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a b s t r a c t 

The article presents a secure edge computing model that utilizes machine learning for intrusion 

detection and isolation. It addresses the security challenges arising from the rapid expansion of IoT 

and edge computing. The proposed Intrusion Detection System (IDS) combines Linear Discrim- 

inant Analysis (LDA) and Logistic Regression (LR) to swiftly and accurately identify intrusions 

without alerting neighboring devices. The model outperforms existing solutions with an accuracy 

of 96.56%, precision of 95.78%, and quick training time (0.04 s). It is effective against various 

types of attacks, enhancing the security of edge networks for IoT applications. 

• The methodology employs a hybrid model that combines LDA and LR for intrusion detection. 

• Machine learning techniques are used to analyze and identify intrusive activities during data 

acquisition by edge nodes. 

• The methodology includes a mechanism to isolate suspected devices and data without notify- 

ing neighboring edge nodes to prevent intruders from gaining control over the edge network. 
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Method details 

Introduction 

In the era of IoT devices, there is a massive global growth of edge computing, which is projected to reach nearly 6.5 billion by 2030.

This marks an increase of over four billion from the figures recorded in 2020 [1] . It advanced IoT and cloud computing development

by supporting computing power and innovative services in the edge network. It provides a decentralized platform for connected 

devices that improves performance, reduces latency, and better supports real-time applications, making it a valuable solution for a

variety of industries and use cases. However, edge computing caused a significant security threat and privacy issues [2] . Edge devices

are usually deployed in places that are not of rigorous surveillance and protection. Therefore, conventional attacks like eavesdropping, 

data hijacking, man-in-the-middle, and many others become possible for a malicious intruder or user [3] . Some common approaches

to address the security issues in edge computing are establishing trust, privacy preservation techniques, authentication and key 

agreement techniques, and intrusion detection systems (IDS). IDS is the most widely used method to identify and mitigate the attack.

It is deployed at all levels of three-tier edge computing architecture [4] . It is used to analyze network traffic, and data inflow, monitor

the behavior of edge nodes, IoT devices, or cloud servers, and generate a proactive, responsive approach to prevent the attack. 

The proactive responses may be sending an alarm to other nodes, using an access control policy, blocking users’ services, or

sending notifications [5] . However, all the incidents that are detected as attacks may not be an attack. For example, a user may

erroneously obtain access to a different system by entering a different address without authorization [6] . In another example, a

cybercriminal might have performed the same action to exploit liabilities in the system. Therefore, there is a need to distinguish

between malicious (cybercriminal) from non-malicious activity (a person erroneously acquiring access) [7] . Further, the false alarm 

or generating notification for the other edge nodes can create computation load and cause chaos in the edge layer by affecting

characteristic features of edge computing and disrupting the typical function of the edge applications [8] . 

Machine learning (ML) and deep learning techniques have been highly used in IDS for feature extraction, detection, computer

vision, or recommendation systems. Real-time data streaming in IoT and edge nodes requires real-time anomaly detection [9] . How-

ever using deep learning may require high memory and computing resources, so it may be challenging to adopt deep learning in

edge networks [10] . Whereas in ML-based IDS, the feature selection process is a mandatory phase that possibly lessens computational

complexity. This mandatory phase identifies the relevant features from the original data, improving overall classification accuracy 

[11] . In ML, Linear discriminant analysis (LDA) and Logistic Regression (LR) are broadly used for multivariate statistical data analysis.

In LDA, normally distributed explanatory variables get better results when the normality assumption of intrusions is fulfilled [11] .

Whereas in LR, there is no assumption on the distribution of the descriptive data. When the sample size is vast, the LDA predicts

the attack estimation of mean and variance accurately. So, in our proposed model, LDA is used for feature extraction in the initial

stage. On the contrary, LR is better in the case of a small sample size. Therefore, LR is used for the classification of the attack on the

feature-reduced dataset [12] . Overall, these two methods are robust in categorization. Therefore, adopting these methods together 

in the edge layer can give better accuracy and response in terms of intrusion detection to support edge computing features [12] . 

This research proposes an intrusion detection system based on ML using the LDA-LR hybrid model that isolates the device and

data identified as an intrusion. During this process, no alarm or notification is sent to any neighboring edge nodes. The edge node

that sources the data from IoT devices in the edge layer performs the feature extraction and identification of the attack. Later the edge

node informs the edge server to isolate the device and data from the other edge nodes. In this way, the proposed model is significant

by not creating any chaos or disturbing the normal functioning of the neighboring edge nodes. The key contributions of this research

are: 

• A hybrid LDA-LR-based intrusion detection approach to perform feature extraction and isolate the attack. 

• Compute the time complexity of the proposed hybrid LDA-LR model. 

• Analyze the performance efficiency of the proposed model and compare it with the existing models. 

The rest of this paper is organized as follows; Section II introduces similar IDS work in edge computing. The proposed model and

its time complexity are explained in detail in section III. Section IV presents the experimental setup, results, and evaluation. Section

V presents a comparison with existing methods. Section VI includes the discussion and conclusion of the proposed work with future

work in section VII. 

Related work 

Edge computing has revolutionized cloud computing by deploying computing, storage, and networking services to the edge of 

the network. However, it encounters conventional security threats, which increases security and privacy disputes on the edge layer.

Considerable research on security threats shows that security in edge computing is the most researched topic. There is a vast number

of research on edge computing that mainly focuses on analyzing security threats and developing countermeasures [13–16] . There 

are many countermeasures like access control mechanisms, trust models, reputation models, and IDS to handle security issues [17] .

Among all these IDS is an efficient network monitoring system without altering the network packets. The main advantages of IDS

are that it can be a) highly adaptive using a knowledge base during anomaly changes, fluctuating user behavior, or identifying any

gradual change, b) Online IDS support uninterrupted monitoring and are highly expandable, and c) batch audit-based IDS monitors

anomalies using low periods of central processing usage. 
2
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The local edge data centers or edge networks can employ IDS to monitor and analyze the system logs for unauthorized access in

edge computing. The edge network located one hop away from mobile devices can efficiently mesh to form a security framework

to detect any intrusion. Furthermore, by adopting software-defined networks, network virtualization can reduce network costs and 

scale the resources. Therefore, considering these advantages of IDS in edge computing to provide security, the proposed work focuses

on developing an efficient IDS to secure edge-based applications. 

Currently, there are many studies where edge computing is used as an intrusion detection layer to provide security to cloud servers

or IoT applications. For example, in the cognitive fog computing layer [18] – the local edge nodes identify the intrusions using Online

Sequential Extreme Machine Learning and the support of centralized cloud intelligence. The centralized cloud monitors the actions of

edge nodes; thereby, the edge nodes cannot take any immediate action upon detecting attacks. However, the distributed architecture 

of edge computing reinforces the intrusion detection scheme’s scalability, flexibility, and interoperability. IMPACT [19] – lightweight 

ML-based IDS is deployed on edge nodes to evaluate the data before passing it to the cloud. The resource-constrained edge nodes use

a stacked autoencoder, a neural network for feature extraction, mutual information, and feature selection. And later, for detecting 

attacks, gradient descent optimization-based SVM (Support Vector Machine) is used. Though it is suitable for impersonation attacks, 

it cannot identify similar attacks like flooding or injection. 

Empirical, semi-supervised, or cyber security-based IDS has demonstrated high detection accuracy, adequate computational per- 

formance, and close cooperation between the model and edge computing. They collect network data and perform feature extraction

to remove redundant data that assist classifiers. The classifier finally uses these features to train the model, identify the attack with

high accuracy, and raise the alarm to the server [20–22] . These approaches can be trained efficiently and made suitable for a par-

ticular model, but it might be challenging to adopt for all the models in common. Apart from this, few efficient methods identify

intrusion based on their interactions with the edge nodes. The interaction is initiated through the backpropagation approach or honey

pot techniques. They maintain a separate log to track their interactions and analyze their behavior based on their responses. These

models can assist in identifying unknown attacks more precisely [23–26] . However, frequent interaction can make the system more

vulnerable to attacks while identifying the motive of cyber criminals [27] . 

Machine Learning algorithms are commonly used to identify the attacks in IDS because the preprocessing used in these algorithms

considerably improves detection accuracy and has superior performance [28] . Few approaches perform intrusion detection based on 

the resources allocated to each node. If nodes use more resources than the allocated capacity, then they are identified as an intrusion.

This approach can easily detect DoS, impersonation, or multistage attacks [25 , 29] . During intrusion detection, to confirm and mitigate

the intrusion, alarms are raised in IDS. There are probabilities that alarms might not be true in all instances. The attackers can send a

flood of irrelevant data packets to the IDS host and create a false alarm. This can make IDS resources exhausted and make the system

vulnerable [30] . Therefore, few approaches concentrate exclusively on alarm reduction [19 , 26 , 31] . These are collaborative IDS that

cannot be efficient considerably. First, intrusion detection must be performed, and further alarm monitoring must be included. In 

addition, this collaboration will require extra security considerations to identify accurate attacks and falsely considered attacks. There 

can be instances where users may erroneously gain access to the network or send data packets with a few junks. Hence if IDS supports

alarm monitoring, then it should also identify non-malicious users [32] . 

Autoencoder and isolation forest-based IDS are effectively integrated with two-staged detection to identify anomaly and normal 

data packets. They include historical data and perform categorizations that span from minutes to days. This categorization assists in

isolating the intruders from the network and reducing their impact on the network. However, the cloud servers perform the complete

analysis, and the edge nodes are loaded with the historical data [33] . The main drawback of these approaches is tracking all the read

and write operations in separate log files. If any operations and transactions are lost, then recovery cannot be guaranteed by the edge

nodes. 

From the above analyses, it can be summarized that IDS is an efficient and straightforward intrusion monitoring system. They

identify any simple deviation in the network and inform the servers to mitigate the attacks. IDS can be an appropriate method to

alleviate any issues in edge computing if the identified gaps are addressed effectively. To summarize the identified research gaps,

frequent interactions to identify intrusion will make the system vulnerable, and the attackers can understand the system flow. This

results in the attacker gaining control over the system. Next, the attackers can create false alarms and make IDS resource exploitation.

It is appropriate to include false alarms or stop alarm generation since it might require edge nodes to prepare to handle them. And

finally, there are instances where non-malicious users are identified as malicious users. So, IDS should be capable of distinguishing

between malicious and non-malicious users. 

Table 1 shows the works centered around the development of advanced intrusion detection systems (IDS) for the Internet of Things

(IoT) and edge computing environments. These environments are increasingly becoming the target of cyber threats, necessitating 

robust and efficient IDS. The study in [34] addressed the challenge of filtering and selecting transmitted data from IoT devices, which

can often be unrelated, duplicated, or erroneous. A deep learning model that combines Convolutional Neural Networks (CNN) and

Gated Recurrent Unit (GRU) algorithms was proposed and tested using the NSL-KDD and UNSW-NB15. Similarly, in [35] the study 

identified complex cyber-attacks. They proposed a two-layered distributed and lightweight IDS. The system was able to accurately 

characterize normal behavior within fog nodes and detect different attack types such as DDoS attacks with a high detection rate

(99.98%) and low false alarms rate (less than 0.01%) 

Autoencoder (AE) and Isolation Forest (IF) for the fog environment model focused on intrusion detection exclusively in edge 

frameworks. Their approach achieved a high accuracy rate of 95.4% as compared to many other state-of-art intrusion detection

methods [33] . A novel wrapper FS model that uses the Emperor Penguin Colony (EPC) method to explore the issue space and a

K-nearest neighbor classifier was proposed to solve FS for IoT challenges. The proposed EPC model is a novel approach to intrusion

detection for IoT systems that achieves high accuracy and efficiency in filtering and selecting transmitted data [36] . The study in
3
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Table 1 

IDS in Edge computing environments. 

Refs. Problem Research Method Contribution 

[34] The data sent via IoT devices can be unrelated, 

duplicated, or erroneous, posing a challenge for 

performing required tasks. Therefore, filtering and 

selecting transmitted data are necessary to achieve 

the highest possible level of security 

Design a deep learning model that combines 

CNN and GRU algorithms using the NSL-KDD 

and UNSW-NB15 datasets. 

It achieves a detection rate that is 1.5 times 

more accurate than other IDSs. 

[36] The data sent via IoT devices can be unrelated, 

duplicated, or erroneous, posing a challenge for 

performing required tasks. Therefore, filtering and 

selecting transmitted data are necessary to achieve 

the highest possible level of security and address 

specific problem characteristics. 

proposes a novel wrapper FS model that uses 

the emperor penguin colony (EPC) method to 

explore the issue space and a K-nearest 

neighbor classifier to solve FS for IoT 

challenges 

The proposed EPC model is a novel approach 

to intrusion detection for IoT systems that 

achieves high accuracy and efficiency in 

filtering and selecting transmitted data 

[35] Identify complex cyber attacks Proposes two layered distributed and 

lightweight IDS 

The proposed system can characterize 

accurately the normal behavior within fog 

nodes and detect different attacks with a high 

detection rate (99.98%) and low false alarms 

rate (less than 0.01%). 

[6] high-dimensional nature of networking data 

exacerbated IDS 

ML base Effective Seeker optimization model 

to choose optimal features for intrusion 

detection 

Effectively identifies the occurrence of 

intrusions 

[33] Intrusion in edge framework Deep learning approach using Autoencoder 

(AE) and Isolation Forest (IF) for the fog 

environment 

achieves a high accuracy rate of 95.4% as 

compared to many other state-of-art intrusion 

detection methods 

[37] Addresses various intrusions, that can disrupt 

network resources and impede authenticated 

users. 

Proposes integrated Convolutional Neural 

Network (CNN) with Long Short-Term 

Memory networks (LSTM)-based Fog 

Computing Intrusion Detection model 

The model demonstrates a high attack 

detection accuracy of about 96.5% 

 

 

 

 

 

 

 

 

 

 

 

[6] addressed the high-dimensional nature of networking data that exacerbated IDS. They proposed an ML-based Effective Seeker 

optimization model to choose optimal features for intrusion detection. Finally, an integrated Convolutional Neural Network (CNN) 

with Long Short-Term Memory Networks (LSTM)-based Fog Computing Intrusion Detection model addressed various intrusions that 

can disrupt network resources and impede authenticated users. The model demonstrated a high attack detection accuracy of about

96.5% [37] . 

Despite these significant contributions, there are some gaps in these studies. One notable gap is that none of the papers have

discussed isolating the intrusions identified during detection. Isolating intrusions could potentially improve the efficiency of data 

analysis by allowing for a more focused examination of suspicious activities without the noise of normal network traffic [38] . This

could lead to faster response times in mitigating threats and less computational resources spent on analyzing benign activities [39] . 

Furthermore, as these models mostly rely on datasets for testing, it is uncertain how applicable they are in the actual world. It

is also not covered in detail how these models scale with the increasing number of IoT devices. The capacity of these models to

adapt to various network configurations is also not thoroughly investigated. These studies also fail to fully address privacy issues

relating to data transfer in IoT networks. Lastly, practical challenges related to the implementation and deployment of these systems

in real-world environments are not discussed. 

Proposed LDA-LR intrusion detection method 

A brief explanation of every factor of the proposed IDS model is given in the following sub-divisions. 

Data preprocessing 

The initiation of intrusion detection begins through data analysis. Continuous data and discrete data are two categories of data

available. For continuous data, normalization is performed before data reduction and classification. This involves covariance calcu- 

lation and the Z-score normalization method to eliminate dimensional variance and covariance. 

Eq. (1) shows the Z-score normalization. 

𝑧 = 𝑥 − 𝜇

𝜎
(1) 

where x is the input data stream, z is the normalized output data stream; μ and 𝜎 are the mean and variance of the continuous and

discrete input datasets. 

For discrete data, the One-Hot Encoder is used to encode categorial integer features using a one-hot scheme. Categorial features of

data are passed as input, and a sparse matrix representing data features in an individual column is the output. This approach reduces

normalizing multiple parameters and improves the nonlinear capability of the algorithm. 
4
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Linear discriminant analysis 

It is a dimensionality reduction technique that involves removing duplicate and related features from the dataset. They transform

the features from higher dimensionality to lower dimensionality. The separability between different classes is first calculated to 

achieve these features, and then the distance between means of other classes. This is called between-class variance or between-class

matrix (𝑆𝑏 ) . Next, we calculate the distance between the mean and samples of each class, called a within-class variance or within-

class matrix. Finally, a transformation matrix of lower-dimensional space is constructed, maximizing the between-class matrix and 

minimizing the within-class matrix [40] . 

In a given N train sample, D = {𝑥𝑘 , 𝑡𝑘 } , k = 1,2,3…., N. Presume that 𝑥𝑖𝑗 ∈ {𝑥𝑘 } , 𝑡𝑖𝑗 ∈ {𝑡𝑘 } , i = 1,2, 3,…, c; j = 1,2,3…𝑛𝑖 . 𝑥𝑖𝑗 is the

jth sample feature vector of ith class and 𝑡𝑖𝑗 is the sample corresponding to 𝑥𝑖𝑗 with d dimensions. The feature matrix can be expressed

as 𝑋𝑁x 𝑑 with c types and 𝑛𝑖 is the sample with class i where 𝑁 =
∑𝑐 

𝑖 =1 𝑛𝑖 . Finally, the mean sample of vector u and the class 𝑢𝑖 is 

𝑢 = 1 
𝑁 

𝑐 ∑
𝑖 −1 

𝑛𝑖 ∑
𝑗=1 

𝑥𝑖𝑗 (2) 

𝑢𝑖 =
1 
𝑛𝑖 

𝑛𝑖 ∑
𝑗=1 

𝑥𝑖𝑗 (3) 

Defining between-class matrix (𝑺 𝒃 ) : The separation distance between classes with varied spatial similarities and the sample’s 

center is the between-class matrix (𝑆𝑏 ) . It denotes the range of the high dimensional data spatial similarity measurement function

and the dispersion between classes. It is expressed as 

𝑆𝑏 =
𝑐−1 ∑
𝑖 =1 

𝑐 ∑
𝑗= 𝑖 +1 

𝑓𝑖𝑗 𝑛𝑖 𝑛𝑗 
(
𝜇𝑖 − 𝜇𝑗 

) (
𝜇𝑖 − 𝜇𝑗 

)𝑇 
(4) 

𝑓𝑖𝑗 =
𝑑 ∑

𝑘 =1 

1 
1 + |||𝑢𝑖,𝑘 − 𝑢𝑗,𝑘 

||| (5) 

where 𝑓𝑖𝑗 is spatial similarity dimension function with high dimensional data. It represents the spatial similarity of (𝜇𝑖 , 𝜇𝑘 ) data. 

While the mean values of the data are represented as (𝜇𝑖,𝑘 , 𝜇𝑗,𝑘 ) with 𝑖 and 𝑗 in 𝑘 dimensions, 𝑑 is feature dimensions. The number of

samples here are 𝑛𝑖 and 𝑛𝑗 . 

Defining within-class matrix (𝑺 𝒘 ) : To minimize within-class variance, the within-class matrix (𝑆𝑤 ) is defined as the difference 

between the mean and the sample of the class. It is the mean square error of the distance between each class of the sample and its

center. It shows the degree of diffusion of the same class of sample. It is expressed as 

𝑆𝑤 =
𝑐 ∑

𝑖 =1 

𝑛𝑗 ∑
𝑗=1 

(
𝑥𝑖𝑗 − 𝑢𝑖 

)(
𝑥𝑖𝑗 − 𝑢𝑖 

)𝑇 
(6) 

Defining transformation matrix with lower dimension space : The lower-dimensional space is constructed by maximizing the 

between-class matrix and minimizing the within-class matrix. The transformation matrix 𝐴∗ is expressed as 

𝐴∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝐴 

𝐴𝑇 
(
𝑆𝑏 − 𝑆𝑤 

)
𝐴 

𝐴𝑇 𝐼𝐴 

(7) 

𝐼 is the identity matrix, 𝐴∗ is the projection matrix. Based on the Rayleigh quotient, eigenvectors and corresponding eigenvalues 

of 𝐼−1 (𝑆𝑏 − 𝑆𝑤 ) are calculated and then combined into a matrix to obtain the optimal transformation matrix 𝐴∗ [41] . Finally, through

Eq. (8) dimensionality, the reduced feature vector is obtained. This simplifies computations by transforming high-dimensional data 

into a lower-dimensional space, thereby enhancing computational efficiency [42] . 

𝑦𝑘 = 𝑥𝑘 𝐴
∗ (8) 

𝑦𝑘 is the equivalent feature vector and 𝑥𝑘 is the actual vector that must be reduced. The final dimensionality-reduced feature matrix

is represented as 𝑌 𝑁x 𝑀 represents the transformation of the overall N samples into a new dataset. Overall, 𝑁 sample is transformed

to form a new dataset with 𝐷′ = {𝑦𝑘 , 𝑡𝑘 } features. The application of Linear Discriminant Analysis (LDA) contributes to the mitigation

of overfitting and underfitting by emphasizing class separability and capturing the underlying structure of the data. This intrinsic

focus aids in the development of a more robust and generalizable model. 

Logistic regression 

It is a probabilistic classifier method to calculate categorial results by considering independent variables. Weighted matrix 𝑤 and 

a bias 𝑏 are categorized using this probabilistic classifier [43] . It is expressed as 

𝑡 = 𝑠𝑔𝑛
(
𝑤𝑇 𝑦 + 𝑏 

)
(9) 
5
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The augmented weight matrix for the classifier can be obtained during the training phase of the LR model, and it is expressed as 

𝑡 = 𝑠𝑔 𝑛
(
𝜃𝑇 𝑦 

)
(10) 

𝐷′ = {𝑦𝑘 , 𝑡𝑘 } is the feature-reduced dataset passed to the LR model with the target output 𝑡𝑘 and 𝑦𝑘 is training data. The weight

of the matrix is initialized as 𝜃 = 1 , and it is expressed as 

𝜃𝑗 ( 𝑛) = 𝜃𝑗 ( 𝑛 − 1 ) + 𝛼.𝜗𝑗 (11) 

𝛼 is the learning rate and 𝜗𝑗 is expressed as 

𝜗𝑗 =
𝑚 ∑
𝑖 =1 

(
𝑡( 𝑖) − ℎ𝜃

(
𝑥( 𝑖) 

))
𝑥
( 𝑖) 
𝑗 

(12) 

where m is the number of samples available in the existing feature reduce dataset, 𝑗 ∈ {1 , 2 , … , 𝑚 } and ℎ𝜃( 𝑥 ) is the logistic function

given as ℎ𝜃( 𝑥 ) =
1 

(1+ e− 𝜃𝑇 𝑥 ) 
. 

The average cost function J( 𝜃) for the logistic regression model is expressed as 

𝐽 ( 𝜃) = ( 1∕ 𝑚 ) 
𝑚 ∑
𝑖 =1 

(
𝐶𝑜𝑠𝑡

(
ℎ𝜃

(
𝑦( 𝑖) 

)
, 𝑡( 𝑖) 

))
(13) 

and 𝐶𝑜𝑠𝑡 (ℎ𝜃(𝑦( 𝑖 ) ) , 𝑡( 𝑖 ) ) is expressed as 

𝐶𝑜𝑠𝑡
(
ℎ𝜃

(
𝑦( 𝑖) 

)
, 𝑡( 𝑖) 

)
=

{ 

− 𝑙𝑜𝑔
(
ℎ𝜃( 𝑦) 

)
− log 

(
1 − ℎ𝜃( 𝑦) 

) 𝑖𝑓 𝑡 = 1 
𝑖𝑓 𝑡 = 0 (14) 

To obtain the minimum average cost for the logistic regression model, an iterative expression for 𝐽 ( 𝜃) is employed, and it is

expressed as 

𝐽 ( 𝜃) = 𝐽 ( 𝜃) +
(
− 1 
𝑚 

)( 

𝑚 ∑
𝑖 =1 

𝑡( 𝑖) 𝑙 𝑜𝑔
(
ℎ𝜃

(
𝑥( 𝑖) 

))
+

(
1 − 𝑡( 𝑖) 

)
𝑙 𝑜𝑔

(
1 − ℎ𝜃

(
𝑥( 𝑖) 

))) 

(15) 

The iterative equation is terminated when optimum weights are obtained, and the model is ready for testing. In other words, 𝜀

denotes the acceptable threshold for the function, then (15) terminates when |𝐽 ( 𝜃) | ≤ 𝜀 

Algorithm1 hybrid LDA-LR 

Input : train dataset 𝐷 = {𝑥𝑘 , 𝑡𝑘 } 𝑘 = 1 , 2 , 3 …𝑁 test dataset; = {𝑇 𝑥𝑘 , 𝑇 𝑡𝑘 } 𝑘 = 1 , 2 , 3 … 𝑛𝑡 . 

Output : projected classification matrix T 

1. Create a feature matrix X for D. 

2. 𝑋 = 𝑍 − 𝑠𝑐𝑜𝑟𝑒 ( 𝑋) – (1) 

3. Compute 𝑆𝑏 and 𝑆𝑤 – (4) and (6). 

4. Obtain 𝐴∗ by solving – (7). 

5. Determine 𝑌 = 𝑋𝐴∗ , obtain the new train data 𝐷 = {𝑦𝑘 , 𝑡𝑘 } . 
6. Set the following variables: Cost Function, 𝜀 , number of iterations 𝑁𝑚𝑎𝑥 , Initialize augmented weighted matrix, 𝜃 = 1 ; and Cost

function 𝐽 ( 𝜃) = 0 . 
7. Update the augmented weighted matrix, 𝜃 using (11). 

8. Find the cost function using (15). 

9. If |𝐽 ( 𝜃) | ≤ 𝜀 (𝑜𝑟 ) 𝑁 = 𝑁𝑚𝑎𝑥 , go to Step 10. 

10. Else go to Step 7 to update the augmented weighted matrix. 

11. Optimum weights are obtained for 𝜃. 

12. Testing: Find the output using optimum weights and test inputs 𝑡 = 𝑠𝑔𝑛 (𝑤𝑇 𝑦 ) . 
13. Return T. 

Time complexity analysis 

The complexity of algorithm 1 is evaluated by considering all the steps with their respective iterations, where N means the

number of executions, d means the tasks, and c means the class type. The training times of the following equations are considered in

the algorithm: 

1. To compute normalization in (1) - for each of the c types, there are 𝑁𝑑 operations and 1 division. Thus, in total, there are

𝑁𝑑 + 𝑐 operations. 

2. Compute 𝑆𝑏 in (4) - 𝑁(𝑑 + 𝑑2 + 𝑑2 ) , the first 𝑑 is for 𝑓𝑖𝑗 𝑛𝑖 𝑛𝑗 , the second 𝑑2 is for (𝜇𝑖 − 𝜇𝑗 ) and the third 𝑑2 is for (𝜇𝑖 − 𝜇𝑗 ) 𝑇 . 
3. Compute 𝑆𝑤 in (6) - 𝑁(𝑑 + 𝑑2 ) , the first 𝑑 is for (𝑥𝑖𝑗 − 𝑢𝑖 ) and the second 𝑑2 is for (𝑥𝑖𝑗 − 𝑢𝑖 ) 𝑇 . 
4. Compute 𝐴∗ - 𝑑2 + 𝑑2 + 𝑑2 , the first 𝑑2 is for (𝑆𝑏 − 𝑆𝑤 ) , the second 𝑑2 is for 𝐴𝑇 (𝑆𝑏 − 𝑆𝑤 ) 𝐴 and the third 𝑑2 is for the division
of with projection, Identity matrix, and Transpose. 

6



P. Mahadevappa, R.K. Murugesan, R. Al-amri et al. MethodsX 12 (2024) 102597

Fig. 1. System Model of the proposed framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For LDA, we have 𝑁 > 𝑑 > 𝐶 thus, the dominated terms are 𝑁𝑑2 the computational complexity is 𝑂(𝑑2 ) . For LR, the training time

complexity is solving the optimization problem. 

5. Update the augmented weighted in (11) matrix 𝜃𝑗 ( 𝑛 ) = 𝜃𝑗 (𝑛 − 1 ) + 𝛼.𝜗𝑗 is d 

6. Find the cost function in (15) 𝐽 ( 𝜃) for N iterations which is 𝑁𝑑

For LR, solving the optimization problem is 𝑂(𝑁𝑑 ) . Overall, for the LDA-LR algorithm complexity is 𝑂(𝑑2 ) . 

Method validation 

The edge computing framework deployed in the proposed work is based on FogFlow, as shown in Fig. 1 . It is a standard framework

deployed in NEC Laboratory for IoT services over the cloud and edge nodes. It has common interfaces for sharing and reusing

contextual data across services. Service management, data processing, and context management are the three logical divisions. These 

divisions include task designer, and topology master to monitor IoT services and service orchestration among edge nodes. The topology

master assigns data processing tasks to edge nodes and workers. For context management, IoT discovery and a set of IoT brokers

are assigned. These components manage contextual data such as worker availability, topology, task, and generated data stream, as

well as establishing data flow across tasks. The communication is usually through the RabbitMQ protocol [44] . The simulated real

network environment of the FogFlow framework used in the proposed work is shown in Fig. 1 . 

The proposed system model is used to control the malicious IoT devices and data passed by the attacker. To achieve this, two

separate virtual networks were deployed. The first production network includes the cloud, edge layer, and devices. The second virtual

network is the isolation network, which is entirely separated from the production network. The optimal strategy is applied to prevent

the attackers from gaining control of the production network. Practically, the strategies applied are MAC address starting from –

B5:A2, specifying Operating system (Ubuntu), specifying the physical environment, and security patches in their OS with 17.2 or

above. The devices that do not meet this requirement are denied access to the production network and automatically sent to the

isolation network. In our case, the worker nodes evaluate the packets sent by the IoT devices through hybrid LDA-LR IDS. If the

workers predict the data is generated from the attacker, the IoT broker isolates the IoT devices by immediately placing them in the

isolation network. Hence the traffic generated from those malicious devices is isolated from the production environment. 

Experimental setup 

The proposed intrusion detection model is implemented on Python-based simulator YAFS (Yet Another Fog Simulator). It models 

mobility, sensors, and actuator and supports dynamic changes during execution using JSON files. This simulator is ideal for modeling

network failures, dynamic allocation of modules, service placement problems, and designing robust networks [45] . The simulation 

setup includes a cloud node of 10GB RAM and 16 GHz CPU, 4 edge nodes of 2GB RAM and 3 GHz CPU, and 50–400 IoT devices

of 500 MB RAM and 1 GHz CPU power. The link bandwidth is 3–10 Mbits, a packet size of 200 bytes, and 100 𝑋 10 8 packets per

instruction. 
7
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Table 2 

Performance Metrics of the proposed model. 

Metrics Value 

Training Time 0.04 s 

Accuracy 96.56% 

Precision 95.78% 

Recall 92.69% 

F-measure 94.21% 

Isolation Accuracy 93.36% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NSL KDD dataset 

KDD CUP and NSL KDD are the datasets used widely in intrusion detection. The disadvantages of KDDCUP data, such as huge,

replicated records, are addressed in NSL KDD and hence it has gained popularity in many intrusion detection systems. In the NSL-KDD

dataset, there are four different attack types: DoS, Probe, U2R, and R2L, and 21 different types of attack examples. More importantly,

the testing dataset contains attacks that do not exist in the training set [46] . This significantly helps to check the training model

competence effectively when facing unknown attack types. Therefore, the proposed work is developed using the NSL-KDD dataset, a

public dataset from the Canadian Institute for Cybersecurity. Recent works on intrusion detection in edge computing environments 

are evaluated using this dataset [21 , 33 , 47] . 

Evaluation metric 

The performance of the proposed machine learning-based IDS is evaluated using a confusion matrix. The performance in terms of

training time, accuracy, precision, recall, and f-measure was evaluated using the confusion matrix. The overall performance of the 

proposed model is tabulated in Table 2 and the following are the definitions of these metrics: 

Training Time: The total time required to train the model is measured in seconds called training time (s). 

Accuracy: The percentage of test cases correctly identified is the accuracy of a procedure on a particular test set. It is expressed

as 

𝑇 𝑃 + 𝑇 𝑁 

𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁 

Precision: The ratio of all positive labeled instances to the notion of the positive cases that the model accurately recognizes is

known as precision. It is expressed as 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑃 

Recall: The proposition of the positive cases that the model correctly recognizes is called recall. It is expressed as 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑁 

F-measure: A harmonic mean of precision and recall is used to calculate the F-measure and test accuracy. It is expressed as 

2 𝑋 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

Isolation Accuracy: The percentage of the number of devices isolated from the edge network. The devices predicted as an intrusion

are isolated without notifying them or alarming the neighboring edge nodes and moved to the isolation zone. Isolation accuracy is

expressed as 

𝑇 𝑃 

𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁 

The isolation of the intruded devices limits their accessibility in the network and avoids their interactions with the other edge

nodes. This significantly reduces the intensity of the attack and secures the edge resources from the attackers. Later, the isolated

devices can be further analyzed to differentiate the TP and FP classifications and pass the FP devices back to the edge network to

regain services. 

TP (True Positive): The number of cases that have been correctly classified as an attack. 

FP (False Positive): The number of cases that have been incorrectly classified as an attack. 

TN (True Negative): The number of normal cases correctly classified. 

FN (False Negative): The number of normal cases incorrectly classified. 

Choosing a suitable machine learning algorithm 

Machine Learning classifiers in IDS predict the modeling problem for the given input and classify it as intrusions or normal. There

are many classification algorithms for predictive modeling problems, but there is no good concept to map the algorithm into the
8
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Fig. 2. Accuracy of ML classifiers. 

Table 3 

Training Time of ML classifiers. 

ML Models Training Time(s) 

LDA 2.5448 

LR 2.7746 

SVM 193.2697 

DTC 1.7338 

RFC 12.609 

MLP 1.2025 

Table 4 

Training time comparison with evaluated ML methods. 

Iterations LR (s) SVM (s) MLP (s) LDA-LR (s) LDA-SVM (s) LDA-MLP (s) 

20 0.6723 1.2995 19.0033 0.1254 0.197 12.6315 

40 1.2608 2.3372 39.4815 0.0963 0.2666 28.8201 

60 1.8019 3.3221 58.1655 0.1038 0.3613 44.537 

80 2.5627 4.3194 78.8476 0.0888 0.4792 38.1013 

100 3.285 5.4656 98.3079 0.1038 0.588 80.7532 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

problem in practice. Therefore, the controlled experiments are performed in the proposed work to discover an appropriate algorithm,

and their configuration results in the best performance for a given task. The ML classifiers considered for the experiments are Linear

Discriminant Analysis (LDA), Logistic Regression (LR), Support Vector Machine (SNM), Decision Tree Classifier (DTC), Random Forest 

Classifier (RFC), Multi-Layer Perceptron (MLP). 

Table 3 shows the training time, and it can be observed that MLP and DTC have efficient training times compared to the other

classifiers. Likewise, Fig. 2 . shows the accuracy of these classifiers, which is above 95% for all the classifiers. This shows that all the

considered classifiers have an efficient classification accuracy. 

Further test precision, recall, F-measure, and isolation accuracy are analyzed to evaluate the efficiency of the classification. 

Fig. 3 (a)–(d) show the evaluation of the performance metrics. In the evaluation process, precision is a good measure to determine the

false positive instances. This determination confirms that non-intruders are not falsely identified as an intruder. Hence from Fig. 3 (a)

and (b), other classifiers have significant precision and recall except DTC. 

Significantly Fig. 3 (c) shows the LDA, LR, and MLP have a harmonic mean balance between precision and recall. Finally, the

main aim of the proposed work is to isolate the identified intrusions. Therefore, considering these metrics, the classifiers are further

evaluated for isolation accuracy. Fig. 3 (d) shows the isolation accuracy; apart from DTC and RFC, the other classifiers have above

75% accuracy. This illustrates that true positive intrusions are successfully isolated. 

Further, to identify the hybrid combination of the classifiers, LR, SVM, and MLP are combined with LDA and evaluate their

performance. Since LDA has significantly efficient metrics in precision, recall, and isolation accuracy, it is considered the main

combination with the other classifiers. 

To evaluate the hybrid sequence of the classifiers, the model was evaluated with various number of iterations to assess training

time and isolation accuracy, and they are depicted in Tables 4 and 5 . In Table 3 . the training time of SVM can be observed to be high,

but the combination of LDA-SVM delivers an efficient time likewise LDA-LR. However, the accuracy of LDA-SVM is not constant,
9
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Fig. 3. (a): Precision of ML classifiers (b): Recall of ML classifiers (c): F-Measure of ML classifiers (d): Isolation Accuracy of ML classifiers. 
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Table 5 

Isolation accuracy comparison with evaluated ML methods. 

Iterations LR% SVM% MLP% LDA-LR% LDA-SVM% LDA-MLP% 

20 78.79 16.13 78.59 93.54 37.67 91.56 

40 79.02 23.05 79.21 93.54 38.76 91.55 

60 79.16 34.64 77.90 93.54 26.35 91.39 

80 79.09 49.85 77.39 93.54 19.19 91.37 

100 78.69 36.01 77.00 93.54 70.40 91.98 

Table 6 

Comparison with existing IDS. 

Refs. Models Training Time (s) Training Accuracy Test Accuracy Precision Recall F-Measure 

[23] ELM – IDS 4.52 – 99.07% – – –

[19] MLP- IDS 1.2025 99.09% 79.40% 91.88% 70% 79.46% 

[28] Autoencoder and isolation forest – – 95.4% 94.81% 97.25% 96.01% 

Proposed model 0.04 96.56% 93.51% 95.78% 92.69% 94.21% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

while LDA-LR remains the same irrespective of the iterations. It can be observed that the isolation accuracy, training accuracy, and

training time of 93.54%, 96.56%, and 0.04 s, respectively, and LDA-LR, are efficient compared to the other existing methods. Hence,

the proposed model considers LDA-LR for intrusion detection and isolation. 

Comparison with the other state-of-the-art methods 

The identification of intrusions in the proposed model is based on the LDA-LR hybrid model. The efficiency of the proposed model

is analyzed by comparing it with the existing MLP-based IDS, ELM-based IDS, and autoencoder and isolation-based model [24 , 28 , 33]

The comparison of the proposed IDS with the currently available systems is tabulated in Table 6 . The proposed IDS has a better

training time of 0.04 s. However, the sample selected ELM-based IDS has an efficient testing accuracy of 99.07% due to the efficient

generalization of the ELM algorithm [28] . Similarly, MLP-based IDS has a better training accuracy of 99.09% because they generalize

the classification of unknown patterns with known patterns. But their test accuracy is 79.4%, and precision is 91.88% [24] . Above

all these methods, Autoencoder and isolation forest-based IDS use a similar NSL-KDD dataset and have an accuracy of 95% and a

precision of 94.81% [33] . However, the proposed LDA-LR-based IDS and isolation method have 96.56% test accuracy and 95.78%

of precision. Precision quantifies the number of positive predictions that belong to positive classes. In an IDS, predicting the positive

instance is more important to guarantee the system’s detection capability. Therefore, it can be determined that the proposed model

has more efficient training time and precision compared to the current IDS methods. 

Critical reflection 

The proposed LDA-LR hybrid ML model for intrusion detection has an accuracy of 96.56% with a precision of 95.78%, which is

significantly more efficient than the other conventional methods. This demonstrates that the intrusion detection of the anomaly is

detected accurately with all the positive labels. The recall accuracy obtained for the proposed model is 92.69%, whereas the existing

lightweight MLP-based IDS is 70% for the similar four edge nodes environmental setup [24] . This shows that LDA-LR has significantly

better recall accuracy. Further, 94.21% of F-measure confirms that there is a balance between recall and precision. The main aim of

the proposed article is to isolate the intrusion device and data from the other edge nodes in the edge layer. Therefore, the proposed

model is assessed for isolating the devices and data. To determine the efficiency of the isolation, the proposed model is compared with

other conventional methods and its hybrid combination. Currently, there are no methods that adopt isolation in the edge computing

framework, and it can be considered a novel contribution from this research. From Figs. 3 (a) and 3 (b), it can be observed that DTC

isolates 7725 data packets and 135 IoT devices, which is a higher number of isolations compared to other methods. However the

isolation accuracy in Fig. 3 (c) shows that DTC is 59.30%, whereas the proposed LDA-LR method is 93.36% accurate by isolating 5774

data packets and 101 IoT devices. Overall, this LDA-LR model, compared with other hybrid algorithms, exhibits an average training

time of 1.1036s and isolation accuracy of 93.54% for varied iterations. The time complexity of the proposed algorithm is 𝑂(𝑑2 ) ,
which shows that the algorithm has a quadratic running time. As the input data stream grows, the running time of the algorithm also

grows. However, the limitation of the proposed work would be the time complexity of the algorithm. This will be further enhanced in

future work. Nevertheless, it proves that the proposed model is significantly suitable for isolating intrusive data and devices, thereby

accomplishing better isolation. 

Conclusions 

The security and privacy issues are inherited from the cloud to edge computing along with the new issues. To support edge

computing applications, an accurate and rapid intrusion detection solution is required. The proposed LDA-LR model has efficient 
11
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training time and accuracy in intrusion detection. The preprocessing of data at the initial stage has significantly supported in reducing

the training time. LDA provides a better classification to decrease the data features when the variables are simulated from a normal

distribution. Further, LR classifies the covariates depending on their correlation with the feature-reduced variable. Thereby, the 

combination of LDA-LR supports robustness towards categorization and improves accuracy. The categorized data and devices are 

isolated from the other edge nodes and devices at a faster rate. This process ensures that intruders have limited time to stay in the

edge network. Thereby it reduces the chances of the intruder understanding the workflow of the framework or gaining control of

other nodes or networks. In addition, we have compared our work with state-of-the-art conventional methods and existing MLP-based

IDS. Experiment findings show that the proposed approach outperformed both training time and accuracy compared to the existing

methods. In future work, the proposed model could be used to investigate its applicability and performance across additional datasets

to increase the credibility and generalization of the findings. In addition, other machine learning algorithms could be employed to

improve accuracy and assess if IoT devices are wrongly considered as an intruder or true cyber criminals. This property makes it

especially useful for evaluating the robustness and generalization capabilities of intrusion detection models. 
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