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Abstract
The alternative oxidase (AOX) is a monotopic diiron carboxylate protein that catalyses the oxidation of ubiquinol and the 
reduction of oxygen to water. Although a number of AOX inhibitors have been discovered, little is still known about the 
ligand–protein interaction and essential chemical characteristics of compounds required for a potent inhibition. Furthermore, 
owing to the rapidly growing resistance to existing inhibitors, new compounds with improved potency and pharmacokinetic 
properties are urgently required. In this study we used two computational approaches, ligand–protein docking and Quantita-
tive Structure–Activity Relationships (QSAR) to investigate binding of AOX inhibitors to the enzyme and the molecular 
characteristics required for inhibition. Docking studies followed by protein–ligand interaction fingerprint (PLIF) analysis 
using the AOX enzyme and the mutated analogues revealed the importance of the residues Leu 122, Arg 118 and Thr 219 
within the hydrophobic cavity. QSAR analysis, using stepwise regression analysis with experimentally obtained IC50 values 
as the response variable, resulted in a multiple regression model with a good prediction accuracy. The model highlighted the 
importance of the presence of hydrogen bonding acceptor groups on specific positions of the aromatic ring of ascofuranone 
derivatives, acidity of the compounds, and a large linker group on the compounds on the inhibitory effect of AOX.
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Introduction

The alternative oxidase (AOX) is a non-protonmotive 
ubiquinol–oxygen oxidoreductase that couples the oxida-
tion of ubiquinol with the complete reduction of oxygen to 
water in a manner insensitive to inhibitors of the cytochrome 
oxidase pathway [1, 2]. In eukaryotes, AOXs are located 
attached to the inner surface of the inner membrane of the 

mitochondria, on the substrate-side of the cytochrome bc1 
complex [3]. Historically, the AOX was first identified in 
thermogenic plants, however the gene encoding this protein 
has been found in all higher plants and also throughout other 
kingdoms such as the fungal, protist and in prokaryotes [4]. 
Homologs have also been identified in α-proteobacteria, 
cyanobacteria and in some animals such as molluscs, nem-
atodes and chordates, but not in mammals [5]. The physi-
ological functions of AOXs vary between organisms, but 
typically include thermogenesis, stress tolerance and main-
tenance of mitochondrial and cellular homeostasis [2].

The AOX is widespread among some important human 
pathogenic parasites such as Blastocystis hominis, the most 
common eukaryotic microbe found in the human gut [6], 
Paracoccidioides brasiliensis, the pathogenic fungus respon-
sible for paracoccidioidomycosis in humans [7], or Candida 
albicans, an opportunistic human pathogen [8]. The AOX 
is also found in Cryptosporidium parvum, one of the most 
widespread intestinal parasites, responsible for diarrheal 
disease cryptosporidiosis, for which there is no effective 
treatment currently available. Cryptosporidiosis represents 
a potential fatal disease especially in opportunistic infections 
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in immunodeficient individuals [9, 10]. However, amongst 
all these, the AOX has been most intensely investigated 
for its crucial role in the energy metabolism of the African 
trypanosomes [11].

African trypanosomes of the genus Trypanosoma, classi-
fied as human (Trypanosoma brucei gambiense and Trypa-
nosoma brucei rhodesiense) or animal (T. b. brucei, T. con-
golense and T. vivax) are the etiological agents of human 
African sleeping sickness or trypanosomiasis (HAT) and 
nagana in cattle, respectively. They are transmitted to man 
and animals by the bite of the Glossina spp. insect, com-
monly known as the tsetse fly. African trypanosomiasis is 
endemic to sub-Saharan Africa—with approximately 70 mil-
lion people at different levels of risk of contracting HAT, it 
is considered one of the leading neglected tropical diseases 
[12]. Without prompt diagnosis and treatment, the disease is 
usually fatal: the parasites reside in the bloodstream, multi-
ply in the body, cross the blood–brain barrier and invade the 
central nervous system [12]. Currently, there is no effective 
vaccine for its prevention and treatments are far from sat-
isfactory due to the toxicity and complex administration of 
the available drugs. Only a few drugs are registered for the 
treatment of HAT: pentamidine, suramin, melarsoprol, eflo-
rnithine and, only under special authorisation, nifurtimox 
in combination with eflornithine. However, all these drugs 
are problematic due to associated severe adverse effects and 
toxicities, resistance and cross reaction with human tar-
gets [13]. For instance, eflortnithine is the only drug with a 
defined target, the ornithine decarboxylase, and still it has 
poor potency against T. brucei [13]. Clearly, new drugs with 
known mechanisms of action are urgently required.

Given the integral role that the AOX plays in respiration 
and its increasing occurrence in relevant pathogenic organ-
isms, it has become an important drug target to consider. The 
trypanosome alternative oxidase (TAO) represents a unique 
and safe therapeutic target, not only because it is absent from 
mammals, but also because it plays a critical role in the sur-
vival of the parasite in its bloodstream form [14].

TAO has been considered a valid target for decades, 
which has led to the identification of a number of specific 
inhibitors, the structures of which are summarized in Fig. 1. 
Among these, SHAM and propyl gallate represent the most 
studied inhibitors [15, 16]. Ascofuranone (AF), an antibiotic 
isolated from the pathogenic fungus Ascochytia visiae, is the 
most potent inhibitor of the AOX family enzymes identi-
fied to date. It specifically inhibits TAO at subnanomolar 
concentrations (IC50 = 0.13 nM) [17]. In contrast, SHAM 
(IC50 = 4 μM) and propyl gallate (IC50 = 200 nM) require 
higher concentrations for inhibition [17]. AF has been 
known for over 20 years to have trypanocidal activity both 
in vitro and in vivo, with successful treatment of the T. vivax-
infected mouse, at a single intramuscular dose of 50 mg/kg 
or 6 mg/kg on 4 consecutive days [19, 20]. However, AF is 

still far from being the perfect candidate for treating HAT 
due to some unwanted molecular features, which account for 
its rapid blood clearance, low oral bioavailability and poten-
tial toxicity [11]. Even though AF undoubtedly constitutes a 
promising lead compound, the reality is that we still lack a 
TAO inhibitor at an advanced stage of clinical development 
despite TAO’s unique and critical role. Firstly, this could be 
explained by the fact that the complex chemical structure 
of AF, which requires long multistep synthetic strategies, 
results in high synthesis cost and limited access to synthetic 
analogues [11]. But secondly, and most importantly, the 3D 
structure of AOX was unknown until recently [21], therefore 
not much was known about the protein–ligand interactions, 
which hindered a rational strategy towards the design of 
potent inhibitors. Upon elucidation of TAO’s crystal struc-
ture, structure-aided design of TAO inhibitors became pos-
sible and, since then, several structure–activity relationship 
(SAR) analyses have been performed [17, 22].

The aim of our investigation was twofold: (1) to elucidate 
the detailed mode of interaction of TAO and its inhibitors 
in order to identify key interactions that are required to lead 
to high potency of inhibitors, and (2) to identify molecular 
characteristics in inhibitors that contribute to the inhibi-
tory activity towards TAO. These aspects are important for 
the discovery of novel, potent TAO inhibitors. In order to 
achieve these goals, a reliable set of inhibitors with con-
sistently measured activity is required. Furthermore, an 
external set of compounds are needed to assess the validity 
of any models. Saimoto et al. recently synthesized several 
AF derivatives, for which they experimentally obtained the 
50% inhibitory concentration (IC50) [17]. This dataset pro-
vides an excellent resource for the development of models 
and docking studies and was used here as the training set. 
Moreover, we measured the IC50 values of a different set 
of compounds and used these as the test set to assess the 
validity of the developed models. To identify the binding 
interactions occurring between the inhibitors and TAO, and 
to further understand their inhibitory mechanism, we used 
the only AOX crystal structure available to date, which is 
the trypanosomal alternative oxidase of Trypanosoma bru-
cei [21]. Molecular docking studies, combined with Quan-
titative Structure–Activity Relationship (QSAR) analyses, 
were used to offer insight into understanding the details of 
protein-inhibitor interactions and the factors affecting bio-
activity, providing information for the design of new drug 
candidates and prediction of inhibitory activity of unknown 
compounds. Herein, we present a computational study, in 
which we predict the most favorable binding mode and inter-
action mechanism between experimentally identified TAO 
inhibitors and the trypanosome alternative oxidase using 
molecular docking and QSAR. QSAR analysis correlates the 
experimentally obtained IC50 values with computed molecu-
lar properties such as molecular descriptors and fingerprints, 
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in order to investigate and highlight the structural features 
responsible for the AF derivatives’ inhibitory activity. Over-
all, this analysis provides significant information about the 
structural features responsible for the interaction between 
the inhibitors and TAO and their mechanism of inhibition.

Materials and methods

Materials

All chemicals were purchased from Sigma-Aldrich unless 
otherwise indicated and were of the highest purity available. 

Ascofuranone, ascochlorin and ferulenol were kindly pro-
vided by Professor Kita and Dr. K. D. Inaoka (University of 
Nagasaki), whereas colletochlorin B and colletochlorin D 
were synthesised in-house [23].

High resolution respirometry

Respiratory activity of recombinant E. coli membranes 
expressing TAO were monitored with high-resolution 
respirometry to experimentally determine the IC50 values 
of 8 AOX inhibitors (Fig. 1). Respiration was monitored 
using an Oroboros® Oxygraph-2K (Oroboros Instruments, 
Innsbruck, Austria). Data acquisition and analysis were 

Fig. 1   Chemical structure of AOX inhibitors and IC50 values obtained for recombinant AOX expressed in E. coli membranes. Data are 
mean ± SD of n = 3 isolations
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performed using DatLab® software, version 6.1 (Oroboros 
Instruments) and GraphPad Prism 7.

Methods for E. coli membrane preparations have been pre-
sented before [23]. For the trypanosome alternative oxidase 
inhibition assay, the O2k chambers were calibrated for 2 ml of 
65 mM MOPS buffer adjusted to pH 7.4 and equilibrated with 
air at 37 °C at the beginning of each experiment. TAO mem-
brane bounds (~ 600 µg total protein) were added to closed 
chambers containing respiration buffer with 1 mM KCN and 
supplemented with 1.25 mM NADH as substrate to assess 
basal respiration. Effects of increasing concentrations of 
inhibitor were determined using a single sample. Average val-
ues from 3 isolations ± standard deviation where applicable.

Datasets for QSAR and docking

A series of 34 Ascofuranone (AF) derivatives synthesized 
by Saimoto et al. [17] with inhibitory activities against the 
alternative oxidase of Trypanosoma brucei were taken to 
perform the in silico study. The molecular structures of these 
compounds along with their respective 50% inhibitory con-
centrations (IC50) against TAO are shown Fig. 2. For the 
development of QSAR models, IC50 values were converted 
to the logarithmic scale (pIC50 values, calculated as -log 
IC50) to ensure normal distribution in statistical analyses, 
and these were used as the dependent variable in the QSAR 
analyses.

In addition to the 34 AF derivatives, IC50 values of a col-
lection of 8 AOX inhibitors (Fig. 1) were measured using 
high resolution respirometry, and these were used as our 
external test compounds.

The chemical structures of all compounds used in this 
study were drawn with ACD/ChemSketch 2016.2 software 
and their SMILES (Simplified Molecular Input Line Entry 
Specification) notations were generated for future uses in 
molecular modelling and QSAR software.

Molecular docking

Structure preparation

The crystal structure of the cyanide-insensitive alternative 
oxidase from Trypanosoma brucei (TAO) was obtained from 
RCSB Protein Data Bank (PDB entry: 3W54). The protein 
structure was loaded into MOE software (Molecular Oper-
ating Environment, version 2016.08, Chemical Computing 
Group Inc., Montreal, Canada) to carry out some prepara-
tory steps. Hence, the hydrogen bond network was optimised 
and protonation of amino acid residues was corrected using 
the Protonate 3D algorithm, while AMBER99 forcefield was 
used to assign correct atomic charges.

The SMILES codes of the compounds were used to 
input the structures into MOE, where the 3D structures 

were developed. The molecules were then washed and 
partial atomic charges were assigned. Following this, the 
molecules were subjected to an initial energy minimisa-
tion using the AMBER10:EHT forcefield, followed by a 
second minimisation using the MOPAC semi-empirical 
energy function (PM3 Hamiltonian).

Docking of the inhibitors

Molecular docking studies were performed using the MOE 
software package. All crystallised water molecules and 
coordinated molecules present in the TAO structure were 
preserved. The binding site of TAO was defined using 
colletochlorin B, the native ligand crystallised in the 
structure. Hence, the inhibitors were docked into the bind-
ing site of this crystallographic ligand. In the MOE dock 
panel, the placement method used was Triangle Matcher, 
and the poses generated by this methodology were re-
scored using London dG scoring (Eq. 1). Subsequently, 
poses resulting from the placement stage were further 
refined using the Induced Fit method, which allows pro-
tein flexibility upon ligand binding, improving the predic-
tion accuracy for the interaction. Poses were then rescored 
using the GBVI/WSA dG scoring function (Eq. 2), and the 
top five best scoring poses were retained. The final output 
was analysed, and docked poses that were not correctly 
orientated (for catalytic site) within the binding site were 
discarded and not included in the analysis.

London dG scoring: The London dG score estimates 
binding free energy using:

where c is the average gain/loss of rotational and transla-
tional entropy, Eflex is the energy loss due to ligand flexibil-
ity, fHB measures H-bond geometric imperfections and takes 
a value [0,1], CHB is the ideal H-bond energy, fM measures 
metal ligations geometric imperfections [0,1], CM is the 
energy of an ideal metal ligation and Di is the desolvation 
energy of atom i.

GBVI/WSA dG scoring: The GBVI/WSA dG score esti-
mates binding free energy by:

where c is the average gain/loss of rotational and transla-
tional entropy, α and β are equation constants determined 
during training, ECoul is the coulombic electrostatic energy, 
Esol is the solvation electrostatic term, EvdW is the van der 
Waals energy and SAweighted is the weighted surface area.

(1)

ΔG = c + Eflex +
∑

h−bonds

CHBfHB +
∑

m−lig

CMfM +
∑

atomsi

ΔDi,

(2)

ΔG ≈ c + �
2

3

(
ΔECoul + ΔEsol

)
+ ΔEvdW + �ΔSAweighted,
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Fig. 2   Structures and 50% inhibitory concentrations (nM) of a series of AF derivatives obtained by Saimoto et al. [17]
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QSAR model

Calculation of molecular descriptors

Molecular descriptors for the 34 AF derivatives and for the 
external test compounds were calculated using Advanced 
Chemistry Development (ACD/Labs) Percepta version 
2016.1 and MOE software (QuaSAR descriptor panel). 
Initially, in order to reduce the number of non-significant 
variables, descriptors with missing values (> 10%) or those 
with > 97% of constant values were eliminated from the data 
set. Additionally, the best pose docking scores and the aver-
age docking scores of the retained top three and top five 
poses for each compound were used as additional molecular 
descriptors for the analysis. Furthermore, an indicator vari-
able was devised which indicated the presence (value 1) or 
absence (value 0) of a hydrogen bond acceptor group in the 
meta position of the aromatic ring with respect to the long-
est hydrocarbon chain on the ring. This indicator variable 
was used as an additional molecular descriptor in QSAR 
analysis. As a result, a total of 331 predictors (molecular 
descriptors) were used as independent variables in statisti-
cal analyses.

Model development and validation

For the development of QSAR models, only the 34 AF 
derivatives were used as the training set and models were 
developed using stepwise regression analysis as below.

Bagging and  stepwise regression analysis for  regression 
model  To prune the number of initial molecular descrip-
tors and select the predominant ones affecting the inhibi-
tory activity of the AF derivatives against the trypanosomal 
alternative oxidase, a bagging algorithm combined with 
stepwise regression analysis was performed using IBM 
SPSS Statistics software, version 24.

In order to perform bagging for feature selection and 
to identify the most important descriptors correlating 
with the pIC50 values, random allocation of compounds 
into various subsets of training set was carried out, where 
each training subset comprised ~ 80% of total number of 
compounds. To this end, MatLab® was used to carry out 
a random permutation to obtain 85 subsets of different 
combinations of compounds (85 training subsets). In these 
permutations, 7 compounds of the total set (~ 20%) were 
eliminated randomly each time in order to be used as the 
“internal validation subset”, whereas the remaining 27 
compounds (~ 80%) were kept to be used as the “training 
subset”. Stepwise regression analysis was carried out for 
each training subset (85 times) and the three most impor-
tant molecular descriptors were selected in each analysis. 
Stepwise regression analysis is a linear feature selection 

method in which a model is built by successively adding or 
removing predictor variables (molecular descriptors), gen-
erating a multiple linear regression equation that includes 
the variables that best explain the distribution of the 
dependent variable. The stepping criteria was set to default 
(‘alpha to enter’ = 0.05 and ‘alpha to remove’ = 0.10).A 
collection of these selected descriptors (48 descriptors in 
total) were used to perform the final stepwise regression 
analysis using all 34 compounds, from which top four best 
molecular descriptors were identified. The optimal QSAR 
model was then obtained by multiple regression analysis 
in IBM SPSS Statistics software using the top four best 
descriptors of the final stepwise regression analysis. For 
a statistically reliable model, we maintained a ratio of at 
least 5:1 between the number of compounds and number 
of descriptors used.

Pre‑processing feature selection for regression model  An 
additional “independent” feature selection was performed 
using Waikato Environment for Knowledge Analysis 
(Weka) machine learning software. The attribute evalua-
tor was WrapperSubsetEval with Random Forest, and the 
search method was GeneticSearch. All the default settings 
for GeneticSearch and Random Forest were used, but the 
maximum depth of the trees in random forest was limited 
to 4 (MaxDepth = 4) to correspond to the maximum num-
ber of molecular descriptors we allowed in all other analy-
ses. Following this feature selection, stepwise regression 
analysis was performed using the selected set of molecu-
lar descriptors.

Model validation  The final QSAR models were vali-
dated internally and externally. The internal validation 
procedure used was leave-one-out (LOO), as well as 
leave-some-out (LSO) cross validation. For LSO method, 
compounds were divided into 5 groups, each group was 
removed once, and the multiple regression was performed 
using the remaining compounds. The predicted values for 
the internal validation set were collected, and Mean Abso-
lute Error (MAE) as well as the cross-validated R2 (Q2) 
were used to assess the accuracy of prediction of pIC50 
(Eqs. 3 and 4).

Cross-validated R2 (Q2):

where Yobs and Ypred correspond to the observed and LOO/
LSO predicted pIC50 value, respectively.Ypred refers to the 

(3)Q2 = 1 −

∑�
Yobs − Ypred

�2

∑�
Yobs − Ypred

�2
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average of the predicted pIC50 values based on the LOO/
LSO technique.

Mean Absolute Error (MAE):

where Yobs refers to the experimentally obtained pIC50 value, 
Ypred is the predicted pIC50 value for the internal validation 
set by the QSAR model, and N is the number of compounds.

The external validation was done by using the external 
test compounds, which are represented by the 8 specific 
AOX inhibitors that were not used to develop the model 
(Fig. 1). pIC50 values for each compound were predicted 
using the QSAR model to examine its consistency and capa-
bility of predicting. Then the mean absolute error (MAE) 
was calculated for the external test set. Furthermore, the 
square correlation coefficient (R2) between the observed and 
the predicted activity values, another parameter proposed 
by Golbraikh and Tropsha for determining the external pre-
dictability of a QSAR model, was calculated. According to 
these authors, a QSAR model is considered predictive if 
R2 > 0.6 [24].

Y‑Randomisation  For Y-Randomisation, 100 permuta-
tions of pIC50 values were performed and “fake” QSARs 
were developed for each of these 100 randomized vectors 
using exact same methods described above. This included: 
(1) bagging with stepwise regression for feature selection, 
followed by stepwise regression analysis, and (2) feature 
selection using WrapperSubsetEval coupled with Random 
Forest with GeneticSearch method, followed by stepwise 
regression analysis.

Results

Molecular docking analysis

Validation of docking using binding mode of colletochlorin 
B

To assess the reliability of the docking procedure used, the 
co-crystallized colletochlorin B (CB) was redocked into 
the binding site of TAO. As a result, the root mean square 
deviation (RMSD) between the crystallographic confor-
mation and the re-docked conformation of colletochlorin 
B was 0.68 Å (Fig. 3), suggesting an acceptable accuracy 
for the docking procedure to predict the binding mode of 
the TAO inhibitors. This is a satisfactory value that may 

(4)MAE =

∑�
�
��
Yobs − Ypred

�
��

�

N

suggest that the docking method could be valid for the 
inhibitors studied in this manuscript.

Calculated ∆Gbind (kcal 
mol−1)

RMSD (Å)

Re-docked colletochlorin B − 9.28 0.68

Interaction fingerprint analysis by PLIF

In this study, the 34 AF derivatives reported by Saimoto 
et al. [17], along with 8 specific AOX inhibitors with IC50 
values measured here (Fig. 1) were docked into the binding 
site of TAO. Based on the docking results, an interaction 
analysis was performed by protein–ligand interaction fin-
gerprinting (PLIF) to provide detailed information on pro-
tein–ligand interactions. The PLIF tool within MOE sum-
marizes the interactions of the compounds with the AOX 
ligand binding residues using a fingerprint scheme, in which 
interactions are classified according to the residue of origin 
(Fig. 4). There are several types of interactions in which a 
residue may participate: sidechain hydrogen bonds (donor 

Fig. 3   Superimposition of the crystallographic colletochlorin B (car-
bon atoms in grey) and the best ranked pose of the re-docked colle-
tochlorin B (carbon atoms in blue). Hydrogen bonds are represented 
by light blue dashed lines. Oxygen, nitrogen and sulfur atoms are 
depicted in red, blue and yellow, respectively
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or acceptor), backbone hydrogen bonds (donor or acceptor), 
solvent hydrogen bonds (donor or acceptor), ionic interac-
tions, surface interactions, metal binding interactions and 
arene interactions. The fingerprints present within the inhibi-
tor-AOX complexes include surface contact interactions (C), 
backbone hydrogen bond donors (d), sidechain hydrogen 
bond acceptors (A) and donors (D) and arene interactions 
(R) (Fig. 4A). The bit selector tool within MOE can provide 
detailed information about the nature and statistics of each 
fingerprint. The percentage abundance of each fingerprint 
is shown in Table 1. It is calculated in a way that if the fin-
gerprint bit occurs in every entry, the % abundance will be 
100. The residues that interact most often with the ligands 

are: leucine 122 (C) (80.95%), arginine 118 (A) (46.66% and 
40%), threonine 219 (A) (34.76% and 15.71%) and cysteine 
95 (C, D) (26.19% and 14.76%).

To better understand the interaction mechanism, we inves-
tigated the significance of the fingerprints for a compound to 
be an active inhibitor. For this purpose, all compounds were 
classified as active or inactive based on their IC50 values. 
Because 76% of the IC50s of the AF derivatives reported 
by Saimoto et al. ranged between 0.06 to 6 nM [17], we 
decided to set up the threshold at 10 nM, with compounds 
having IC50 ≥ 10 nM considered as inactive. In Fig. 4B, the 
frequency bars are annotated with a qualitative indication of 
the overabundance of active with the residue interaction vs. 

Fig. 4   a Interaction fingerprint matrix. The columns represent inter-
actions, which are labelled with the residues (coded with an arbitrary 
color) and corresponding type of interaction. Encoded fingerprints 
are present as black rectangles. The rows represent the top five ranked 
poses for each inhibitor. b The population histogram shows the fre-

quency of occurrence amongst the inhibitors for each of the selected 
fingerprint bits, i.e. the number of inhibitors with which each residue 
interacts. The X-axis is constructed in the same way as for the inter-
action matrix, while the Y-axis shows a black bar which shows the 
relative counts for the bits
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overall number of active compounds. The extent to which 
the fraction of actives containing the bit is higher than the 
fraction of actives overall is indicated as a black line above 
the bar. If, on the contrary, the fraction of actives containing 
the bit is lower than the fraction of actives overall, it will 
be indicated as an inverse (white) line below the top of the 
bar. Generally, the combination of height and overabundance 
is often an indication that the corresponding interaction is 
important for activity.

Binding mode of the inhibitors

Docking poses of the inhibitors within TAO were compared 
with those with point mutated TAO, where Arg 118 was 
replaced with alanine. Figure 5 shows the top poses of asco-
furanone and colletochlorin B docked into the binding site 
of the wild type and mutated TAO.

The active site of AOX is composed of a diiron centre, 
four glutamates (Glu 123, Glu 162, Glu 213 and Glu 266) 
and two histidine residues (His 165 and His 269), all of 
which are fully conserved [2]. Tyrosine residues also have a 
key role in the catalytic activity of AOX. For instance, Tyr 
220, which is also identified in our PLIF analysis to interact 
with several inhibitors, is totally conserved across all AOXs, 
and is buried within 4 Ǻ of the diiron centre (Fig. 5) [1, 2, 
21, 25]. In addition to the catalytic site, the AOX contains 
a binding site for its natural substrate ubiquinol. For dock-
ing analysis, this site was defined using the co-crystallised 
colletochlorin B depicted in the crystal structure. From the 
results obtained, it is apparent that the inhibitors bind to the 
enzyme in a manner that the aromatic head remains close to 
the diiron center, as well as to the residues Arg 118, Thr 219 
and Arg 96. This seems to be in agreement with the bind-
ing mode of colletochlorin B to TAO previously reported 
by Shiba et al. [21]. Residues Arg 118 and Thr 219 are of 
particular importance, as they form hydrogen bonds with 
the functional groups on the aromatic ring of the inhibitors, 
establishing a strong interaction between the compounds and 
the protein. These hydrogen bonds are key for the potent 

inhibitory activities of the inhibitors [17], which is also 
shown from the results of PLIF analysis (Fig. 4).

Figure 5 depicts ascofuranone and colletochlorin B 
within the hydrophobic pocket of TAO. These two are 
phenolic acids, with 5-chloro orsellinaldehyde structures 
(see Fig. 1). In the wild type TAO (Figs. 5a, c), the key 
interactions of these ligands with the protein occur through 
hydrogen bonding between the formyl group of the orselli-
naldehyde and Thr 219 and Arg 118 residues. The 4-OH 
of the orsellinaldehyde group, on the other hand, is seen to 
be interacting with the diiron centre. However, when the 
Arg 118 is mutated to alanine (Fig. 5b, d), the hydrogen 
bond formations are lost for both inhibitors, displacing the 
compounds away from the diiron centre.

Similar docking experiments were performed with two 
other TAO mutants, L122A and T219A. As it can be seen 
from the docking scores obtained (Table 2), the impor-
tance of these residues was confirmed by comparison of 
the docking scores with the wild type TAO. As would be 
expected, mutations on these particular residues cause the 
docking scores to increase, indicating lower affinity and 
less favorable interactions. Furthermore, results show that 
L122A and R118A mutations have a more profound effect 
on binding affinity than T219A mutations [26].

The extra hydrogen bond acceptors on the furanone ring 
of ascofuranone (Fig. 1) do not appear to interact with any 
side chains in the majority of the determined poses, the 
most likely H-bond formation being with the Cys 95 back-
bone as shown in Fig. 5a. Given the lack of improvement 
of inhibition by ascofuranone over colletochlorin B, it is 
unlikely that this extra hydrogen bond plays a significant 
role in the efficacy of inhibition under the experimental 
conditions defined in this study.

As can be seen in Table 2, docking scores (kcal mol−1) 
rank correlate well with the potency of the inhibitors, 
which shows the docking procedure provides realistic 
results. For instance, ubiquinol, the natural substrate of 
TAO, gives the lowest docking score in the wild type 
(− 9.77 kcal mol−1), followed closely by ascofuranone, the 
most potent inhibitor of TAO (− 9.65 kcal mol−1). SHAM 

Table 1   Percentage abundance 
of the fingerprint bit throughout 
the database

Residue Type of interaction % Abundance Strength of Interaction

Leu 122 Surface contact 80.95
Arg 118 Sidechain hydrogen bond acceptor 46.66 Strong (1.5 kcal/mol)
Arg 118 Sidechain hydrogen bond acceptor 40.00 Weak (0.5 kcal/mol)
Thr 219 Sidechain hydrogen bond acceptor 34.76 Weak (0.5 kcal/mol)
Cys 95 Surface contact 26.19
Thr 219 Sidechain hydrogen bond acceptor 15.71 Strong (1.5 kcal/mol)
Cys 95 Sidechain hydrogen bond donor 14.76 Weak (0.5 kcal/mol)
Cys 119 Sidechain hydrogen bond donor 11.90 Weak (0.5 kcal/mol)
Tyr 220 Arene interaction 9.04
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or propyl gallate, on the other hand, are the least potent 
inhibitors, which is reflected in their high docking scores 
(− 5.26 and − 6.67 kcal mol−1, respectively).

The two mutations that seemed to affect the final docking 
scores the most were L122A and R118A, which is in agree-
ment with the PLIF analysis shown in Table 1 that indicated 
that these were the residues that compounds interacted the 
most with (Table 1). Interestingly, mutations of these key 
residues seemed to have a greater impact on the interac-
tions of potent inhibitors (such as AF, CB, compound 16 

and 24) than on the the classic inhibitors such as SHAM 
or propyl gallate. In summary, all the mutations that were 
performed (L122A, R118A, T219A) caused all scores to 
increase (except for L122A and T219A in the case of the 
weakest inhibitor, SHAM), which proves their key role in the 
interactions between inhibitors and the enzyme [26].

Fig. 5   Predicted docked poses for inhibitors within the binding site 
of TAO (PDB: 3W54). a Ascofuranone and wild type TAO. b Asco-
furanone and R118A mutated TAO. c Colletochlorin B and wild type 
TAO. d Colletochlorin B and R118A mutated TAO. The molecular 
surface is indicated in green for hydrophobic regions and pink for 

hydrophilic regions. Hydrogen bonds are represented by blue dashed 
lines. Arene-H interaction is represented by green dotted line. Diiron 
centre is represented by turquoise spheres. Oxygen, nitrogen and sul-
fur atoms are depicted in red, blue and yellow, respectively
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QSAR models

For the 34 AF derivatives, a QSAR model was developed 
using the molecular descriptors selected by stepwise regres-
sion analysis as explained in the methods section. The 
obtained linear model consists of four molecular descrip-
tors which have been picked out of the initial pool of 331, 
as shown below.

Here, n is the number of compounds used in the develop-
ment of the QSAR model; R2 is the squared correlation coef-
ficient; s is the standard error of the estimate, F is the Fischer 
ratio and p is the statistical confidence level. All regression 
coefficients are significant at p < 0.05.

The first molecular descriptor selected by the analysis 
is metaH-acceptor, which is an indicator variable showing 
the presence or absence of hydrogen bond acceptor group(s) 
in meta position with respect to the long alkyl side sub-
stituent of the benzene ring (corresponding to positions 1 
or 5 of the orsellinaldehyde group as shown for ascofura-
none in Fig. 1). This descriptor takes binary values (0, 1) to 
indicate the absence or the presence of the hydrogen bond 
acceptor property, respectively. It must be noted that this 
H-bonding group is in addition to the phenolic hydroxyl 
groups in ortho position(s) (corresponding to positions 2 
and 4 in ascofuranone in Fig. 1). The positive coefficient of 
metaH-acceptor in the equation indicates that the presence 

pIC50 = −0.124 + 2.252metaHacceptor

− 2.527Neutral form (pH 7.4)− 18.014

PEOE_VSA_FPPOS + 17.527 petitjean

n = 34; R2 = 0.720; s = 0.632; F = 18.603; p = 0.000

of such groups in meta position provides greater ability for 
the compounds to interact more effectively with the protein. 
This agrees well with the docking results discussed earlier 
regarding the role of hydrogen bonding groups in this posi-
tion, e.g. formyl group of ascofuranone, for interaction of 
inhibitors with Arg 118 and Thr 219. This is consistent 
with the fact that hydrogen bonds are key for strong interac-
tions in the protein–ligand complexes. Accordingly, com-
pounds that lack hydrogen bond acceptor groups in meta 
positions (compounds 19 and 23) show the lowest pIC50 
values (Fig. 2).

Furthermore, the second most important descriptor 
in the equation is Neutral form. This is the fraction of 
molecules that is unionised in acid/base protonations at 
pH 7.4, calculated by the classic ACD Percepta method. 
Given that the compounds in the training set do not pos-
sess any basic groups and only acid dissociation is pos-
sible for some of them, the negative coefficient of Neutral 
form indicates that the more acidic compounds (with lower 
unionized fractions) are better TAO inhibitors with higher 
pIC50 values. The acidity of these compounds, with two 
exceptions, is from the ortho-phenolic hydroxyl groups, 
corresponding to positions 2 and 4 in ascofuranone in 
Fig. 1. The exceptions are compounds 12 and 13 which 
have a more acidic carboxylic acid group at one end of the 
linker group. Given that according to the third molecular 
descriptor in the equation (PEOE_VSA_FPPOS), presence 
of carboxylic acid groups on the linker group has a nega-
tive impact on pIC50 (as described in the next paragraph), 
it can be concluded that it is only the acidity of the ortho-
phenolic groups that leads to increased potency. This find-
ing is also consistent with the docking results that show 
a hydrogen bonding between Glu123 and the phenolic 
hydroxyl group (see Figs. 3 and 5).

The third most important molecular descriptor in the 
equation is PEOE_VSA_FPPOS. It is a charge-dependent 
molecular descriptor where atomic charge is calculated 
through the Partial Equalization of Orbital Electronegativi-
ties PEOE method [27]. This molecular descriptor repre-
sents the fractional positive polar van der Waals surface 
area. Based on the negative coefficient of this parameter in 
the equation, compounds with lower fraction of positively 
charged atoms, i.e. larger molecules with fewer (electron-
egative) heteroatoms, will present higher pIC50 values and 
a greater efficacy in inhibiting TAO. Within the dataset, 
all compounds contain an aromatic group with phenolic 
hydroxyl(s) and a linker (alkyl side chain) group, with some 
compounds containing an additional carboxylic acid group 
attached to the other end of this linker. Presence of such 
carboxylic acid groups (i.e. high values of PEOE_VSA_
FPPOS) reduces the inhibition potency (e.g. compounds 12 
and 13, see Supplementary data, Fig. 2).

Table 2   Docking scores of ubiquinol (natural substrate of TAO), 
some of the most potent and novel TAO specific inhibitors (AF, CB, 
compounds 16 and 24—see Fig.  2 for the chemical structures) and 
the classic inhibitors SHAM and propyl gallate against wild type 
TAO and specific point mutants

Calculated binding free energy is depicted in kcal mol−1 and IC50 in 
nM. IC50 values of wild type TAO were obtained by Saimoto et  al. 
[17].

Compound Calculated ∆Gbind (kcal mol−1) IC50 (nM)

Wild type L122A R118A T219A

Ubiquinol − 9.77 − 8.36 − 8.87 − 9.18
Ascofuranone − 9.65 − 8.92 − 8.89 − 9.50 0.13
Colletochlorin B − 8.76 − 8.06 − 7.94 − 8.70 0.20
16 − 9.21 − 8.47 − 8.58 − 8.78 0.15
24 − 8.52 − 7.92 − 7.72 − 8.42 0.06
SHAM − 5.26 − 5.48 − 5.15 − 5.35 4000
Propyl gallate − 6.67 − 6.43 − 6.43 − 6.46 200
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Finally, the last molecular descriptor selected in the 
model is petitjean, which is a “shape coefficient”. This 
molecular descriptor is defined as the ratio (D-R)/R, where 
R is the generalised radius and D is the generalised diam-
eter calculated using graph theoretical methods in MOE 
software [28]. Larger petitjean values in the AF derivatives 
correspond to more linear (longer linker chain) molecules, 
which according to the positive sign of this descriptor in 
the equation, will result in higher pIC50 values. In contrast, 
compounds with shorter linker chains (e.g. compounds 7a, 
7b and 7c, see Supplementary data, Fig. 2) have the lowest 
petitjean values.

The linear plot of the predicted pIC50 values based on the 
QSAR model developed in this study versus the experimen-
tal values is shown in Fig. 6.

Investigating the risk of chance correlation

Due to the fact that this data is high-dimensional, i.e. only 34 
compounds compared with a total of 331 molecular descrip-
tors, there is a need to investigate the risk of chance correla-
tions. The high number of molecular descriptors could still 
be a problem despite reducing this initial high number of 
molecular descriptors to 48 by using the bagging method 
as described in the the methods section [29, 30]. Two steps 
were taken in order to assess the risk of chance correlations 
and identify whether the selected molecular descriptors are 
in fact meaningful in the prediction of pIC50 values, and not 
a mere chance correlation. These were y-Randomisation test 
and performing an independent feature selection to compare 
the results with this current model.

Y-Randomisation test can indicate the chance of obtain-
ing a good correlation when there is in fact no cause-effect 

relationship due to Y values being randomly ordered. If the 
statistical results are poorer in randomised models than those 
of the actual model, then it can be concluded with reason-
able confidence that the actual model is not obtained by any 
chance. For y-Randomisation, we performed 100 permuta-
tions of pIC50 values, and then developed QSARs for these 
randomised vectors using the exact same procedure as with 
the “real” QSAR, i.e. bagging for feature selection followed 
by stepwise regression analysis. The results showed that 89% 
and 95% of these “fake” QSAR models had Q2 values < 0.4 
and < 0.5, respectively. There was one fake model that had 
a Q2 > 0.6 (to be exact, R2 = 0.685 and Q2 = 0.629 for this 
fake model compared with the real model with R2 = 0.720 
and Q2 = 0.637). To account for the impact of correlations 
between the randomised vectors and the original pIC50 vec-
tor, y-Randomisation plots between this correlation coeffi-
cient, r, and Q2 or R2 of all the 100 randomised fake models 
and the real QSAR were drawn. The linear regression lines 
had a R2

Y intercept of 0.36 and a Q2
Y intercept of 0.11 (See 

Supplementary data, Figure S1), while the recommendation 
for a “chance free” QSAR model is that these values should 
not exceed 0.3 and 0.05 [31].

In the second experiment, an “independent” pre-process-
ing feature selection strategy was performed in Weka, as 
described in the methods section. This method selected 67 
molecular descriptors for pIC50 and between 8–170 (with 
an average of 83) molecular descriptors for each of the 100 
permutations of pIC50. Next, stepwise regression analysis 
was used to develop QSAR equations for pIC50 and the 
randomised pIC50 vectors, while the maximum number 
of molecular descriptors in the equations were limited to 
4 (as before). In this case, 93% and 98% of these “fake” 
QSAR models had Q2 values < 0.4 and < 0.5, respectively, 
and none had a Q2 > 0.6. Of the randomised pIC50s, 20 did 
not show any correlation at all. The y-Randomisation plot 
had a R2

Y intercept of 0.23 and Q2
Y intercept of 0.02, which 

follows the recommendation for chance free QSAR (See 
Supplementary data, Fig. S2). As shown below, this new 
QSAR for pIC50 is similar to the original in terms of the first 
two molecular descriptors and has slightly lower statistical 
properties.

The fact that the first two molecular descriptors here 
are the same as the previous equation adds to the evidence 
that these two molecular properties are involved in the 

pIC50 = 11.520 + 1.902metaHacceptor

− 2.803Neutral form (pH 7.4)

+ 13.366GCUT_PEOE_1

+ 0.106 opr_brigid

n = 34; R2 = 0.705; s = 0.649; F = 17.333; p = 0.000; Q2 = 0.601

Fig. 6   Predicted pIC50 values with the QSAR model vs. experimen-
tally obtained values (training set). Pearson correlation (R): 0.719, 
p < 0.0001 (95% confidence interval). MAE was 0.417
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AOX inhibitory potency. The third molecular descriptor, 
GCUT_PEOE_1, is a graph theoretical molecular descrip-
tor, as is petitjean in the previous QSAR. It is calculated 
from the eigenvalues of a modified graph distance adjacency 
matrix, where the diagonal takes the value of the PEOE par-
tial charges. It relates to the distribution of partial atomic 
charges in the molecular structure, where in this series of 
molecules, larger GCUT_PEOE_1 values are observed with 
the presence of bulky hydrocarbon linker group (e.g. com-
pounds 1, 15, 16 and 27), while the lowest values correspond 
to shorter unbranched linker groups (see compounds 7a, 8 
and 12). The last molecular descriptor here, opr_brigid, is 
the number of rigid bonds including ring bonds and double 
bonds [32]; compounds with an additional ring attached to 
the linker group (e.g. compounds 5 and 8) have higher opr_
brigid values with a positive impact on their pIC50 values.

The description of the last 2 molecular descriptors of 
these two QSAR equations is summarised below to facili-
tate the comparison of the two equations. Table 3 shows 
that also based on the last two molecular descriptors, both 
QSAR models come to the same conclusion regarding the 
effect of size and the length of the linker group. However, 
the latter QSAR misses a molecular description of the effect 
of polarity.

Internal and external validation of the QSAR model

The QSAR model was first internally validated to evaluate 
its accuracy. As described in the materials and methods sec-
tion, four sets of 6 or 7 compounds were removed from the 
dataset; QSAR model was then rebuilt based on the remain-
ing compounds, and the activity of the deleted compounds 
was predicted based on the resulting QSAR equation. In this 
exercise, every compound was left out once. Mean abso-
lute error (MAE) of predicted pIC50 values for the valida-
tion set was 0.485 and Q2 value was 0.637. The leave-one-
out (LOO) cross-validation was also performed where all 
the compounds are removed once, one at a time, and the 
QSAR model is rebuilt based on the remaining molecules. 
The activity of the deleted compounds is then calculated 
based on the resulting QSAR equation. The LOO Q2 was 
0.623, while MAE of predicted pIC50 values with the LOO 
cross-validation method was 0.487. According to Tropsha, 
a QSAR model is considered acceptable if the value of Q2 

exceeds the predetermined value of 0.5 [33] (see Supplemen-
tary data, Table S1 for individual absolute error values for 
each compound). Based on the mean absolute error obtained 
through internal validation, we can judge the goodness-of-fit 
of the model. However, this validation approach lacks pre-
dictability when the model is applied to an external dataset. 
The external validation ensures predictability and applica-
bility of the developed QSAR model for the prediction of 
untested molecules [34]. For that reason, the QSAR model 
was also externally validated by comparing the predicted 
and observed activities of the external test set of compounds 
with IC50 values measured in our laboratory (compounds in 
Fig. 1), which were not used in the model development. The 
IC50 values for these compounds were experimentally deter-
mined as described in the methods Sect. 2.2. It must be noted 
here that it is expected to observe interlaboratory variations 
as the training set compounds and test set compounds have 
been measured in two different laboratories using different 
techniques and equipment. Table 4 shows the observed and 

Table 3   Molecular properties for higher pIC50 values

QSAR 1 QSAR 2

PEOE_VSA_FPPOS: larger compounds 
with fewer heteroatoms

GCUT_PEOE_1: bulky 
hydrocarbon linker 
groups

Petitjean: longer linker groups opr_brigid: more rings

Table 4   Compounds used as external validation set, observed and 
predicted pIC50 values and absolute error

Compounds pIC50 Exp pIC50 Pred Abs. error

Ascofuranone 8.131 9.262 1.131
Ascochlorin 8.131 9.183 1.052
Colletochlorin B 8.125 9.637 1.512
Colletochlorin D 7.481 9.009 1.528
SHAM 5.222 4.884 0.338
Propyl gallate 5.853 4.296 1.558
Octyl gallate 6.638 6.340 0.298
Ferulenol 7.275 7.010 0.266

Fig. 7   Predicted pIC50 values of external test compounds with QSAR 
model vs. experimentally obtained ones. Pearson correlation (R): 
0.903, p value = 0.0001 (95% confidence interval)
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predicted pIC50 values for the external compounds. Despite 
the laboratory variations, the predicted pIC50 values cor-
relate very well with the observed values as seen in Fig. 7. 
On the other hand, the predicted pIC50 values show large 
absolute error for some of these compounds. A closer com-
parison of the actual and predicted IC50 values in Table 4 
shows that for extremely potent inhibitors (ascofuranone, 
ascochlorin, colletochlorin B), the actual IC50 of ~ 7 nM has 
been predicted to be at 0.2–0.7 range, amounting to a ten-
fold prediction error (logarithmic absolute error ~ 1). On the 
other end of the spectrum, propyl gallate is a weak inhibitor 
with an IC50 of 1,400 nM, predicted to be much weaker at 
50,441 nM IC50 value. This indicates that the QSAR is valu-
able in predicting the rank order of compound’s inhibitory 
potency, but it may not be accurate in predicting the exact 
pIC50 values.

Discussion

Crystallisation of the trypanosomal alternative oxidase 
(TAO) has provided revealing insights into its α-helical 
structure and its attachment to the membrane [21]. Addi-
tionally, co-crystallization of TAO with a number of asco-
furanone derivatives has provided considerable structural 
details with respect to the active-site and nature of the sub-
strate/inhibitor-binding site. Such insights can lead to the 
generation of new AOX specific inhibitors. Ascofuranone 
(AF), for instance, is a naturally occurring compound iso-
lated from Ascochyta viciae, which has been demonstrated 
to be a highly potent AOX inhibitor and to have trypanocidal 
activity both in vitro [19] and in vivo [20]. Despite its high 
potency against TAO, survival of mice following AF treat-
ment showed that ascofuranone is not an effective inhibitor 
of the mammalian cytochrome bc1 complex, which makes 
it a promising clinical drug candidate. On the other hand, 
ascochlorin, which is a potent inhibitor of the AOX activity 
in both Trypanosoma brucei [17] and Trypanosoma vivax 
[35], is also a potent inhibitor of the cytochrome bc1 com-
plex [37], making this compound unsafe clinically. SHAM 
and the gallates have generally been considered, and indeed 
used, as inhibitors to indicate the presence and potential 
contribution of AOX to the overall respiratory rate in iso-
lated mitochondria, cells and tissues. However, outside of 
their use with isolated mitochondria, such inhibitors are not 
totally specific for AOX. For instance, it is well-documented 
that SHAM is able to inhibit other redox enzymes apart from 
AOX [36].

Knowledge on the nature of the substrate and inhibitor-
binding site and catalytic mechanism of the enzyme is 
fundamental to a more rational design of highly targeted 
AOX inhibitors. The aim of this study was to explore 
molecular properties required for inhibition of AOX using 

computational modelling techniques, which can provide 
assistance for the future design of further AOX specific 
inhibitors. To achieve this, inhibitory activities of a series 
of ascofuranone derivatives towards AOX reported by Sai-
moto et al. [17] were used for molecular docking purposes 
and QSAR, and a series of molecularly diverse compounds 
(Fig. 1) were used to assess the validity of these computa-
tional techniques in the prediction of AOX inhibition.

Docking results and following PLIF analyses confirmed 
that the three most abundant residues involved in binding to 
inhibitors (AF derivatives in the training set) are Leu 122, 
Arg 118 and Thr 219 (Fig. 4). The significance of these 
key residues were further validated by docking of the test 
set compounds to the wild and mutated receptors, where 
mutations of L122A, R118A, T219A all caused a significant 
reduction in affinity, especially of the most potent inhibi-
tors. The most crucial of these residues, Arg 118 and Thr 
219, form hydrogen bonds with the hydrogen bonding func-
tional groups on the meta position of the aromatic ring of the 
inhibitors, establishing a strong interaction between the com-
pounds and the enzyme (see Fig. 5 for an illustration of these 
hydrogen bondings). The importance of this interaction was 
further confirmed by the QSAR analyses, which showed 
that the most important factor to control pIC50 values of the 
inhibitors is the presence of a hydrogen bond acceptor group 
on the meta position of the aromatic ring of the compounds. 
This is often a formyl group in the compounds tested here.

The QSAR analysis also highlighted the importance of 
acidity of the phenolic hydroxyl groups in the compounds, in 
addition to the impact of hydrogen bonding acceptor group 
on the meta position of the aromatic ring of ascofuranone 
derivatives, as discussed above. Moreover, a larger hydrocar-
bon linker group of the compounds with fewer electronega-
tive heteroatoms lead to higher inhibitory potency towards 
AOX.

The QSAR model produced here was successfully vali-
dated by internal validation and external set of compounds, 
and the risk of chance correlation was also investigated. The 
external set consisted of a series of classic and novel AOX 
inhibitors with the pIC50 values measured in our laboratory. 
The QSAR model was able to predict the rank order of the 
pIC50 values of these diverse set of compounds, and a good 
estimate of potent (nM IC50 values) and weak (μM IC50 val-
ues), although the exact pIC50 values could not be predicted 
with a reasonable accuracy. This was probably due to the 
differences of experimental procedures used in our labora-
tory and those used by Saimoto et al. for the measurement of 
pIC50 values of the external compounds and the training set 
coumpounds, respectively. Moreover, within the external set 
of compounds, 3 have very similar nanomolar IC50 values 
(7.4, 7.4 and 7.5 nM), so the small difference in their IC50 val-
ues is unlikely to be significant considering the experimental 
error of the biological measurements (see Fig. 1). At the next 
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level of potency, there are two compounds in the external set 
(Table 4) with IC50 values of 33 and 53 nM (colletochlorin 
D and ferulenol); these have been correctly identified to have 
higher IC50 values (lower pIC50s) than the aforementioned 3 
compounds as seen in the figure. Lastly, within the weaker 
three compounds, propyl gallate has been mispredicted to be 
much weaker than it is, with predicted IC50 of ~ 50 μM, while 
the actual experimental value is only 1.4 μM. Despite this 
error, in practice, even this prediction can be useful to identify 
this compound as a weak inhibitor. Considering the diversity 
of these external set of compounds with respect to the train-
ing set, in terms of the molecular descriptors in the QSAR 
equation, values for the external set are within the range of 
the training set values, except for PEOE_VSA_FPPOS (see 
Supplementary data, Figure S3 for the histograms). The last 
three compounds have slightly higher PEOE_VSA_FPPOS 
than the data range in training set.

The AOX represents a promising target to address the 
threat posed by multiple human pathogenic organisms and 
numerous fungi of agronomic importance, particularly after 
the emergence of fungicide-resistant strains of phytopatho-
genic fungi [37, 38]. Hence, we conclude that the data pre-
sented here may prove to be useful tools for future design 
and development of novel and specific AOX inhibitors.
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