include correlation networks, even
though they are cheap to calculate: their performance is
simply too poor to warrant inclusion in an ensemble. Quality
is more important than quantity.

Data accessibility. A Jupyter Notebook containing the Julia code to repro-
duce all the computational results here, and to explore the effects of
the madness of crowds in network inference and model averaging is
available at https://github.com/MichaelPHStumpf/Madness-Of-
Crowds.
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Appendix A. Assessing the performance of
network inference methods
Real biological networks are sparse [57]; this means that a
predictor which scores each candidate edge to be absent
can have high performance if the number of false-positives
is heavily influencing how we quantity performance of a
network inference method. We therefore focus on precision
and recall and a derived statistic, the F1 statistic [21,57]. We
denote the numbers of true and false positive inferences
(i.e. scored edges in the context of network inference) by TP
and FP, and the true and false negatives by TN and FN.
Then the precision, P, is given by

P ¼ TP
TPþ FP

and the recall by

R ¼ TP
TPþ FN

:

The F1 statistic is given by

F1 ¼ 2
P� R
Pþ R

:

These statistics are confined to the [0, 1] range, with larger
values indicating better performance, and the F1 statistic
in particular becomes maximal at the point where the
curves for P and R intersect.
Appendix B. Approximating the hypergeometric
function
The hypergeometric function [47], 2F1, appearing in equation
(4.5) can be unwieldy to evaluate for large k and k0. For
sufficiently small values of t, we can Taylor-expand it
around t = 0 and then obtain (if we restrict the expansion of
the hypergeometric function to third order)

T ¼ k
k0

tk0 (1� t)k�k0 1� t
k � k0
k0 þ 1

� 1þ t(2k0 � k � 3)
(k0 þ 2)

�
��

� t2(k2 � k(4k0 þ 9)þ 4k0(k0 þ 4)þ 14)
(k0 þ 2)(k0 þ 3)

�
þO(t4)

�
:

From this, we can also determine when the ensemble
false-negative rate T will be greater than t by solving

t .
k
k0

tk0 (1� t)k�k0 :
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