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ABSTRACT

Specific structures in mRNA modulate translation
rate and thus can affect protein folding. Using the
protein structures from two eukaryotes and three
prokaryotes, we explore the connections between
the protein compactness, inferred from solvent ac-
cessibility, and mRNA structure, inferred from mRNA
folding energy (�G). In both prokaryotes and eukary-
otes, the �G value of the most stable 30 nucleotide
segment of the mRNA (�Gmin) strongly, positively
correlates with protein solvent accessibility. Thus,
mRNAs containing exceptionally stable secondary
structure elements typically encode compact pro-
teins. The correlations between �G and protein com-
pactness are much more pronounced in predicted
ordered parts of proteins compared to the predicted
disordered parts, indicative of an important role of
mRNA secondary structure elements in the control
of protein folding. Additionally, �G correlates with
the mRNA length and the evolutionary rate of syn-
onymous positions. The correlations are partially in-
dependent and were used to construct multiple re-
gression models which explain about half of the vari-
ance of protein solvent accessibility. These findings
suggest a model in which the mRNA structure, partic-
ularly exceptionally stable RNA structural elements,
act as gauges of protein co-translational folding by
reducing ribosome speed when the nascent peptide
needs time to form and optimize the core structure.

INTRODUCTION

The primary function of a mRNA is to encode the sequence
of a specific protein. However, an mRNA is not an abstract
sequence of codons but rather a molecule with its own com-
plex structure various features of which can be subject to
selection. In particular, mRNA molecules form secondary
structure elements (stems and loops) of broadly varying sta-
bility that can affect both the stability of the mRNA and the

speed and fidelity of translation. Although much attention
had focused on the initiation step as a major determinant
of translation rate, multiple studies over nearly two decades
have made it clear that elongation also plays an important
role in the regulation of translation and co-translational
protein folding (1–3). In particular, it has been shown that
in some proteins, �-helices and �-strands are flanked by
strong signals in the mRNA sequence (4,5). Different pro-
tein structures have been reported to correlate with distinct
patterns of synonymous codon usage in the respective mR-
NAs (6,7). More generally, it has been proposed that dif-
ferent protein secondary structures are encoded by mRNA
sequences with distinct properties. For example, �-helices in
Escherichia coli and human proteins appear to be preferen-
tially encoded by ‘fast’ mRNA regions, i.e. those enriched
in optimal codons, whereas ‘slow’ regions often code for �-
strands and loops (8–10).

Recent work, in particular ribosome profiling experi-
ments, has clearly demonstrated that translation speed is
far from being uniform either among different mRNAs
or along a single mRNA molecule (11,12). Structural fea-
tures of an mRNA, in particular segments with a sta-
ble secondary structure, as well as specific protein se-
quences within a nascent polypeptide (arrest sequences),
cause translating ribosomes to pause or stall (13,14). For ex-
ample, positively charged amino acid residues and proline-
rich sequences have been reported to substantially affect
the rate of translation and hence protein production, appar-
ently by partially blocking the ribosomal exit channel (14–
18). It has been shown that in the yeast Saccharomyces cere-
visiae, positively charged amino acid residues in the growing
translated peptide interact with the negatively charged inner
surface of the ribosomal exit tunnel and slow down transla-
tion (15). Ribosome stalling caused by the ‘arrest peptides’
that block the ribosomal exit channel affects the structure
of the mRNA, resulting in specific biological effects includ-
ing regulation of protein production, maturation or local-
ization (19). Notably, it has been shown that to overcome
stalling at polyproline sequences, the ribosome requires a
specific translation elongation factor (17). The availability
of tRNAs also can affect the rate of elongation of nascent
polypeptide chains (20). However, the actual contributions
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of each of these potential mechanisms to the control of
translation speed remain uncertain and controversial (21–
23).

Is the efficiency of translation and/or protein folding
encoded in the mRNA sequence, and if so, how? The 5′-
terminal 30–50 nucleotides of the protein-coding regions
in prokaryotes and eukaryotes are generally devoid of
stable secondary structure that conceivably could impede
mRNA interaction with the ribosomes (24–27). However,
5′-terminal parts of coding regions also contain structural
elements that function as various translation regulatory sig-
nals. For example, the secondary structure in the region be-
tween codons 14 and 34 downstream of the start codon has
been variously proposed to facilitate the recognition of the
start codon and/or to prevent ribosomal jamming (13,28–
30). Furthermore, it has been shown that the 5′-terminal re-
gions of mRNAs form a ‘translational ramp’ which is trans-
lated substantially slower than the rest of the coding region
(31,32).

The relationships between mRNA folding and transla-
tion appear to be complex and involve opposite effects. Nu-
merous, independent experiments indicate that stable sec-
ondary structure elements in mRNA decrease the rate of
translation, especially in vitro (33–36). However, in an ap-
parent contradiction to these findings, recent progress in
the experimental determination of RNA secondary struc-
tures has led to the demonstration of significant positive
correlations between mRNA folding (the prevalence of sta-
ble structures) and protein abundance (37–39). These or-
thogonal findings imply that multiple, still poorly under-
stood mechanisms that involve interactions between ribo-
somes and different structural elements in translated mR-
NAs differentially modulate the rate and efficiency of trans-
lation (24,27,40).

A pronounced periodic pattern of mRNA secondary
structure, stability and nucleotide base-pairing has been
identified in coding regions of diverse eukaryotes (24,41,42).
Although all codon positions are important for the forma-
tion of the secondary structure of mRNA, synonymous po-
sitions that are free from selection on protein sequence make
the greater contribution to the evolution of mRNA sec-
ondary structures and thus to the regulation of translation.
Periodicity is most pronounced in highly expressed genes
(24,43). Thus, synonymous positions appear to be subject to
RNA-level selection maintaining a stable mRNA secondary
structure that is likely to be important for transcript stabil-
ity and translation and appears to be more common than
previously assumed (24,27). Recent experimental evidence
and analysis of mRNA structure and evolutionary conser-
vation suggest a trade-off between selective pressures acting
at the RNA and protein levels (27,44).

The abundance of a protein is related to the abundance of
its mRNA, translation rate and degradation rate. Assum-
ing a constant mRNA level, the translation rate is expected
to positively correlate with protein abundance, whereas the
degradation rate is expected to show a negative correla-
tion. Synonymous substitutions can affect translation by fa-
cilitating the formation of stable stem-loop structures that
substantially slow down translation initiation and/or ribo-
some translocation, or conversely, by loosening mRNA sec-
ondary structures and eliminating obstacles to speedy trans-

lation (27,45). Indeed, mRNA structure-dependent changes
in translation rates can dramatically affect protein abun-
dance and cause major phenotypic effects including human
disease (46).

Additionally, several recent studies have demonstrated
that variations in translation speed mediated by mRNA sec-
ondary structure can lead to changes in post-translational
modifications of the nascent polypeptide, a level of pro-
tein regulation previously believed not to be connected with
the RNA level regulation (27). In particular, translation-
dependent regulation of post-translational protein arginy-
lation mediated by synonymous codon usage has been
demonstrated for the purine nucleotide biosynthesis en-
zyme PRPS2 (47) and for actins (48).

A rapidly growing body of experimental data indicates
that folding of many if not most proteins is predominantly
co-translational, i.e. individual protein domains fold before
the synthesis of the respective polypeptide chain is com-
plete (49–53). Recently, the process of co-translational fold-
ing of several proteins has been dissected experimentally
(54–57). For example, cystic fibrosis transmembrane con-
ductance regulator has been shown to fold in discrete steps,
namely sequential compaction of the N-terminal, �-helical
and �/�-core domains. The sequence of these events is criti-
cal for the overall folding completion as premature �-helical
domain folding hampered the subsequent formation of the
core domain. The synthesis of this particular protein is fa-
cilitated by intrinsic folding propensity modulation in three
distinct ways: delaying �-subdomain compaction, facilitat-
ing �-strand intercalation and optimizing translation kinet-
ics via codon usage (58).

Evidence that folding of at least some proteins is modu-
lated by translational pauses caused by mRNA secondary
structure has been reported, for example, for the coat pro-
tein of the RNA bacteriophage MS2 (59,60). Synonymous
single-nucleotide polymorphisms within the same gene that
affect the secondary structure of mRNA can create varia-
tions in translation speed, leading to dramatic differences in
protein folding between individuals. A striking example of
this effect involves synonymous polymorphisms in the mul-
tidrug resistance 1 (MDR1 or ABCB1) gene which affect
protein folding and as a result substantially alter the confor-
mation and function of the multidrug transporter (61,62).

Given the wealth of observations on the functional im-
portance of the mRNA secondary structure and its multi-
ple contributions to the control of translation and protein
folding, we sought to investigate potential connections be-
tween the structures of an mRNA and the encoded protein.
By directly comparing the predicted mRNA structure with
the experimentally determined structures of proteins from
several eukaryotes and prokaryotes, we show that mRNA
regions containing stable secondary structure elements typ-
ically encode compact protein domains and large proteins.
These findings suggest a model in which the mRNA struc-
ture acts as a gauge of co-translational protein folding by
reducing ribosome speed when the nascent peptide needs
extra time to form and optimize the core structure.
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MATERIALS AND METHODS

The transcriptome data set

For the present analysis, we selected 12 model species,
six eukaryotes and six prokaryotes, including a mammal:
Homo sapiens (HSA), an insect: Drosophila melanogaster
(DME), a worm: Caenorhabditis elegans (CEL), three fungi:
Saccharomyces cerevisiae (SCE), Aspergillus orizae (ASP)
and Neurospora crassa (NEU), three bacteria: Bacillus
subtilis (BSU), E. coli (ECO), Deinococcus radiodurans
(DEI) and three archaea: Methanosarcina marzei (MET),
Haloferax volcanii (HAL), Thermococcus gammatolerans
(TGA). The mRNA sequences and the sequences of the en-
coded proteins from these organisms were extracted from
the RefSeq database (63) (see Supplementary Dataset 1).

The protein structure data set

The protein structure data set was constructed as previously
described (64). Briefly, the protein sequences encoded by
mRNAs in the transcriptome data set were used as queries
to search the Protein Data Bank (65) for the corresponding
protein structures using BLASTP (66). For further analysis,
the protein structures from the four best covered species, H.
sapiens, S. cerevisiae, E. coli and B. subtilis, were selected.
In addition, to include a hyperthermophilic archaeon, pro-
tein structures corresponding to sequences with >70% se-
quence identity with T. gammatolerans protein sequences
were included. Protein structures were isolated by single
chain, curated (64) and side chains were rebuilt as needed
with SCWRL (67) (see Supplementary Dataset 1).

Gene orthology and estimation of evolutionary rates

Orthologous sequences were extract from the SensuStricto
database (68) for S. cerevisiae (Saccharomyces paradoxus,
Saccharomyces mikitae, Saccharomyces kudriavzevii and
Saccharomyces bayanus var. uravum), the ATGC database
(69) for Thermococcus gammatolerans (T. AM4 uid54) and
the OMA database (70) for the other species. The ortholo-
gous gene pairs were extracted from OMA for the follow-
ing pairs of species: Caenorhabditis elegans and Caenorhab-
ditis briggsae, Drosophila melanogaster and Drosophila
pseudoobscura, H. sapiens and Mus musculus, Bacillus
subtulis and Bacillus subtilis subsp. Spizizenii, E. coli
and Salmonella typhi, Aspergillus oryzae and Aspergillus
flavus, Neurospora crassa and Neurospora tetrasperma,
Methanosarcina mazei and Methanosarcina acetivorans,
Haloferax volcanii and Haloferax mediterranei, Deinococcus
radiodurans and Deinococcus deserti, Thermococcus gamma-
tolerans and Thermococcus AM4 iu54 735.

The nucleotide sequence alignments of orthologous cod-
ing sequences were obtained by backtracking the amino
acid sequence alignments which were constructed using
MUSCLE (71). Evolutionary rates for synonymous and
non-synonymous positions (dS and dN, respectively) were
estimated with the PAML software (72) using the Maxi-
mum Likelihood method for pairs of species or the phyloge-
netic tree of S. cerevisiae from SensuStricto. The dN and dS
values >3 and <0.001, which result in unreliable estimation
of evolutionary rates, were excluded from the calculations.

Protein abundance

Protein abundance data were extracted from the
PAX database (73) using integrated data sets
http://pax-db.org/dao/4932-S.cerevisiae whole organism-
integrated dataset.txt for S. cerevisiae, http://pax-db.org/
dao/6239-C.elegans whole organism-integrated dataset.
txt for C. elegans, http://pax-db.org/dao/7227-D.
melanogaster whole organism-integrated dataset.txt
for D. melanogaster, http://pax-db.org/dao/9606-H.
sapiens whole organism-integrated dataset.txtfor H. sapi-
ens, http://pax-db.org/dao/511145-E.coli whole organism-
integrated dataset.txt for E. coli and http://pax-db.org/dao/
224308-Spectral counting B.subtili Chi MCP 2011.txt for
B. subtilis. We used the relative abundance, by taking the
log value of protein abundance and scaling it between 0
and 1 for each species.

Translation efficiency data (RNAseq and Riboseq)

Translation efficiency (TE) data were extracted from re-
cent studies that include both ribosome profiling and RNA-
seq experiments for the same cell condition. The data set
for E. coli includes four conditions: lysogenic broth (LB),
heated medium (heat), minimal medium (MM) and os-
motic medium (OSM). The data set for S. cerevisiae which
also includes four conditions: Yeast extract peptone dex-
trose (YPD), no cyclohexamide (NOCHX), diamide and ra-
pamycin, and a dataset for H. sapiens which contains three
sets obtains during G2, G1 and mitose cell phase. Transla-
tion efficiency (TE) was estimated in the same way for all
datasets, as the ratio between the ribosome abundance for a
given mRNA and the abundance of the mRNA itself. The
ribosome and mRNA abundances were estimated in reads
per kilobase per million mapped reads (RPKM) from the
CDS positions (12).

The TE data sets, based on the profiles of ribosome den-
sity with single nucleotide resolution and RNA-seq data,
were obtained for E. coli (74), yeast (75) and human (76).
Additionally, protein abundance data were extracted from
the PAX database for the same species (http://pax-db.org/
#!home).

Estimation of mRNA folding energy

mRNA folding energy was estimated using a customized
version of the Afold software (77); only coding regions of
the mRNAs were folded. Afold estimates the free energy
of folding-unfolding (�G) for 30 nucleotide segments of an
mRNA by calculating of the difference between optimal
free energies of mRNA foldings with paired and completely
unpaired states of the given segment. The segment length
corresponds to the size of the ribosomal footprint (11), so
that �G is the energetic cost of making a completely un-
paired segment accessible to the ribosome. Afold scans the
entire coding sequence of an mRNA and processes all over-
lapping 30 nucleotide windows. The mean mRNA folding
energy (�G mean) is the average folding energy of all win-
dows along the complete mRNA sequence. The minimum
(�Gmin) and maximum (�Gmax) values of �G among all
the 30-nt windows were also used as measures of the local
mRNA stability (Supplementary Figure S1). Taking into

http://pax-db.org/dao/4932-S.cerevisiae_whole_organism-integrated_dataset.txt
http://pax-db.org/dao/6239-C.elegans_whole_organism-integrated_dataset.txt
http://pax-db.org/dao/7227-D.melanogaster_whole_organism-integrated_dataset.txt
http://pax-db.org/dao/9606-H.sapiens_whole_organism-integrated_dataset.txtfor
http://pax-db.org/dao/511145-E.coli_whole_organism-integrated_dataset.txt
http://pax-db.org/dao/224308-Spectral_counting_B.subtili_Chi_MCP_2011.txt
http://pax-db.org/#!home
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account numerous genome-wide comparisons between the-
oretically predicted and experimentally verified (in vitro and
in vivo) mRNA folding with stable level of pairing and peri-
odic patterns of pairing in coding regions (24,41–43,78–81),
we estimated mRNA stability using previously described
tools that have been successfully applied to the analysis of
multiple mammalian and prokaryotic genomes (24,27,77).

Estimation of protein solvent accessibility

Protein solvent accessibility was estimated using the Nac-
cess software (82). From a protein structure, Naccess ex-
tracts the relative solvent accessibility (RSA) of each amino
acid side chain. Briefly, RSA corresponds to the surface per-
centage of the side chain that a residue exposes to the sol-
vent within the given protein structure normalized by the
surface percentage that is exposed when the same residue X
is in an Ala-X-Ala tripeptide (see (78) for more details). A
protein solvent accessibility (ACC) is computed as the mean
RSA over all residues. To estimate the RSA of disordered
parts of the protein, we extracted the RSA value computed
from the whole protein for each residue belonging to a dis-
ordered segment and calculated the mean value. Thus, the
RSA of the disordered parts of the protein is the contribu-
tion of the solvent accessibility value of the disordered parts
to the RSA of the complete protein.

Partitioning of ordered and disordered regions of proteins

Ordered and disordered parts of proteins were predicted us-
ing the SEGHCA software (83). This software has the abil-
ity to detect absolute disorder, i.e. those portions of the pro-
tein that remain unstructured under any conditions. From
the protein sequence, SEGHCA delineates segments with
high density of hydrophobic clusters that typically corre-
spond to regular secondary structures. These segments pos-
sess the ability to fold via hydrophobic interactions and are
thus taken to correspond to the ordered part of the protein.
The disordered segments are then predicted by subtraction.
These segments are considered ‘absolute disorder’, i.e. as
being unable to get structured via hydrophobic interactions
under any conditions. The ordered and disordered segments
were concatenated separately to analyze their respective fea-
tures. In addition, as a control, disordered segments were
predicted using IUPRED, a widely used protein disordered
predictor (84).

Multiple linear regression and prediction of protein solvent
accessibility

All statistical analyses were performed using R cran and
specifically the dplyr, tydir, ggplot2 and leaps libraries. Cor-
relation and partial correlation analyses were performed us-
ing Spearman rank correlation. Statistical significance was
reported using probability values (P-values); P-value be-
low 0.05 were considered significant and displayed in bold
in Sup. tables, in figures ** and * denote, respectively, P-
values below 0.005 and 0.05. To identify stable combina-
tions of parameters to explain the ACC variable and to eval-
uate relationships between structural features of mRNAs
and proteins, and evolutionary rates, different multiple re-
gression models were generated and cross-validated using

all combinations of for variables, namely �G (local mRNA
stability), protein size (length of the coding region), GC
content, dS (synonymous substitution rate) and dN (non-
synonymous substitution rate). The three model selection
approach (stepwise, forward, and backward) was employed
to select the variables that can best explain the variance of
ACC.

RESULTS

mRNA stability and compactness of the encoded protein

We first investigated the dependency between the predicted
mRNA structure and the compactness of the encoded pro-
tein. The mRNA folding energy was estimated as the mean
of the local free energy estimates (�Gmean) computed for
each 30 nucleotide (nt) window along the complete mRNA
molecule (see Materials and Methods). The 30-nt window
size corresponds to the ribosomal footprint, i.e. the length
of the linear RNA segment covered by the ribosome dur-
ing translation (11). We additionally used the minimum and
maximum values of �G among all 30-nt windows (�Gmin
and �Gmax, respectively) to assess potential links between
protein compactness and the folding energy of the most
stable and the least stable portions of the messenger. Pro-
tein compactness, which is defined as the inverse of pro-
tein solvent accessibility (ACC), quantifies the fraction of
exposed (or buried) residues in the structure of a given pro-
tein, was estimated from the protein structure (see Materials
and Methods). In proteins with a high ACC value, i.e. small
core proteins, most of the amino acid residues are exposed
to the solvent (64,85,86). Conversely, in large core, compact
proteins with low ACC, most of the residues are buried.

When the estimated mRNA folding energy was compared
to protein accessibility, a highly significant positive correla-
tion between �Gmin and ACC was observed for all organ-
isms (Spearman correlation coefficient [SP] between 0.38
and 0.6 [hereinafter, when describing correlations, we use
the Spearman correlation coefficient unless otherwise indi-
cated]; P-value < 0.005) (Figure 1 and Supplementary Ta-
ble S1), and a somewhat lower but also significant (with
the exception of yeast) positive correlation was found for
�Gmean (between 0.15 and 0.54; P-value < 0.05), whereas
only weak negative correlation was detected for �Gmax
(Supplementary Table S1). Thus, stable mRNAs, especially
those that contain at least one highly stable region (low
�Gmin), typically encode compact, large core proteins. No-
tably, the correlation between �Gmean and ACC was much
stronger in prokaryotes (between 0.41 and 0.54) compared
to eukaryotes (between 0.15 to 0.28), whereas the difference
between the correlation coefficients for �Gmin was much
less pronounced (between 0.38 and 0.49 in Prokaryotes and
between 0.38 and 0.60 in Eukaryotes) (Supplementary Ta-
ble S1).

To control for the robustness of the observed correla-
tions to potential biases in the analyzed structural data set,
we removed the protein superfamily redundancy using the
SCOP annotation to generate a data set containing a sin-
gle representative of each superfamily (selected randomly
whenever several proteins belonged to the same superfam-
ily) from each organism (87). The comparison of �Gmin to
ACC for this ‘pruned’ data set yielded results closely similar
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Figure 1. Correlation between mRNA stability and the compactness of the encoded protein. mRNA stability (folding energy) was estimated from the most
stable segment (�Gmin) or the average of all segments (�Gmean) and is expressed in kcal/mol. Protein compactness was estimated from the protein solvent
accessibility expressed as percent of a residue surface exposed to the solvent. HSA, SCE, BSU, ECO, TGA denote, respectively, H. sapiens, S. cerevisiae, B.
subtilis, E. coli and T. gammatolerans. The structural data set was analyzed. The Spearman’s rank correlation coefficient (SP) and the associated P-value
(PV) are indicated for each plot.

to those obtained with the complete data set (Supplemen-
tary Table S1) (between 0.39 and 0.60; P-value < 0.005).
We then removed the structural redundancy at the protein
fold level, and despite the loss of many structures, observed
a significant positive correlation between �Gmin and ACC
(Supplementary Table S1) (between 0.36 and 0.63; P-value
< 0.05). Thus, the observed link between the RNA folding
anergy and protein solvent accessibility (compactness) is a
robust feature that is not appreciably affected by biases that
might exist in our protein structure data set.

Taking into account the expected strong negative cor-
relation between �Gmean and mRNA GC content (be-
tween −0.69 to −0.92; P-value < 0.005), which indeed
was observed in all species (Supplementary Table S2), we
controlled the dependency between �Gs (�Gmean and
�Gmin) and ACC for the GC-content. After controlling for
GC, the correlation between �Gmean and ACC in eukary-
otes becomes as high as it is in prokaryotes (between 0.34
and 0.41; P-value < 0.005) (Supplementary Table S1). This
effect was also detectable, albeit to a much lesser extent,
in the case of �Gmin (Supplementary Table S1). Thus, in
eukaryotes, GC is a strong suppressor (modulator) of the
relationship between �Gmean and ACC, in part, proba-
bly, due to the much higher characteristic variance of the
GC content along the eukaryotic mRNA sequences (Sup-
plementary Figure S2). Additionally, we controlled the de-
pendency between �Gs (�Gmean and �Gmin) and ACC
for amino acid content and codon usage. After controlling
for amino acid content, the correlation remains significant
(except in S. cerevisiae) (Supplementary Table S1). We then
grouped the amino acids according to their physicochemi-
cal characteristics (hydrophobic: ILVM, aromatic: WFYH,
polar: QNSTC, positively charged: RK, negatively charged:
DE; small: PGA) and controlled the correlation between

�G and ACC for the frequencies of these groups. Again,
a positive and significant correlation was observed (except
in S. cerevisiae) (Supplementary Table S1). Similarly, after
controlling for codon frequencies, we still found a signifi-
cant positive correlation (except in S. cerevisiae and in T.
gammatolerans using �Gmin). Taking into account all these
controls, the present analysis reveals a universal relationship
between mRNA and protein structures that is most pro-
nounced for a local characteristic of the mRNA structure,
i.e. folding energy of the most stable element (�Gmin), and
is largely independent of the features of mRNA and protein
sequences.

We then partitioned the protein sequences into predicted
ordered and predicted absolute disordered regions using the
SEGHCA software (see Methods). As expected, on aver-
age, the predicted disordered regions are significantly more
accessible to the solvent than the ordered regions (Supple-
mentary Figure S3). The correlations between �Gmean or
�Gmin and ACC were then measured separately for the
concatenated ordered and disordered segments. In all 5 ana-
lyzed organisms, the correlation for the ordered regions was
roughly the same as for the complete sequences (between
0.15 and 0.51 using �Gmean; P-value < 0.05; between 0.39
and 0.59 using �Gmin; P-value < 0.005) whereas the dis-
ordered segments showed virtually no correlation (Figure
2 and Supplementary Table S3). In order to ascertain the
robustness of these observations, the analysis was repro-
duced using the IUPRED software, a widely used disor-
dered predictor, with similar results (Supplementary Table
S3). These observations are consistent with the possibility
that the link between the mRNA folding energy and protein
compactness has to do with the folding of protein domains.
A comparison of the �Gmean and �Gmin values in the pre-
dicted ordered and disordered regions of proteins showed
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Figure 2. Correlation between mRNA stability and solvent accessibility of the predicted ordered and disordered parts of proteins. mRNA stability and
solvent accessibility were estimated as indicated for Figure 1. The designations are as in Figure 1.

that in the ordered regions, �Gmin was much lower than in
the disordered regions whereas the difference between the
�Gmean values was considerably less pronounced (Figure
3). Furthermore, as one could expect, about 95% of the 30
nt segments associated with the �Gmin values for the com-
plete mRNA sequences were located in regions coding for
predicted ordered parts of proteins (see the Inset in Figure
3).

The mRNA folding energy was also estimated for com-
plete sequences as well as for sequences encoding predicted
ordered and disordered segments using a smaller, 3-nt win-
dow, and the obtained �G values were compared to ACC.
The results closely recapitulated the trends observed with
the 30 nucleotide window (Supplementary Table S4), in
agreement with the conclusion that the connection between
protein compactness and mRNA folding is a local phe-
nomenon.

The relationship between mRNA and protein structures is
partially determined by GC content and protein size

The folding energy of a mRNA obviously depends on the
GC content whereas protein compactness can depend on
the length of the polypeptide chain (protein or mRNA
size), potentially, in a complex manner. Indeed, as indicated
above, we found that, for eukaryotes, the correlation be-
tween �Gmean and ACC strongly depends on the GC con-
tent of the mRNA. Therefore, we systematically examined
the effect of the GC content and the length of the coding se-
quence on the observed dependencies between mRNA and
protein structures.

The GC content (GC), mRNA length (size) and mRNA
folding energy (�Gmean and �Gmin) were compared for
several prokaryotes and eukaryotes (in this case, the analy-
sis did not have to be limited to proteins with available struc-
tures, so the number of organisms could be increased). A
strong negative correlation between �Gmean and the GC
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Figure 3. Distributions of the �G values in complete coding regions and in sequences encoding predicted ordered and disordered parts of the protein.
The inset shows the percentage of the segments associated with �Gmin that fall into the regions encoding predicted ordered portions of proteins in each
organism. HSA, SCE, BSU, ECO, TGA denote, respectively, H. sapiens, S. cerevisiae, B. subtilis, E. coli and T. gammatolerans. The structural data set was
analyzed.

content of mRNAs was observed in both prokaryotes and
eukaryotes (between −0.59 and −0.92; P-value < 0.005),
and a slightly weaker correlation was observed for �Gmin
(between −0.23 and −0.71; P-value < 0.005) (Supplemen-
tary Table S2). Thus, as expected, GC-rich mRNAs are typ-
ically more stable and form compact structures.

The mRNA folding energy and protein size were strongly,
negatively correlated in all organisms, especially when
�Gmin was used as the local measure of folding energy (be-
tween −0.43 and −0.66; P-value < 0.005) (Supplementary
Table S2). Similar to the relationship between �G and ACC
described above, the difference between prokaryotes and eu-
karyotes was notably more pronounced for �Gmean than
for �Gmin (Supplementary Table S2). The relationship be-
tween �G and the coding sequence length was substantially
stronger for the ordered segments of proteins than for the
disordered segments (Supplementary Table S5). Altogether,
these observations show that mRNAs encoding large pro-
teins are typically GC-rich and accordingly highly struc-
tured, and contain local elements of exceptional stability.

Selection pressure at the mRNA and protein levels

The rate of protein sequence evolution generally depends
on the level of functional constraint (88) but the contribu-
tions of different types of constraints are not fully under-
stood although it is well established that buried amino acid
positions evolve significantly slower than exposed positions
(64,85,86). A significant negative correlation was observed
between ACC and synonymous and non-synonymous evo-
lutionary rates (ERs) (dS and dN) in all species (except dS
in human) (between −0.17 and −0.30; P-value < 0.005 for
dN and between −0.24 and −0.33; P-value < 0.005 for dS)
(Supplementary Table S6). Thus, large core, compact pro-

teins on average evolve faster than small core proteins, con-
ceivably, because the former are more robust to deleterious
effects of mutations, in agreement with previous findings
(64,85,86). We also repeated the analysis of ACC versus dS
and dN separately for the predicted ordered and disordered
segments of proteins and observed a more pronounced re-
lationship between ACC and ERs in the ordered compared
to disordered parts of the protein (Supplementary Table S6)
in agreement with previous findings (44).

We further compared the estimated mRNA folding en-
ergy to the synonymous and non-synonymous ERs (dS and
dN, respectively) and the protein-level selection pressure
measured as dN/dS. As observed previously, in all species,
dN and dS are significantly correlated (Supplementary Ta-
ble S7) indicating that selection pressure applies similarly at
the protein and mRNA levels albeit at substantially differ-
ent strengths. Comparative analysis of ERs and the mRNA
folding energy showed a significant positive correlation in
organisms with high GC content, for example, H. volcanii
and D. radiodurans. In contrast, S. cerevisiae and C. ele-
gans, the most AT–rich of the analyzed genomes, showed
a significant negative correlation with �Gmean, whereas
the genomes with an intermediate GC content showed little
correlation (Figure 4 and Supplementary Table S7). Thus,
in organisms with GC-rich genomes, stable mRNA regions
generally evolve fast, whereas in organisms with AT-rich
genomes, they evolve slowly compared to less stable regions.
A weak to moderate positive correlation was detected be-
tween dN/dS (measure of protein-level selection) and �G
for all organisms except for those with the highest GC con-
tent (Supplementary Table S7). Thus, highly conserved pro-
teins show a tendency to be encoded by stable mRNAs ex-
cept for those organisms in which RNA is generally highly
structured due to the high GC content. Taken together,
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Figure 4. Distributions of mRNA folding energy in the analyzed organisms. Species are ordered following their transcriptome GC content and the Spear-
man’s rank correlation coefficient between �Gmean and synonymous mutation (dS) is mapped on the boxes as color gradient. SCE, CEL, BSU, MET, ASP,
ECO, HSA, DME, TGA, NEU, DEI, HAL denote, respectively, S. cerevisiae, C. elegans, B. subtilis, M.mazei, A.orizae, E. coli, H. sapiens, D. melanogaster,
T. gammatolerans, D. radiodurans, H. volvanii. The transcriptome data set was analyzed.

these findings suggest that selection acts to optimize rather
than minimize or maximize mRNA stability.

Translation efficiency, protein abundance, protein compact-
ness and mRNA structure

The observations presented above, on the correlation be-
tween mRNA folding energy (�G) and ACC, suggest that
mRNA stability could significantly contribute to protein
folding and compactness. One possible model is that the
ribosome requires extra time to unwind stable secondary
structure elements in the mRNA, providing an opportunity
for the protein domains to fold properly, which is particu-
larly important for compact (large core) and large proteins.
This model appears to be compatible with the available data
on ribosome stalling triggered by specific mRNA structures
such as pseudoknots or stable hairpins (89,90). To assess
this model more directly, we compared the stability of the
analyzed mRNAs to the experimentally determined trans-
lation efficiency and protein abundance.

Translation efficiency (TE) is quantified by the ratio
of the abundance of ribosomes associated with the given
mRNA to the abundance of the mRNA itself (see Materia;s
and Methods) obtained, respectively, from ribosome profil-
ing and RNA-seq experiments (12). We found that the ex-
perimentally measured protein abundance positively corre-
lates with translation efficiency under 4 different conditions
in E. coli and yeast and in all three phases of the cell cycle

in humans (between 0.15 and 0.60; P-value < 0.005) (see
Materials and Methods) (Supplementary Table S8). Thus,
as could be expected, abundant proteins are translated fast
under various conditions in both prokaryotes and eukary-
otes. We also detected a positive correlation between protein
abundance and solvent accessibility (except for T. gamma-
tolerans) (Supplementary Table S9), i.e. on average, abun-
dant proteins are less compact than proteins produced in
lower quantities. Taking into account that abundant pro-
teins are less compact and are translated faster than pro-
teins of lower abundance, a positive correlation between
protein abundance and �G could be expected. However, in
agreement with previous reports (37) and similar to the case
of evolutionary rates and protein-level selection discussed
above, no universal relationship between protein abundance
and �G was observed (Supplementary Table S10). A neg-
ative correlation was detected in AT-rich species, such as
yeast and C. elegans (−0.29; P-value < 0.005), but a posi-
tive correlation was found in more GC-rich organisms, such
as E. coli (0.19; P-value < 0.005); these correlations were
independent of other tested variables, in particular mRNA
length and protein size (Supplementary Table S10). Along
with the results in the previous section, these observations
point to evolutionary optimization of �G.

For E. coli, in general, �G is a better predictor of TE than
ACC, and correlation between TE and �G is significant for
all four conditions. Taking into account that correlation be-
tween TE and �G is evident only in the G2 phase of the cell
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cycle in human whereas in yeast there was no correlation for
any conditions in yeast, we further examined the connection
between the GC content and TE in different organisms. In
all cases with a significant positive correlation between TE
and �G, there was a negative correlation between GC con-
tent and TE, whereas the other organisms showed a positive
correlation (Supplementary Table S8). After controlling for
GC content, a significant positive correlation between �G
and TE was observed for all organisms and all conditions
(Supplementary Table S11). This result is in agreement with
a model under which stable mRNAs are translated slowly
(with a low TE), allowing more time for the encoded com-
pact and/or large proteins to fold co-translationally.

Prediction of protein features from the mRNA characteristics
using multiple regression models

An attempt to extend the partial correlation analysis to
all variables employed here, namely GC content, protein
size, dN, dS, protein abundance, and fractions of each of
6 groups of amino acids (see above) failed to produce
compelling results as the magnitude of the correlation be-
tween the mRNA folding energy (�Gmean or �Gmin)
and protein compactness (solvent accessibility) substan-
tially dropped, most likely due to over-fitting (see Supple-
mentary Table S12). Such an outcome is expected with a
large number of variables and a limited number of data
points (91,92).

Given these complex relationships between different vari-
ables related to mRNA and protein structures, we turned
to the analysis multiple linear regression (MLR) models
in order to assess the ability of different combinations of
these variables to account for the variance of ACC (see Ma-
terials and Methods). The models included combinations
of five variables: �G (either �Gmean or �Gmin), coding
region length (size), GC content, and ERs (dS and dN)
(see Materials and Methods for further details). On aver-
age, �Gmin was a slightly better predictor of ACC than
�Gmean. Among the individual variables, the strongest
correlation with protein compactness was observed for the
length of the coding region, especially for prokaryotes, fol-
lowed by �G (Figure 5). In most cases, this pair of vari-
ables possessed the greatest explanatory power compared to
other pairs in both prokaryotes and eukaryotes (Figure 5).
Evolutionary rate in synonymous positions (dS) also signif-
icantly increased the prediction power in most organisms,
particularly in eukaryotes. In prokaryotes, dS alone does
not significantly correlate with ACC but increases the pre-
diction power of MLR models when added to the strongest
pair of variables, namely size and �G (Figure 5).

We further explored the predictive power of the MLR
models for the two organisms, E. coli and H. sapiens (Fig-
ure 6A and B), where sufficient expression data were avail-
able. Using the cross-validation approach, random training
subsets were selected to include approximately one third
of the gene loci available for each organism. The remain-
ing two thirds of genes from each organism were used as
validation sets. Cross validation for the models with the
largest number of variables (Figures 5 and 6) and compar-
ison of the adjusted correlation coefficients showed similar
R2 values for the training and validation data sets indicating

that there was no appreciable overfitting in our models with
three parameters (size, �G and dS). Root mean squared er-
ror (RMSE) values support the conclusion that the optimal
model should include these three variables (Supplementary
Figure S4) whereas the remaining two variables (dN and
GC-content) should be discarded.

Three variables, namely the size (length) of the coding re-
gion (P value < 0.005), �G (�Gmin or �Gmean) of mRNA
folding (P value < 0.005) and dS (P value < 0.05), showed
independent predictive power for ACC in all organisms. The
plot of predicted (evaluated by 3-fold cross validation) ver-
sus the actual ACC values for the E. coli validation set us-
ing the three variables combined is shown in Figure 6A. In
terms of the predictive power, the MLR models, which yield
R values in the range between 0.59 and 0.75 for different or-
ganisms, perform better for prokaryotes (Figure 6A and B).
The predictive power of our model for E. coli is comparable
to that of the previous models based on protein features, in-
cluding predicted protein secondary structure, native disor-
der and physicochemical propensities (93,94). Thus, protein
compactness can be predicted with considerable accuracy
using mRNA features only, specifically, length, �G and dS.
Adding TE and protein abundance to the models did not
enhance the prediction power.

We additionally generated multiple linear regression
models using independent randomly chosen data sets to ex-
plore the connections between all analyzed features of mR-
NAs and proteins (�G, ACC, GC content, mRNA size, dN,
dS, protein abundance) and their contributions to the vari-
ance of TE (Supplementary Figure S5). The MLR models
demonstrate that, in E. coli, the combination of three fea-
tures (�G, abundance and dS) yields stable predictions for
all four conditions albeit with limited predictive power. Pro-
tein abundance, in general, performs better as a predictor of
TE and could be used to replace ACC in models. In E. coli,
in general, �G is a better predictor of TE than ACC but the
contributions of these two variables are independent. In hu-
man, the model with three independent variables (�G, size
and abundance) was the best predictor of TE for G2. Rates
of evolution did not add much to the prediction in the MLR
models in eukaryotes.

Taken together, the results of the MLR analysis indi-
cate that protein solvent accessibility (a measure of com-
pactness) can be predicted with considerable accuracy using
only mRNA features, namely length of the coding region,
�G and dS.

DISCUSSION

The findings presented here reveal a universal connection
between protein compactness (measured as ACC) and local
free energy of mRNA folding (�Gmean or �Gmin) which
is a measure of RNA stability. In all organisms for which
we could collect sufficient structural information, compact
proteins with large cores are encoded by RNA molecules
that are, on average, more stable at the local level than
those encoding small-core, less compact proteins. In princi-
ple, this relationship could reflect different types of connec-
tions between mRNA and the protein it encodes, e.g. the
high folding potential of the mRNA could reflect specific
requirements of mRNA stability or translation fidelity for
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Figure 5. Multiple linear regression analysis. The vertical axis shows the percentage of the protein solvent accessibility variance (R2 values) that explained
by models that include different combinations of variables as indicated by shaded squares in the matrix. Each model combine different parameters indicated
by filled squares on the same row and associated the R2 value on the left of the row. Overfitting was tested for models using 5 variables (see Figure 6 and
corresponding section). HSA, SCE, BSU, ECO, TGA denote, respectively, H. sapiens, S. cerevisiae, B. subtilis, E. coli and T. gammatolerans. The structural
data sets were analyzed.
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Figure 6. Prediction of protein solvent accessibility for proteins with known structures in E. coli (A) and H. sapiens (B). The plot of multiple linear regression
(MLR) predictions versus the actual ACC estimations based on the known structural data of the proteins. Spearman correlation (R2 values) is 0.602 in
E. coli (A) and 0.4 in human (B). The actual ACC values were estimated from known protein structures by extraction of the relative solvent accessibility
(RSA) of each side chain residues. A protein solvent accessibility is computed as the mean RSA over all residues (see Materials and Methods). Values
of predicted average solvent accessibility were estimated using a MLR model including the following mRNA features: (i) size (log) − the length of the
coding region (P-values < 0.005), (ii) �Gmin, free energy of mRNA folding (P-values < 0.005) and (iii) dS (log), synonymous evolutionary rate, which
was estimated for E. coli versus S. typhi (A) and human vs mouse (B) orthologous gene pairs (P-values < 0.05). All three features significantly contribute
to the model (P values show above); their coefficients are significantly different from 0.

compact proteins. However, we obtained a specific clue as
to the likely driving force behind the link. The correlation
between �Gmin or �Gmean and protein compactness was
found to be pronounced in the mRNA segments that en-
code predicted ordered (structured) portions of proteins but
was much weaker or non-existent in the regions predicted
to encode disordered (unstructured) parts (Figure 2). This
observation implies that �G of the coding RNA sequence

matters for the portions of a protein that have to fold co-
translationally but not for the disordered portions.

Throughout this work, we compare global measures of
protein compactness to local measures of RNA stability,
namely �Gmin or �Gmean values, in a 30-nt window cov-
ered by the ribosome during translation. Moreover, we
found that �Gmin is a stronger correlate of protein com-
pactness than �Gmean, suggesting that many mRNAs con-
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tain exceptionally stable elements which could function as
distinct regulatory devices by slowing down translation and
hence facilitating co-translational protein folding. In agree-
ment with the proposed role of exceptionally stable sec-
ondary structure elements in mRNA as regulators of pro-
tein folding, we found that the segments corresponding to
�Gmin are almost always located within the portion of the
mRNA that encodes the structured part of the protein.

In addition to the connection between �G and protein
compactness, we also detected a negative correlation be-
tween �G and protein length, and again, this correlation
was found to be much more pronounced for the predicted
structured segments than for the non-structured ones. This
finding is compatible with the substantial contribution of
the mRNA structure to protein folding because longer pro-
tein sequences on average take more time to fold than
shorter ones.

The above observations imply that in the portions of mR-
NAs that encode structured parts of proteins, RNA sta-
bility should be subject to purifying selection. The mag-
nitude of this selection pressure can be predicted to posi-
tively correlate with the length of the structured portion of
the protein and the relative core size. Such selection would
primarily affect synonymous positions in which the RNA-
level selection is largely decoupled from the protein-level se-
lection. In agreement with these predictions, we indeed de-
tected the expected dependencies between dS, mRNA sta-
bility and protein compactness. Multiple regression analy-
sis showed that the contributions of �G, protein length and
dS to the prediction of protein compactness (surface acces-
sibility) are partially independent. Thus, there seems to be a
significant length-independent component in protein com-
pactness, and furthermore, stability might not be the only
feature of mRNA structure that is subject to selection re-
lated to protein folding. The MLR models analyzed here
show that these three features jointly account for about half
of the variance in protein surface accessibility (at least in
prokaryotes) which is indicative of a robust link between
mRNA and protein structures.

The hypothesis that highly structured elements in mRNA
function as gauges of protein folding is compatible with
a considerable body of experimental evidence indicating
that synonymous changes or polymorphic variants affect-
ing the stability of highly structured mRNA elements can
dramatically change translation speed, inhibit translation
and influence co-translational protein folding (27,61,95,96).
These highly stable elements even appear to play different
roles in post-translational modifications and protein func-
tions, for example, in actin (48) and prosphorybosyl py-
rophosphate synthase (47). Correlations between protein
and mRNA structures have been recently demonstrated for
several specific cases of mRNAs with experimentally char-
acterized structures (78,97,98). Furthermore, extensive ob-
servations have been reported connecting the evolutionar-
ily conserved patterns of optimal and non-optimal codons
with elements of protein secondary structure and, by infer-
ence co-translational folding (54,99,100). Together with the
findings on the apparent role of mRNA secondary structure
elements reported here, these results indicate that there mul-
tiple ways in which mRNA sequence and structure can be
subject to selection driven by the requirements of protein

folding optimization. The mRNA appears to contain not
only a second layer of information as has been recently pro-
posed (101) but perhaps, multiple layers of subtle, entangled
signals.

Throughout this analysis, we observed substantial dif-
ferences between prokaryotes and eukaryotes. All observed
correlations as well as the explanatory power of the MLR
models are weaker in eukaryotes compared to prokaryotes,
which is likely to be due to the generally greater power of
selection in the large prokaryotic populations compared to
the weaker selection in the smaller populations of eukary-
otes (102,103). More specifically, the correlation between
�Gmean and ACC was much weaker in eukaryotes than in
prokaryotes whereas in the case of �Gmin, the difference
was substantially smaller. When the comparison was con-
trolled for the GC content, the correlation for �Gmean in
eukaryotes substantially increased. The causes of the sup-
pressing effect of the GC content on the �Gmean versus
compactness correlation in eukaryotes are not entirely clear.
We suspect that one of the contributing factors is the high
variability of the GC content along the mRNA and of the
transcript size in eukaryotes compared to prokaryotes (Sup-
plementary Figure S2). Another likely relevant factor is the
greater content of disordered segments in eukaryotic pro-
teins. Disordered segments tend to be enriched for polar
amino acids, glycine and proline, which are encoded by GC-
rich codons (Supplementary Figure S6), which contribute
to the formation of stable local mRNA structures and thus
suppress the link between �Gmean and ACC. Furthermore,
in eukaryotes, translation and protein folding do not oc-
cur co-transcriptionally as they do in prokaryotes (104,105),
and therefore there is a greater potential for functionally rel-
evant long range interactions in eukaryotic mRNAs. Nev-
ertheless, the finding that �Gmin is the strongest correlate
of ACC in all cases implies that specific, highly stable sec-
ondary structure elements in mRNAs function as distinct
devices to regulate protein folding in prokaryotes and eu-
karyotes alike.

CONCLUSIONS

The findings presented here reveal strong, universal con-
nections between the structures of an mRNA and the en-
coded protein. The observation that these correlations are
pronounced for predicted ordered parts of proteins but are
much weaker or non-existent in the predicted disordered
parts suggests that mRNA stability affects co-translational
protein folding. Furthermore, we found that the folding en-
ergy of the most stable segment of an mRNA correlates with
protein compactness stronger than the mean folding en-
ergy. These observations lead to the experimentally testable
model in which elements with highly stable secondary struc-
ture that are typically located in the portions of mRNAs
that encode structured protein parts, function as control de-
vices for co-translational protein folding. This hypothesis is
compatible with the demonstration of the RNA-level selec-
tion which correlates with RNA folding energy and protein
compactness. The connection between mRNA and protein
structures is more pronounced in prokaryotes compared to
eukaryotes, conceivably due to the greater power of selec-
tion in the former.
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