
1Scientific RepoRts | 6:30371 | DOI: 10.1038/srep30371

www.nature.com/scientificreports

Hagfish slime and mucin flow 
properties and their implications for 
defense
Lukas Böni1, Peter Fischer1, Lukas Böcker1, Simon Kuster1 & Patrick A. Rühs2

When hagfish (Myxinidae) are attacked by predators, they form a dilute, elastic, and cohesive defensive 
slime made of mucins and protein threads. In this study we propose a link between flow behavior and 
defense mechanism of hagfish slime. Oscillatory rheological measurements reveal that hagfish slime 
forms viscoelastic networks at low concentrations. Mucins alone did not contribute viscoelasticity, 
however in shear flow, viscosity was observed. The unidirectional flow, experienced by hagfish slime 
during suction feeding by predators, was mimicked with extensional rheology. Elongational stresses 
were found to increase mucin viscosity. The resulting higher resistance to flow could support clogging of 
the attacker’s gills. Shear flow in contrast decreases the slime viscosity by mucin aggregation and leads 
to a collapse of the slime network. Hagfish may benefit from this collapse when trapped in their own 
slime and facing suffocation by tying a sliding knot with their body to shear off the slime. This removal 
could be facilitated by the apparent shear thinning behavior of the slime. Therefore hagfish slime, 
thickening in elongation and thinning in shear, presents a sophisticated natural high water content gel 
with flow properties that may be beneficial for both, defense and escape.

Various animals produce slime in locomotion and adhesion1. By contrast, the hagfish forms a mucus-based slime 
with long protein threads as a very effective defense mechanism against predators2. In contact with seawater, the 
slime generates from tiny quantities of a glandular exudate, released from ventrolateral pores (Fig. 1a,b). The exu-
date (Fig. 1d) is composed of three components: vesicles containing mucin (Fig. 1c), protein threads coiled up in 
skeins (Fig. 1e), and a residual fluid3. Upon contact with water, a cascade of physico-chemical events is triggered 
in the exudate and within milliseconds vast amounts of slime are produced. The vesicles rupture through the 
influx of water4 and the protein skeins unravel and expand to long threads5,6. The mucins form strands under the 
influence of convective mixing and attach to the unravelling threads7.

The threads impart outstanding physical properties and make the slime an elastic and coherent soft gel with a 
complex network structure, consisting of ultra-long protein threads (≈ 15 cm) and a hydrated mucus part2,8,9. The 
threads are composed of intermediate filament proteins10 that undergo a so called α-helix to β-sheet transition 
when subjected to large deformation, leading to substantially improved mechanical properties similar to spider 
silk11. The slime is very dilute, containing 99.996% water which is physically confined between the threads and 
the mucins and thus only transiently retained3. Hagfish are preyed upon by a variety of aquatic animals, exposing 
the fish and the formed slime to feeding mechanisms such as biting or suction (Fig. 2a). Suction feeders rapidly 
expand their buccal cavity, thereby creating a unidirectional flow of water that engages the prey and draws it into 
the mouth12,13. As shown by Zintzen et al.14, in all observed cases of predation, the hagfish were able to free them-
selves from the attacker by gill-clogging2, suggesting that their defense mechanism is very efficient and crucial 
for their survival. Being such an outstanding defense, the slime has a major drawback for the hagfish. If they were 
not able to free themselves from their own slime, they might self-asphyxiate. Therefore, hagfish can tie a sliding 
knot with their own body to strip off the slime and thus avoid self-entanglement (Fig. 2b)15,16. Escaping slime by 
knotting seems important as hagfish do not only secrete slime when attacked, but also when feeding or injured16.

Despite the remarkable properties of hagfish slime, the flow behavior behind its defensive properties and 
the individual contributions of each slime component are largely unknown. The rheology of slime was studied 
previously9,17,18, however the flow properties of the slime were not linked to its main purpose, i.e. its protecting 
capacity. Therefore, we studied the rheological properties of hagfish slime and hagfish mucin in elongational, 
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shear, and oscillatory flow to investigate the role of hagfish slime in defense and escape. The slime has a unique 
network structure, as small concentrations (0.01 wt%) are sufficient to develop resistance features against flow 
such as viscosity and elasticity. Using a rheological approach, we propose that the flow properties of the slime 
seem beneficial to its ability to clog the gills of predators (thickening in elongation), and its ability to be shed by 
hagfish that get trapped within the slime (thinning in shear).

Results and Discussion
The flow behavior of hagfish slime was measured with rheology to study its implications for the defense mecha-
nism. In the first part the influence of the threads on the slime network properties were studied. In the second and 
third part the effect of shear and elongational forces on the slime were investigated. Based on our measurements, 

Figure 1. Overview of hagfish exudate components and slime formation in water. (a) Exudate is released 
from pores after electrical stimulation. (b) Exudate in water forming hagfish slime. (c) Vesicles with mucin 
stabilized in buffer solution. When in water, the vesicles swell, rupture, and form mucin strands under the 
influence of flow. (d) Microscopy image of hagfish exudate showing both skeins and vesicles with mucin. 
(e) A side view cut Cryo-SEM image of a hagfish skein, which unravels to a single long protein thread when in 
water. Once both components of the exudate (skeins and vesicles) are released into the seawater, hagfish slime is 
formed.

Figure 2. Hagfish defense and escape. (a) During predation hagfish instantly form large quantities of slime as 
a defense mechanism. Predation often occurs through suction feeding where the prey is sucked into the mouth 
by a strong elongational flow. The arrow depicts jets of slime that were projected into the predator’s mouth 
upon suction feeding (Adapted and reprinted by permission from Macmillan Publishers Ltd: Scientific Reports, 
Zintzen et al.14, copyright 2011). (b) Entanglement and self-asphyxiation is avoided by sliding a knot across the 
body to shear off the slime and escape (see Supplementary Video 1).
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the apparent shear thinning and elongational thickening flow properties were linked to biological implications 
for hagfish defense and escape strategies.

Hagfish slime viscoelasticity. One of the most striking features of hagfish slime is the low concentration 
needed to gel vast quantities of water3. We therefore investigated the rationale behind the natural economic use of 
material by gradually increasing the slime concentration and studied the contribution of threads and mucins to the 
network properties. With oscillatory rheology, the network properties of hagfish slime and mucin were measured 
at exudate concentrations from 0.01 to 0.08 wt% and compared to naturally occurring concentrations of mucin 
in 0.01 wt% slime. A concentration of 0.01 to 0.02 wt%, being the natural concentration3, is sufficient to develop 
elastic features with a higher storage modulus G′  than loss modulus G″  (Fig. 3a, see Supplementary Video 2).  
This is unique, as most biological hydrogels require a much higher concentration to exhibit gel-like features19. 
A concentration of 0.01 wt% exudate was found to be the lowest functional concentration as it visibly still gelled 
the entire system but showed a viscoelastic signal close to water, which also exhibits an apparent elastic modu-
lus due to surface tension effects (Fig. 3b, left). Ewoldt et al.20 reported the considerable rheological challenges 
(sample and instrument inertia, instrument resolution, boundary effects) in determining the underlying material 
functions of soft and water-based bio-materials, such as hagfish slime. However, although in this study a more 
than fourfold lower concentration was used than by Ewoldt et al.9 (0.83 mg/ml by Ewoldt et al., corresponding to 
0.083 wt%), an almost identical softness for hagfish slime (G′  ≈  0.02 Pa) was measured. When the concentration 
was increased to 0.08 wt%, the linear viscoelastic modulus G′  still remained largely constant. This finding suggests 
that hagfish slime is an inherently soft material, regardless the concentration.

In 0.01 wt% slime, about 20% is mucin3, therefore we evaluated to what extent the mucins contribute to the 
rheological response. We found that the apparent elasticity of the mucin fraction (20% of 0.01 wt%) is nearly 
identical to seawater. This can be seen in the substantially higher moduli of the slime compared to mucin in 
Fig. 3b showing the average of five measurements for slime, mucin, and water, respectively. At a concentration of 
0.0026 wt% the mucins do not seem to form a network across the entire slime or the used measurement technique 
is not sensitive enough. This data supports the theory of Fudge et al.3, who suggested that hagfish mucins do not 
form a cross-linked network throughout the slime but are rather heterogeneously distributed in discrete net-
works. Therefore, to have a viscoelastic network, the threads seem to be important for the overall viscoelasticity.

Shear thinning of hagfish slime. Hagfish have to escape their own slime to avoid suffocation. They 
can form a sliding knot with their body to shear off the slime. The influence of simple shear flow on the slime 
properties is measured at shear rates of 1, 10, and 100 s−1 corresponding to the range of natural shear rates (see 
Supplementary Note, a). As hagfish slime is highly sensitive to its mechanical history3,8, no pre-shear experiments 
were performed. Hagfish slime shows an apparent shear thinning behavior (Fig. 4a, left and Fig. 4b) but in con-
trast to some other shear thinning solutions, with shear thinning being an intrinsic property of a homogeneous 
material, the slime viscosity decreases even at constant shear rates. This effect can be attributed to the coiling of 
threads around the geometry9 and thread association, leading to a collapse of the slime network (Fig. 4c) and 
consequently to a phase separation of a condensed gel network separating from watery remains. A collapse of 
the network due to shear is also visible in Fig. 4a, right where the mucin fraction was measured without threads. 
We propose that the mucin fraction is not stable against shear, forming aggregates (Fig. 4d), which lowers the 

Figure 3. Oscillatory shear rheology of hagfish slime and mucin. (a) Amplitude sweep of hagfish slime  
(G′  left and G″  right) at varying concentrations (0.01 to 0.08 wt%, 0.01 wt% being the natural slime concentration) 
at a fixed angular frequency of ω =  1 rad/s. (b) Amplitude sweep (G′  left and G″  right) of five averaged measurements 
of hagfish slime (0.02 wt% being the natural concentration), hagfish mucin (0.0026 wt% being the natural mucin 
concentration), and seawater as a reference at a fixed angular frequency of ω =  1 rad/s. (c) In oscillation and 
simple shear the rheological properties of hagfish slime were measured with a Couette geometry.
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viscosity (see Supplementary Video 3). The tendency of mucins to aggregate and thus cause a gel-sol transition 
is known and mainly attributed to inter-molecular hydrophobic interactions among protein segments21,22. We 
propose that given their large size and their high protein content23, shear flow causes hagfish mucin to aggregate 
by facilitating inter-molecular hydrophobic interactions. The aggregating mucin fraction supports a collapse of 
the slime network by thread association. This collapse can be circumvented, as was shown in a previous study17, 
with a network stabilized by negatively charged biopolymers.

Elongational thickening during suction feeding. When hagfish are predated through suction feeding 
(for suction feeding predators on hagfish14,24 see Supplementary Note, b), the slime is stretched by elongational, 
unidirectional flow25,26. In addition, extensional flow is also likely to be important for the development and for-
mation of the slime7. Extensional measurements with hagfish slime threads revealed that threads are very elastic 
in extension27–29. Additionally, distinct elastic features of hagfish mucins can be observed in hagfish slime (see 
Supplementary Video 4). To address the effect of the mucin fraction, we measured the extensional rheology at the 
natural concentration of hagfish mucin and at lower concentrations to determine their role in the flow properties 
of hagfish slime (Fig. 5a) using Capillary breakup extensional rheology (CaBER). A strike time of 50 ms corre-
sponding to a natural prey-sucking time was chosen25,26,30.

In Fig. 5b the liquid filament thinning events of three mucin concentrations in seawater are shown. At the natural  
mucin concentration, a delayed breakup of the liquid filament can be observed. By contrast, a lower mucin con-
centration (25% of the natural mucin concentration) coincides well with a Newtonian profile, suggesting that 
this concentration is very dilute and the mucin thread thinning is mainly ruled by capillary forces and given the 
low concentration possibly also by surface tension forces. A loss of elastic stresses and a Newtonian behavior 
with a decreasing mucin concentration is also observed in the corresponding extensional viscosity curves in 
Fig. 5c. A pronounced strain hardening or an increase in extensional viscosity with strain is observed, which is 
attributed to a strong resistance of flexible polymer molecules to extensional flow31. Strain hardening is a known 
phenomenon for mucus systems32–35 and is thought to arise from peculiarities of the extension kinematics, and 
to be related to a deferred disentanglement process36. A similar strain stiffening of hagfish slime was described 
by Ewoldt et al.9 from oscillatory shear measurements, who likewise suggested that mucins, as non-linear elastic 
network components, are strain-stiffening. As shown in Fig. 5b,c, a strain hardening can be observed when the 
concentration of mucin is increased as strain hardening depends on the molecular weight and concentration of 
polymer in solution31. In the case of hagfish slime (with threads), mucin is entrained in defined regions due to the 
threads. We suggest that in combination with the elastic threads, the viscosity is even further increased, causing 
an elongational thickening during extensional stresses. The resulting resistance against flow has a strong influence 

Figure 4. Shear induced collapse of hagfish slime and aggregation of mucin. (a) Simple shear of hagfish 
slime (left) and hagfish mucin (right) mimicking the flow properties during knot sliding at concentrations of 
0.02 wt% for slime and 0.0026 wt% for mucin, respectively. Hagfish slime viscosity was measured at constant 
shear rates (1, 10, 100 s−1) over a period of 30 minutes. (b) The viscosity values plotted as a function of shear 
rate, showing the apparent shear thinning behavior of hagfish slime and the influence of time on the viscosity. 
(c) Agitation causing a collapse of the slime network by thread association. (d) Differential interference contrast 
(DIC) micrograph of a mucin floc after shear of a mucin solution, showing mucin aggregated into thread-like 
structures (arrowhead).
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on the elastic behavior of hagfish slime as presented in Fig. 3. An increased viscosity thus might reduce the water 
flow at the predators’ gills, supporting gill clogging.

Conclusion and Biological Implications
Hagfish are able to form viscoelastic slime networks at very low concentrations (0.01 wt%) with distinct rheological  
properties in oscillation, simple shear, and extension. The low concentration allows for an economic use of exu-
date but results in a short-lived and soft gel. Nevertheless, the short-longevity of the slime may be of advantage 
for the hagfish as it can escape from its own slime. Furthermore, the slime forms within seconds, allowing a 
fast response upon attack without large energetic triggers for slime development, which is in contrast to most 
hydrogels that require substantial energy input for network formation. We suggest, that the balance between gel 
structure and time/energy needed to form this structure is favorable for the defense situation. Using a rheological 
approach, we propose that not only the viscosity but also the elasticity of hagfish slime is largely determined by the 
mucin fraction and its synergistic interplay with the threads. So far only the viscous behavior of hagfish mucins 
was reported3. Although we could not detect mucin elasticity using oscillatory rheology, we base our assumption 
on their distinct extensional elastic properties. Hagfish mucins, being large biopolymers23, are known to attach to 
the threads7. By this anchoring additional network points are created, thus decreasing the overlap concentration 
of the mucin dispersion. We propose that the threads provide long range properties such as extensibility and 
cohesiveness of the slime, prevent mucin wash-out2,3,18, and allow the mucin to exhibit viscoelasticity by supplying 
anchoring points. Thus, when combined with the threads, the mucin fraction can establish viscoelastic properties, 
despite the low natural concentration.

The slime flow behavior in shear and extension seem beneficial for the biological survival strategies of hagfish 
slime (see Fig. 6). Predators attacking hagfish often use suction feeding14. We propose that suction flow has two 
effects on the slime. First, flow supports the slime formation7. Second, extensional flow, created through suction 
feeding induces an increase in extensional viscosity of hagfish mucin. An increased viscosity reduces the water 
flow and thus could support gill clogging. Furthermore, the cohesiveness provided by the threads could also be 
important for predator gill clogging or to defend against biting predators2. To avoid self-asphyxiation, hagfish 
are able to form a knot with their body to release themselves from their slime15. The shear thinning behavior  
of the slime may be helpful in this situation. Yet, other flow phenomena such as lubrication and slip might also 
be important. Shear forces eventually lead to a collapse of the slime network, which is supported by mucin 
aggregation.

However, some questions and limitations of this study remain to be addressed in order to draw further 
conclusions on the functions in life and the selective pressures that have led to the slime’s physical properties. 
Knowing the relative amounts of extension to shear during suction feeding events will provide deeper insights in 

Figure 5. Capillary breakup extensional rheology (CaBER) measurements mimicking the extensional flow 
experienced by hagfish slime during suction predation. (a) A liquid filament thinning event of hagfish mucin 
(natural concentration) at t: 0, 80, 670, 680 ms. (b) The normalized filament diameter of hagfish mucin at a 
natural concentration, 50%, and 25% of the natural concentration as a function of time. Glycerol is provided as a 
Newtonian standard. (c) Extensional viscosity of hagfish mucin as a function of Hencky strain based on the data 
provided in (b). The orange dashed line indicates a Newtonian profile as observed for glycerol. An exemplary 
filament thinning event of natural hagfish mucin is provided in the Supplementary Video 5.
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the opposite behavior of the slime under the respective flow conditions. Additionally, the timing of slime forma-
tion and possible changes of the slime during formation might be critical as the slime could enter the mouth of a 
predator in an incompletely deployed state. Therefore, further studies will extend the basis for hypotheses on the 
evolution of hagfish slime as a defense mechanism. In summary, we propose that hagfish slime flow properties, 
thickening in elongation and thinning in shear, may be beneficial for both, escape and defense. Besides the biolog-
ical significance, the synergistic effect between macroscopic extensible threads and microscopic extensible mucin 
molecules might allow the formulation of novel, bio-inspired, and functionalized hydrogels with an enormous 
water holding capacity.

Methods
Hagfish exudate sampling and stabilization. Atlantic hagfish (M. glutinosa) were fished and pro-
vided by the staff of the Atlanterhavsparken in Ålesund, Norway. Sampling was carried out in accordance to the 
approved ethical application by the Forsøksdyrutvalget (FOTS ID 6912) and followed the protocol of Herr et al.6. 
In brief, the fish were placed in a 10 l bucket of fresh and cold seawater and anaesthetized using a 1:9 mixture 
of clove bud oil (Sigma, Switzerland) to ethanol at a concentration of 1 ml/l. Once unresponsive to touch, the 
hagfish were placed on a dissection tray, blotted dry and electrically stimulated (80 Hz, 18 V, HPG1, Velleman 
Instruments) on the venter, which causes the muscles to contract and the exudate to be expelled from the pores. 
The released exudate was collected and stabilized under MCT oil (medium chain triglycerides, Delios GmbH, 
Germany) for whole slime measurements or in a high osmolarity buffer (0.9 M sodium citrate and 0.1 M PIPES at 
pH 6.7, 0.02% sodium azide and protease inhibitor)6 for mucin measurements and stored at 4 °C. Sampling was 
carried out under the supervision of Møreforsking. After sampling, the fish were transferred to a recovery bath. 
Import of the samples was granted by the Swiss Federal Food Safety and Veterinary Office (FSVO) and export was 
granted by Norwegian Seafood Council. To form a slime mass for rheology measurements, a specific volume of 
MCT stabilized exudate was placed on the bottom of a 20 ml glass flask with a micropipette. Seawater (Norway) 
that was sterile filtered (0.2 μm PA-20/25 filter, MN, Germany) was added and the samples were mixed by gentle 
sloshing heads over eight times, as similarly performed by Ewoldt et al.9. The resulting exudate concentration of 
the measurements was determined according to the assumption of Ewoldt et al.9 (density of the exudate is close 
to 1 g/ml, as about 66% of the exudate mass is water3). Measurements with hagfish mucins were done by mixing 
mucin vesicles solution with seawater. The vesicle solution was prepared according to the protocol of Salo et al.23. 
In brief, exudate stabilized in high osmolarity buffer was filtered through a series (60, 41, and 20 μm) of nylon 
mesh filters (Merck) to separate the small mucin vesicles from the skeins. To obtain a high vesicle concentration, 
the filtrate was centrifuged at 2000 g for 10 min and the supernatant discarded. The mucin content of the vesicle 
solution was determined in triplicates by dialysis (25 kDa MWCO, SpectraPor, USA), dialyzing 0.5 ml of the  
vesicle solution against three batches of milliQ water (12 h each) and subsequent freeze drying to determine 

Figure 6. Hagfish survival strategies and their underlying flow principles. During predation, hagfish secrete 
and form large quantities of slime as a highly effective defense mechanism. Many predators hunt by suction 
feeding, where a strong unidirectional elongational flow draws in the prey. When the slime is subjected to 
elongational flow, the viscosity of the hagfish mucin increases, which might support clogging of the predator’s 
gills. Facing suffocation and entrapment in their own slime, hagfish shear off the slime by moving a knot across 
their body. The applied shear leads to a viscosity decrease and a collapse of the slime, which may facilitate the 
escape and prevent self-asphyxiation.
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the dry weight. The mucin content of the stock solution was 2.6 ±  0.8 mg/ml. All mucin measurements were 
performed at a constant citrate/PIPES concentration of 10 mM in seawater to ensure a constant ionic strength.

Shear and oscillatory rheology. A shear rheometer (Physica MCR501, MCR702, Anton Paar, Austria) 
with a Couette geometry (CC27, Anton Paar, Austria) was used for shear experiments. Amplitude sweeps were 
performed at a fixed frequency ω =  1 rad/s. Shear viscosity was measured by applying constant shear rates of 1, 
10, and 100 s−1 over a period of 30 min. A shear rate dependent viscosity was obtained by plotting the viscosity 
of the constant shear rate experiments over the applied shear rate at a given time. Measurements were performed 
at 10 °C.

Extensional rheology. Capillary breakup extensional rheometry (CaBER) measurements were carried out 
on a HAAKE CaBER 1 (Thermo Haake, Thermo Fisher Scientific). For CaBER experiments only the hagfish 
mucin was used due to the large size of the protein threads. The sample was loaded between the two plates, which 
were separated with an initial step strain (50 ms). A liquid bridge was formed between the two cylindrical test 
fixtures followed by a self-driven uniaxial extensional flow, which leads to a breakup of the filament. The response 
of a fluid following an axial step-strain is encoded in an apparent transient elongational viscosity function η ( )app , 
which can be determined by measuring the change of the filament diameter Dmid (or filament radius Rmid) and 
strain rate  as a function of time:




η
σ σ

= =
−



R t
t dD dt

( ) / ( )
( ) / (1)app
mid

mid

where σ is the surface tension. The resulting system Hencky strain  is defined as  =  2 ln(D0/Dmid(t)) with D0 being 
the initial diameter of the fluid thread before stretching37–39. The measurements were performed at an initial gap 
of 3 mm and a sample final height of 12.03 mm with an initial aspect ratio of 1 and a final aspect ratio of 4.01. The 
measurements were conducted at room temperature.

Microscopy. Light microscopy images were captured on a Nikon Diaphot (Nikon, Japan) and analyzed with 
the NIS elements D3.0 software. DIC (Differential interference contrast) microscopy was performed on a Leica 
DM6000. Cryo-SEM samples were frozen with a high pressure freezer (Bal-Tec HPM100), freeze-fractured 
(Bal-Tec BAF060) and SEM was performed on a Zeiss LEO 1530.
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