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The metal ion binding of transmembrane proteins (TMPs) plays a fundamental role in biological processes, pharmaceutics, and
medicine, but it is hard to extract enough TMP structures in experimental techniques to discover their binding mechanism
comprehensively. To predict the metal ion binding sites for TMPs on a large scale, we present a simple and effective two-stage
prediction method TMP-MIBS, to identify the corresponding binding residues using TMP sequences. At present, there is no
specific research on the metal ion binding prediction of TMPs. Thereby, we compared our model with the published tools
which do not distinguish TMPs from water-soluble proteins. The results in the independent verification dataset show that
TMP-MIBS has superior performance. This paper explores the interaction mechanism between TMPs and metal ions, which is
helpful to understand the structure and function of TMPs and is of great significance to further construct transport

mechanisms and identify potential drug targets.

1. Introduction

Metal ions are vital to live organisms involving in various
biological processes. They can enter cells to regulate the
expression and activation of multiple biomolecules, partici-
pate in cell signal transduction, and complete various func-
tions. For example, Ca®" signaling is essential for T cell
activation, autoantigen tolerance, differentiation, and devel-
opment [1]. Mg** regulates ion channels’ activity in cardiac
cells, affecting the myocardium’s electrical properties [2].
Zn** is a multitasking tool necessary to stimulate various
enzyme activities [3] that lack and excess can cause central
nervous system diseases [4, 5]. Also, other metal ions
[6-10] perform their respective biological functions. Their
homeostasis disorders involve neurodegenerative diseases,
cardiovascular diseases, bone diseases, asthma, cancer, and
diabetes [11]. Therefore, maintaining the correct levels of
metal ions in the cytoplasm is essential for life and health.
As we know, metal ions cannot directly penetrate the cell
membrane unless the transporter’s assistance is on the cell
membrane. According to the transport mode and spatial
structure, the transporter protein can be roughly divided

into channel and carrier proteins, all transmembrane pro-
teins (TMPs). These particular proteins cross through the
biomembranes by their transmembrane domains and exist
therein whole life, constitute 15-30% of the genome [12].
TMPs, as the primary carrier of metal ions, participate in
signal transduction, intracellular trafficking, and maintain-
ing homeostasis [13, 14]. However, knowledge about the
transport mechanism of metal ions that bind to proteins
across membranes is still insufficient and varies for different
metals. Exploring the TMPs” metal ion binding site (MIBs)
provides a practical means to explore the ion selectivity
and crucial abilities and even further construct the ion trans-
port mechanism.

Experimental techniques such as AFM [15], MS [16],
IMAC [17, 18], NMR [19], and X-ray crystallography [20]
are comprehensive to identify the crystal structures of pro-
tein and characterize the binding sites in proteins. However,
these techniques had not achieved large-scale application
compared to the water-soluble proteins since the TMPs’
folding, native structure, stability, and activity are reached
only within the lipid bilayer [21]. With sequencing technol-
ogy development, the time has come to study the work
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related to TMPs. Previous extensive research on water-
soluble proteins has provided ideas in computational
methods for use as reference. These methods, computa-
tion-based, reduce the cost to discover the potential MIBs
that also have near-accurate predictions.

Over the last decade, computational methods have been
made significant advances in identifying MIBs. Yang et al.
combined two methods based on substructure and sequence
(COACH [22]) to identify protein-ligand binding sites and
achieved Matthews correlation coefficient (MCC) of 0.54.
Zhao et al. present a 3D template-based metal site prediction
(TEMSP [23]) to predict zinc binding sites and completed
sensitivity of 0.86. Lin et al. used a fragment transformation
method (MIB [24]) to predict twelve metal ion-binding sites
with overall accuracy from 0.92 to 0.95. Yu et al. report a
ligand-specific template-free predictor (TargetS [25]) for
identifying protein-ligand binding sites that contain five
metal ions overall MCC from 0.14 to 0.69. Hu et al. pro-
posed a ligand-specific and template-based components
approach (IonCom [26]) to predict 13 ions and achieved
MCC from 0.14 to 0.69. Cao et al. [27] used only sequence
information for multiple metals and yielded an overall accu-
racy from 0.62 to 0.84. Kumar [28] used the amino acid
sequence information and machine learning approach to
predict six metal ion binding sites’ accuracy 0.86 to 0.87.
Qiao and Xie developed a sequence-based ligand-specific
predictor (MlonSite [29]) to predict 12 metal ion binding
sites and completed MCC from 0.17 to 0.68. Haberal and
Ogul [30] present deep learning architectures to predict
metal binding of histidines (HIS) and cysteines (CYS) amino
acids and acquire the precision 0.79 and recall 0.82.

Although the prediction of the binding site of metal ions
and proteins has been fruitful, it cannot be directly applied
to TMPs [31-34]. First of all, the above methods can be
roughly summarized into structure-based and sequence-
based. The former has better prediction performance, but
the latter is more common. In the past, one of the impedi-
ments to this effort related to ion channels is that TMPs’
structures have been notoriously difficult to obtain. There-
fore, the performance of structure-based is limited in TMPs.
Then, sequence-based methods of MIBs did not distinguish
between TMPs and water-soluble proteins, while TMPs have
significant conformational differences with those water-
soluble proteins. Structurally, metal ions pass through the
body of TMPs while they had never done so to any water-
soluble protein. Functionally, water-soluble proteins cannot
take on the responsibility of transporting metal ions inside
and outside the membrane. Finally, TMPs have selective
specificity for metal ions, which allows only a suitable size
of metal jons to pass through. Therefore, ignoring the
natures as mentioned above is incompatible with biological
significance.

In this study, we proposed a metal-specific method for
predicting the binding sites of the transmembrane protein
and metal ions (TMP-MIBS) from protein sequence infor-
mation. We selected five kinds of TMPs’ specific structural
or biochemical features: evolutionary information, physico-
chemical properties, solvent-accessible surface area, topol-
ogy structure, and Z-coordinate features. TMP-MIBS was
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well trained against an up-to-date dataset collected from
the PDBTM database. The sliding windows were introduced
to build feature spaces, and random undersampling was uti-
lized to tackle sample imbalance. The performance of the
model is gradually improved through a two-stage learning
process. In the first stage, metal ion binding sites of TMPs
were identified. In the second stage, specific recognition
models were constructed for the metal-specific. We have
not yet found any tool specifically for binding site prediction
about metal ion prediction and TMPs, so we compared ours
with the published means for metal ions and general pro-
teins. Our model achieves the best performance except for
Ca®". The work has culminated in a relatively effective tool
for predicting metal binding sites without 3D structures. It
has guiding significance for understanding and ultimately
controlling the binding ability of metal ions and their appli-
cation in drug and disease treatment in the future.

2. Materials and Methods

2.1. Datasets. The PDBTM [35] database (available at http://
pdbtm.enzim.hu), which aims to collect all the TMPs from
the protein structure database (PDB) and keep up to date
with PDB, is the source of the data in this work. We screen
protein data containing metal ion binding sites and parse
sequences from the PDB file by applying the following
criteria.

(1) Only keep chains with residues that participate in
binding metal ions when the proteins have more
than one polypeptide chain

(2) The length of the polypeptide chain is required to
exceed 50 residues

(3) Removing the protein sequences with sequence sim-
ilarities greater than or equal to 40% by Cd-Hit [36]

Finally, there are 427 protein chains left as the experi-
mental dataset. To evaluate the effectiveness of our model,
we divide the training dataset and the independent verifica-
tion dataset as listed in Table 1.

2.2. Feature Extraction

2.2.1. Evolutionary Information. The sequence-based
methods mainly rely on residue conservation analyses
assuming that ligand binding residues are functionally
important and should be conserved in the evolution
[37-39]. By running the PSI-BLAST program on the server,
iteratively searched the NR database three times and used
0.001 as the E-value cutoff of multiple sequence alignments
to obtain evolution information of the protein sequence.
We generated the position-specific scoring matrix (PSSM).
The L residue’s protein sequence generates an L x 20 matrix.

2.2.2. Physicochemical Properties. Early studies in the predic-
tion of transmembrane (TM) helices had widely used phys-
icochemical properties (PCP) such as hydrophobicity
analysis [40], the positive inside rule [41-43], and charge
bias which are indeed valid. Besides, the residues binding
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TaBLE 1: The training set and independent test set.

Category Training dataset VeriIirilj:tIi)((:rrll(?;;se t
Main NProta Nrecb NProta Nrecb
K* 63 202 6 17
Ca** 78 388 10 51
Na* 54 223 7 46
Zn** 52 241 5 26
Mg™* 64 209 10 27
Hg™* 8 83 3 25
Cu** 14 54 2 9
Wo* 13 56 1 4
cd* 8 31 2 10
Ni** 10 28 3 9
Fe’* 7 19 0 0
Mn?** 7 32 0 0
Cu2 2 12 0 0
Rb* 4 18 0 0
Au* 2 13 0 0
Cs* 6 23 0 0
Pb** 1 10 0 0
Fe** 3 7 0 0
Pt 1 2 0 0
Sr?t 1 4 0 0
Li* 1 4 0 0
Co** 3 4 0 0
pr* 1 3 0 0
Mo®* 1 1 0 0

NProta: number of protein entries; Nrecb: number of protein receptors
bound with ions.

with metal ions have many distinctive properties, such as
electron-acceptor ability, positive charge, ion size, specific
ligand affinity, varying valence state, and low or high spin
configuration [44]. We collected the 553 physicochemical
properties that influence the microenvironment of proteins.
They were obtained from AAindex [45]. The protein
sequence of the L residue generates an L x 553 matrix.

2.2.3. Solvent-Accessible Surface Area. The solvent-accessible
residues could be responsible for acquiring metal and may
act as a potential metallochaperone to deliver metal to the
TM region [46]. We calculate the relative solvent accessibil-
ity surface area (rASA) by MemBrain [47] for each residue
to provide the residues’ relative positions, which characterize
TMPs’ structure. The protein sequence of the L residue gen-
erates an L X 1 matrix.

2.2.4. Topology Structure. Knowledge of the TM helices’
presence and the exact location is essential for functional
annotation and direct functional analysis. The prediction
of topology structure (TOPO) serves to quickly obtain fun-
damental structural knowledge of TM proteins [48]. We
used TMHMM-2.0 [49], which predicts the sequence’s most

probable location and orientation of transmembrane helices.
The protein sequence of the L residue generates an L x 3
matrix.

2.2.5. Z-Coordinate. The Z-coordinate (Zcoord) is defined as
the residue’s distance to the center of the membrane [50]
and reflects the high correlation with the ligand binding
and the protein-protein binding regions [51]. It implicitly
contains information about TMPs’ secondary structure, such
as re-entrant helices, interfacial helices, a TM helix’s tilt, and
loop lengths. TOPCONS [52] was used to predict the
Zcoord. The protein sequence of the L residue generates an
L x 1 matrix.

2.3. Methods

2.3.1. Outline. TMP-MIBS employs a two-stage learning
process and an ensemble of models to improve prediction
performance gradually. The obtained data were prepro-
cessed and extracted the protein sequence and feature. All
binding residues (the 24 kinds of metal ions) are predicted
to identify the MIBs in the first stage. The second stage indi-
cates the most probable location and binding probability of
MIBs for seven classes which are K', Ca®*, Na*, Zn®",
Mg**, Hg**, and others. We test two-stage models on the
independent verification dataset to examine the perfor-
mance of the model. More details on how our final model
was built and trained are explained below.

2.3.2. The First Stage of the Learning Process. When con-
structing the feature space is generated as the input of the
first stage of the model, the sliding window strategy is used
to intercept the amino acid fragments, and the random
undersampling is introduced to extract some negative sam-
ples. Random forest (RF) is used as the prediction model
and vote for binary class and selects the classification having
the most votes. For a given protein sequence, the classifier
outputs the exact conclusion that each residue is or is not a
MIBs. This stage only predicted whether the residue would
be binding with one in the 24 metal ions.

2.3.3. The Second Stage of the Learning Process. The second
stage learning process takes into account the ligand-
specific. After the first model training stage, two prediction
results, “17and “0”, are output, corresponding to MIBs and
non-MIBs. To further predict the binding of amino acid res-
idues to metal ions, it is necessary to model the samples with
the prediction result of “1” and enter the second stage of
model learning. The second stage models the seven types
of metal ions with the most significant number of sites,
respectively. The OVR strategy in the multiclassification
problem is adopted. Each time, the examples in one class
are regarded as positive classes, and all other classes are
taken as counterexamples. Finally, the seven classifiers for
seven class metal ions output the probabilities for each resi-
due binding residue in the given protein sequence.

2.4. Random Undersampling. Undersampling is a common
technique among the existing technologies to overcome the
sample imbalance problems. All the binding sites (positive



samples) are kept, and the nonbinding sites (negative sam-
ples) as an original dataset S will generate a new set S'.
The numbers are N times the positive samples (N takes an
integer). We set the ratio parameter of positive and negative
samples to 1:5, with the N design details explained in Sec-
tion 3.4.

2.5. Sliding Windows. The structural state of a residue is
determined not only by amino acid residue itself but also
by neighboring residues. The interception of the neighbor
residue length is critical to the description of the target resi-
due. Underintroducing the information of neighbor residues
is not conducive to distinguishing, but overintroducing may
cause noise. The sliding window strategy is widely used to
contemplate the influence of neighbor residues for the target
residuals, located in the middle, and (w —1)/2 adjacent res-
idues are found on both sides ((w) size, being an odd num-
ber). Since the volume of metal ions is usually small, the
optimal window length of metal ions should be smaller than
that of the larger ligands, such as ATP and NAD ligands (17
in general) [53]. We computed and analyzed evaluation
indicators for seven class metal ions to determine the opti-
mal sliding window length.

2.6. Validation and Evaluation Metrics. Random 10-fold
cross-validation was used to validate model and tuning
parameters, which one set was used for testing, and the
remaining sets were used for training. We randomly divided
the dataset into ten sets. Repeat this process ten times, and
the final score was obtained by averaging the performances.
We used five evaluation measures to evaluate the generaliza-
tion ability of the model, which are accuracy (ACC), speci-
ficity (SPE), sensitivity (SEN), Matthews correlation
coefficient (MCC), and area under ROC curve (AUC),
respectively [54-57]. The training dataset is used to fine-
tune the proposed methods’ parameters, and the indepen-
dent test is used to test the methods.

TP + TN
ACC= i , (1)
TP + TN + FP + FN

TN
SPE= ——, 2
TN + FP @)

TP
SEN= ———, 3
TP + FN ( )

TP x TN — FP x EN
(TP + FP) x (TP + FN) x (TN + FP) x (TN + FN)’

(4)

MCC =

m—1

1
AUC= 5 Z (X1 + %)V +Yin1)> ()
1

i=

where TP, FP, TN, and FN represent true positive, false pos-
itive, true negative, and false negative.
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3. Results and Discussion

3.1. Specific Binding of Metal Ions and Amino Acids. It is well
known that ion channels are highly selective for controlling
ions in and out, which can be reflected by combining differ-
ent ions with amino acid residues [27]. We counted the fre-
quency of amino acids and nonamino acids bound by metal
ions to TMPs, as shown in Figure 1. Interestingly, (b) Ca*",
(d) Zn**, (e) Mg**, and (f) Hg**have higher specificity when
combined with residues than (a) K and (c) Na*. For Zn**, it
is more likely to connect with His (H), Cys (C), and Glu (E),
which are polar amino acids. Mg>* is more likely to bind
ASP (D) and more minor to nonpolar amino acids. HgZJr
has the highest tendency to combine with amino acids con-
taining the neutral R group, while Ca** has the most
increased tendency to combine with acidic amino acids.
Careful observation shows that metal ions are more likely
to connect with hydrophilic amino acids than hydrophobic
amino acids. The finding supports the hypothesis of
solvent-accessible residues that act as a potential metallocha-
perone and participate in delivering metal to the TM region.

In addition, we can conclude that the difference in the
binding frequency with amino acids reflects metal ions’
physical and chemical properties. Metal ions under the main
analogous group have similar chemical properties and also
have similar selectivity. The selection of binding amino acid
residues by metal ions of different main groups is also quite
different.

3.2. Position Conservation of Amino Acids. We further stud-
ied the conservative position information of the above six
MIBs by WebLogo [58], as shown in Figure 2. Sequences
were intercepted in window length L of 21 as an example
for each metal ion class to analyze. The relative size of letters
(amino acids) indicates their occurrence frequency in the
sequence. The larger the letter, the higher the frequency.
According to the illustration, no matter the binding site or
nonbinding site of K" and Na* is remarkable, reflecting the
proximity of the two metal ion sites in sequence and struc-
ture. But the status of other metal ions (Ca®*, Zn**, Mg**,
and Hg’") makes the difference, which reflection of the
binding site is remarkable, but the neighboring residues’
contribution limits during the crucial process.

The degree of conservation demonstrates the importance
of amino acids in evolution. A commonly cited approxima-
tion is that the more critical amino acids realize protein
function, the less likely they will mutate. Thus, the conserva-
tion of amino acid residues is a good indicator of protein-
metal ion binding. It was selected as the feature information
to develop an effective identification model further.

3.3. Contribution of Features. The feature space contains five
feature information, which we introduced in Section 2.2 for
classifier learning. We compared the effects of adding differ-
ent features on the results to verify the selected feature’s
validity. Table 2 shows that five elements were verified by
successively adding them into the classifier in the first stage
of the learning process.
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FiGure 1: The amino acid binding frequency of six metal ions. The frequency of 20 kinds of amino acids on the binding site (blue) and
nonbinding (red) was histogram. The abscissa represents the kinds of amino acids, and the ordinate represents the frequency (%); (a),
(b), (c), (d), (e), and (f) represents K*, Ca®*, Na*, Zn**, Mg>*, and Hg>", respectively.

It can be seen from Table 2 that adding features in
sequence from top to bottom plays a positive role for models
in MCC indicators. On the one hand, the five characteristics
selected in this experiment can better reflect the critical

information of the TMP sequence and help the model
identify the MIBs. On the other hand, five features are rel-
atively independent and can play a more significant role
when combined.
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FIGURE 2: Position-specific conservation of amino acid residues. (a) K*, (b) Ca**, (c) Na*, (d) Zn*", (e) Mg**, and (f) Hg*".

TaBLE 2: The performance of different combinations of features.

Feature combination ACC SPE SEN MCC AUC
PSSM 0.695 0.765 0.624 0.395 0.695
PSSM, PCP 0.75 0.801 0.7 0.504 0.75
PSSM, PCP, rASA 0.754 0.832 0.676 0.515 0.754
PSSM, PCP, rASA, Zcoord 0.755 0.834 0.675 0.516 0.755
PSSM, PCP, rASA, Zcoord, TOPO 0.766 0.861 0.67 0.542 0.766

3.4. Random Undersampling Scheme. Exploring the ratio of
binding and nonbinding residues is necessary to tackle the
sample imbalance problem because too few negative samples
will cause the loss of valuable information, and too many
negative instances will increase the interference caused by
redundant data. Figure 3 depicts the change of evaluation
indexes with the shift in positive and negative sample pro-
portion in the first stage. We can see that the MCC value
in the 10-fold cross-validation sets shows a decreasing trend
with the ratio increase. In contrast, the MCC value on the
independent set is fluctuant, but it increased in general.
The ratio of negative sample sampling is the key to influence
the final results. We used the proportion of positive and neg-
ative samples which is 1:5 to improve the model’s overall
performance.

3.5. Comparison with Other Machine Learning Methods over
Cross-Validation. TMP-MIBS is based on the RF algorithm.
This section compares the random forest with other
machine learning methods on the training dataset, such as
support vector machine (SVM), naive Bayes, and AdaBoost.
These methods have shown excellent performance in com-
mon classification problems. To obtain fair and objective

experimental results, all models adopt the same dataset and
preprocessing mechanism and finally get the test results
shown in Table 3.

As shown in Table 3, the integration classes’ perfor-
mance is better than the others. Compare the two ensemble
strategies AdaBoost and RF. The former adopts a boosting
approach to ensemble base learners that adjust according
to the previous one to generate prediction results serially,
making the model susceptible to noise and outliers. Instead,
the RF adopts a bagging strategy to make the base learner
relatively independent and has no strong dependency. It
can generate the prediction results in parallel, reduce out-
liers’ influence on them, and have the natural advantage of
solving the multidimensional unbalanced data. We further
compared the prediction performance of different classifiers
for each metal ion. The comparison similarly shows that the
overall performance of the random forest classifier is
optimal.

3.6. Comparison with Other Ligand-Specific Methods. To
prove TMP-MIBS’s robustness and effectiveness, we further
tested the model on the independent testing dataset and
compared it with two publicly available methods, including
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FIGURE 3: The ratio of nonbinding residues and binding residues. (a) 10-fold cross-validation test. (b) Independent validation test.

TaBLE 3: Comparison of RF with other classifiers.

Classifier ACC SPE SEN MCC AUC
SVM 0.658 0.648 0.703 0.267 0.676
Naive Bayes 0.767 0.775 0.73 0.409 0.752
AdaBoost 0.808 0.804 0.649 0.428 0.745
RF 0.795 0.808 0.73 0.447 0.769

TaBLE 4: Comparison with publicly available methods.

Ligand Method ACC  SPE SEN MCC AUC

K* TMP-MIBS  0.981 1 0.118 034  0.559
Ca** MIB 0942 0943 0342 0.067 0.643
TargetS 0997 0999 0471 0494 0.735

TMP-MIBS 0.908 0998 0.196 0.398 0.597

Na™ TargetS 0998 0999 0.259 0.336 0.629
TMP-MIBS 0901 0.997 0304 0.501 0.65

Zn** MIB 0945 0946 0.538 0.101 0.742
TargetS 099 0997 0231 0.151 0.614
TMP-MIBS  0.979 1 0.154 0.388 0.577

Mg2+ MIB 0932 0.933 0.053 0 0.493
TMP-MIBS 0991 0998 0.259 0.356 0.628

Hg2+ MIB 0948 0949 056  0.104 0.754
TMP-MIBS 0973 0998 0.259 0.502  0.63

Others TMP-MIBS 0976 0.987 0.056 0.041 0.521

TargetS [25] and MIB [24]. The prediction performance was
calculated based on the same dataset (Tables 1 and 4). For
the TargetS method, a ligand-specific template-free
protein-ligand binding site predictor used classifier ensem-
ble and spatial clustering. It has five metal ligands that over-
lap with this study. We submitted the protein sequence into

the webserver (http://www.csbio.sjtu.edu.cn/TargetS/) to
obtain the predicted results and evaluate predictive perfor-
mance. For the MIB method, which constructs metal ion
binding templates for structural comparison between query
proteins and templates and has four metal ligands identical
to this study, we submitted and ran the MIB webserver
(http://bioinfo.cmu.edu.tw/MIB/).

We observed that the performance of TMP-MIBS sig-
nificantly outperforms the MIB on four metal ions. The
average MCC value of Na*, Zn*", and ngJr is about 16—
39% higher than the TargetS. The results show that our
model is superior to the available metal ion predictors,
whether template-based or non-template-based methods.
It can be inferred that the results largely depend on our
input data rather than the complicated method. Although
the number of TMPs sequences is increasing, it is still
quite limited compared with non-TMPs. MIB and TargetS
training models do not distinguish TMPs, so the models
mainly learn the information of non-TMPs. The differ-
ences between the TMPs and non-TMPs are reflected in
the secondary structure through sequence information
and determine their tertiary conformation and function.
TMP-MIBS focuses on TMPs, and the final results also
confirm our efforts.

3.7. Metal Ion Binding Motif Analysis. A motif is an approx-
imate sequence pattern that repeatedly occurs in a group of
related sequences. It was used to reflect the protein’s conser-
vative information and discover novel information between
different sequences. We tried to find out the motif within
the metal ion binding domains to discover potential drug
targets. The seven group metal ion binding domains were
extracted for analysis. Figure 4 shows the sequence logos of
motifs for six metal ions and the 3D visualizations of their
examples. Note that we stipulate the MEME outputs with
ten motifs for each metal ion class and select the highest E
-value for reporting.
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FIGURE 4: Sequence logos of motif within the seven metal ion binding domains. (a) K*, (b) Ca*, (c) Na™, (d) Zn*", (e) Mg>", (f) Hg*", and

(g) others.

From Figures 4(a) to 4(g), describe the logo of K*, Ca®*,
Na®, Zn**, Mg**, Hg*", and (g) other metal ions respectively.
“E-value” is an estimate of the expected number of motifs
with the given log-likelihood ratio (or higher). “Site Count”
represents the number of sites contributing to the construc-
tion of the motif. “Width” represents the width of the motif.
Sequences where each position is independent and letters are
chosen according to the background letter frequencies. The
red dashed box indicates the TMP-MIBS prediction site.
The 3D visualization on the right is an example of the corre-
sponding motif. “Protein” represents the PDB ID_Chain
(domain).

The relative size of letters indicates their frequency in the
sequence. It can be seen from the figure that the higher the
letter, the more likely it is to become a binding site. Based
on the extraction of motif sequence, we can predict the
potential binding sites, which is helpful to understand fur-
ther the biological significance involved in various biological
processes.

4. Conclusions

Metal ions regulate almost all organisms’ physiological cell
functions, and their abnormal homeostasis usually leads to
a variety of diseases and pathogenic states. They achieve
homeostasis inside and outside the membrane and perform
essential biological functions with TMPs’ assistance. This
study proposed an effective method to predict the binding
residues of seven class metal ions in TMPs. We used the
combination of conservative structure, physical and chemi-
cal properties, topological structure, solution accessibility,
and Z-coordinate to apply the random forest algorithm to
identify metal ion binding residues. These characteristics
positively affected the prediction in essence. Test results
show that TMP-MIBS has excellent performance for metal
ion binding residues. This indicates that the sequential
approach alone can achieve pleasant performance and dem-
onstrates the importance of input data. With more and more
sequence information obtained in the future, our model will
show more excellent performance.

In the current work, a significant problem of TMB-MIBS
is that predicting fewer MIBs on the protein sequence is still
challenging. However, it can accurately predict more sites
than existing tools because the imbalance of positive and
negative samples is the unavoidable normal state of such

problems. We will work to overcome this problem as the
goal of the next phase.

Data Availability

TMP-MIBS’s code and dataset are available at https://github
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