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ABSTRACT Shumin Tan works in the field of Mycobacterium tuberculosis-host inter-
actions. In this mSphere of Influence article, she reflects on how the paper “Single-
cell phenotyping within transparent intact tissue through whole-body clearing” by B.
Yang et al. (Cell 158:945–958, 2014, https://doi.org/10.1016/j.cell.2014.07.017) impacted
her ideas on approaches to visualize and understand heterogeneous host-pathogen
interactions in vivo in 3-dimensional space at the single-cell level, through the tractable
and broadly compatible tissue optical clearing methods developed.
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Inspiration for one’s work can come from subject areas that are quite different, with
conceptual parallels or methodological advances crossing fields. I highlight here a

paper—“Single-cell phenotyping within transparent intact tissue through whole-body
clearing,” by the group of Viviana Gradinaru (1)—which describes a method with
origins in neurobiology that I believe has significant potential for broad use in the field
of infectious diseases. Their paper sought to develop methodology that would enable
whole-organ imaging at the cellular level, while retaining complete intact tissue
architecture and compatibility with myriad current imaging tools such as fluorescent
proteins and RNA single-molecule fluorescence in situ hybridization (FISH) (1). In
particular, their optimization of a passive tissue clearing method (PACT [for “passive
clarity technique”]), together with development of a mounting medium compatible
with use in imaging thick tissue (RIMS [for “refractive index matching solution”]),
presents very tractable and easily applied methods that can be exploited in the study
of host-pathogen interactions at the single-bacterium level, and in the spatial context
of host tissue structure and function.

A main principle behind tissue optical clearing lies in the removal of packed lipid
bilayers that impede both light and antibody penetration (2–4). There has been
immense work in neurobiology in developing methods for optical clearing of brain
tissue, driven by the need to understand structure-function relationships in the brain in
the context of the intact organ (3–5). Yang et al. built on this foundation, utilizing a
shared approach of tissue cross-linking and hydrogel hybridization to maintain struc-
ture integrity, with lipid extraction using ionic detergents (1). They optimized the
cross-linking and hydrogel reagents and procedures, with a focus on compatibility with
endogenous fluorophores and histological procedures (1). Different hydrogel formula-
tions and detergents were tested, with 4% acrylamide and 8% sodium dodecyl sulfate
ultimately found to be the best combination for balancing the different desired
properties of (i) speed and robustness of optical clearance; (ii) maintenance of tissue
architecture and protein epitopes for immunofluorescence analysis; and (iii) retention
of the ability of macromolecules to penetrate the tissue, required for successful
immunofluorescence and histological procedures (1). Importantly, they also developed
a mounting medium, RIMS, that was straightforward and cost-effective to make and
that allowed matching of the refractive index for optimal imaging (1). Their paper
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further presented a novel whole-body clearing method in mice that exploited perfusion
of clearing reagents through the vasculature to enable optical clearing of all organs in
a much shorter time period. Immunolabeling of all organs could also be done simul-
taneously with this PARS (perfusion-assisted agent release in situ) procedure, with both
antibodies and small-molecule dyes delivered via the vasculature and with the washes
required between the optical clearance and antibody administrations also exploiting
the circulatory system (1).

The technological advances developed by Yang et al., particularly the passive optical
clearing method of PACT and the use of RIMS, excitingly represent a method that is
straightforward and easily applied to any organ and that, importantly, is compatible
with fixed tissue and downstream immunofluorescence analysis without the need for
highly specialized equipment. Particularly in the context of Mycobacterium tuberculosis-
host interaction studies that my group is focused on, heterogeneity across multiple
facets of the infection has been of burgeoning interest due to the consequences of this
nonuniformity for infection outcome and treatment success. This heterogeneity ranges
from lesion-level progression and outcome to variation in the local environment
experienced by single bacilli even within a given lesion or host cell (6–14). Indeed, the
concept of a critical role of heterogeneity in multiple host-pathogen interactions has
been increasingly appreciated, with studies spanning Vibrio cholerae and Salmonella
infection of the intestine to Yersinia pseudotuberculosis colonization of the spleen
(15–17). However, understanding the structure-function relationships that underlie
infection heterogeneity requires single bacterium-level analysis in intact tissue, which
is inherently technically challenging. The use of optical clearing methods such as PACT,
in combination with other imaging tools such as reporter bacterial strains, provides the
opportunity to interrogate in 3-dimensional space differences in local bacterial re-
sponses during infection. It further provides a unique window into understanding how
drug treatment or vaccination affects the bacteria at the single-bacterium level, in the
context of host cell type, lesion structure, and local immune response.

The paper by Yang et al. has been extensively cited since its publication in 2014.
There has been additional work on methods for optical clearing of tissue, as well as
application of the clearing methodology to various fields, spanning visualization of
blood brain barrier permeability in studies of prion disease (18) to the examination of
histone methylation levels in intact xenograft tumors (19). In the field of infectious
diseases, a few studies have begun to exploit the potential of optical clearing in
analyzing host-pathogen interactions. PACT has been used in virus-host studies, with
Kieffer et al. examining human immunodeficiency virus-1 spread, in concert with CD4�

T cell visualization, in lymphoid tissues in humanized mice (20). DePas et al. used PACT
in combination with bacterial rRNA detection to examine pathogen aggregation pat-
terns in sputum from cystic fibrosis patients (21). Optical clearing methods have also
been used to examine the effect of macrophage epithelial reprogramming on granu-
loma cellular structure in a Mycobacterium marinum-zebrafish model (22), as well as the
heterogeneity in granuloma tumor necrosis factor expression observed in this infection
system (23). To examine local M. tuberculosis responses in intact lung tissue, we have
started to combine PACT with our reporter M. tuberculosis strains that inform on the
local environment experienced by the bacteria, or on bacterial replication status, in a
C3HeB/FeJ murine model that exhibits a range of lesion types, including classic
caseating granulomas (24). Finally, PACT has very recently been utilized to analyze
Helicobacter pylori colonization establishment and persistence in the murine stomach
(25). These studies have demonstrated the power of optical clearing methods such as
PACT in revealing novel aspects of host-pathogen interactions, and it will be exciting to
see the discoveries to come from its wider application.
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