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Abstract: The growing demand for lightweight, renewable, and excellent thermal insulation materials
has fueled a search for high performance biomass materials with good mechanical compressibility and
ultralow thermal conductivity. We propose a fabrication method for making a lightweight, anisotropic,
and compressible wood aerogel with aligned cellulose fibers by a simple chemical treatment. The
wood aerogel was mainly composed of highly aligned cellulose fibers with a relative crystallinity
of 77.1%. The aerogel exhibits a low density of 32.18 mg/cm3 and a high specific surface area of
31.68 m2/g due to the removal of lignin and hemicellulose from the wood. Moreover, the multilayer
structure of the aerogel was formed under the restriction of wood rays. Combined with a nanoscale
pore, the aerogel presents good compressibility and an ultralow thermal conductivity of 0.033 W/mK.
These results show that the wood aerogel is a high quality biomass material with a potential function
of thermal insulation through optimizing structures.
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1. Introduction

Energy consumption has become a major concern with regard to daily activity and industrial
production, and has posed a huge burden on the environment and economy due to greenhouse gas
emission and fossil fuel combustion [1,2]. Materials featuring low density, cost efficiency and high
thermal insulation performance are highly desired for many applications in electrical, optical and
structural fields. Expanded polystyrene as an important commercial thermal insulation materials has
been widely used in electrical, vehicle and building insulation due to their light weight, low cost, simple
process technology, and high thermal insulation performance [3,4]. However, the expanded polystyrene
exhibits poor fire resistance and poor biodegradability, and releases toxic gas after combustion, which
greatly increases the risk of their applications. Therefore, a lightweight, environmentally friendly, and
ultralow thermal conductivity material is very necessary for practical applications.

Aerogels are considered as an ideal candidate for thermal insulation because of their ultralow
density, highly porous structure, and low thermal conductivity [5–7]. Generally, silica aerogels
and ceramic aerogels are the traditional inorganic aerogels with low density and high porosity for
thermal insulation [8,9]. However, the intrinsic fragility of aerogel seriously hindered their large-scale
application, especially when the external force changed. Several methods have been developed to
optimize the structure for improving the mechanical performance of inorganic aerogels. For example,
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Dou et al. synthesized a silica nanofibrous aerogel by loading SiO2 on SiO2 nanofibers and SiO2

nanoparticle aerogels [10]. The aerogel showed resilient compressibility. Liang et al. fabricated SiC
aerogels by graphitization and carbothermal reduction at ultrahigh temperatures [11]. Compared
with the C aerogel, the compressive strength of the SiC aerogel was improved from 0.045 to 2.12 MPa.
Despite the tremendous efforts that have been dedicated to endow inorganic aerogel with a high
mechanical performance, the challenges due to the use of toxic modifiers, complex fabricating processes
and extreme manufacturing conditions still remain.

Bio-based aerogels are produced from natural plant resources and degrade in the natural
environment. Bio-based materials include cellulose, starch, pectin, and their derivatives [12]. Among
them, cellulose is the most abundant polysaccharide polymer, being directly extracted from renewable
biomass resources (wood, bamboo, and straw) and possessing high mechanical strength, high specific
surface area, abundance of functional groups, and good biodegradability [13–16]. Cellulose aerogel
as a lightweight, high porosity, and low thermal conductivity material is obtained from cellulose
aqueous suspension through a freeze-drying method [17,18]. Generally, the preparation of aerogels
from biomass materials involves multiple processes, including chemical purification, high temperature
steaming, mechanical shatter, and further shearing and impacting in a specific machine [19–21]. In the
above-mentioned process, specific equipment, complicated extracted procures, and external chemicals
are employed, posing a large obstacle for its practical application.

Commonly, hardwood is mainly composed of wood fiber, wood ray, vessel, and parenchyma [22,23].
Intercross axial wood fibers and radial wood rays partially reflect the anisotropy of wood, which form
a natural hierarchical structure. Presently, natural wood with anisotropic structures has attracted much
attention for optical, nanofluidic, and ion transportation. Qiu et al. reported an optically transparent
wood by impregnating delignified wood with PMMA [24]. The transparent wood with an anisotropic
structure exhibited high transparency and high haze. By further loading tin oxide nanoparticles,
the composites showed excellent near-infrared and ultraviolet absorbency. Jia et al. fabricated an
anisotropic microfluidic framework via a delignification process from natural wood [25]. The natural
microchannels have an ability to transport liquid and solid particles. G. Chen et al. developed a highly
conductive cationic wood membrane via chemical modification and densification [26]. The densification
process reduced a diameter of lumens and macropores, resulting in nanochannels and nanopores
for ion transpiration. It is worth noting that natural wood with intrinsic porous (vessel and pit) and
hierarchical structures has exhibited excellent thermal insulation performance since ancient times.
The process of exacting cellulose from the natural wood in order to prepare aerogel not only ignored the
natural hierarchical structure of wood, but also caused natural resource waste and energy consumption.

In this study, wood aerogel with low density, high specific surface area, and mechanical compressibility
for thermal insulation was fabricated via a facile process, as shown in Figure 1. The wood aerogel with
a multilayer structure was obtained from the natural wood by removing lignin and hemicellulose in
NaClO2/NaOH solution. The freeze-drying step was also critical to maintaining a multilayered and
porous structure. The changes in appearance, microscopy morphology, and specific surface area of the
treated specimens were evaluated by a setting time gradient. In addition, the thermal stability, mechanical
compressibility, and thermal insulation performance of wood aerogel were further investigated.
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Specific surface area and pore size distribution were calculated by the Brunauer–Emmett–Teller 
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2. Materials and Methods

2.1. Materials

Balsa wood (Ochroma pyramidale) specimens with a dimension of 20 mm × 20 mm × 10 mm
(radial × tangential × longitudinal) were prepared. Sodium chlorite (NaClO2), acetic acid glacial
(CH3COOH), and sodium hydroxide (NaOH) were purchased from Shanghai Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China). Distilled water was used in all experiments. Chemicals were
analytical grade and used as received without further purification. The high surface emissivity 1712#
tape was purchased from 3M.

2.2. Preparation of Wood Aerogels

The Balsa wood specimens were oven-dried at 103 ◦C for 24 h prior to the experiments. A solution
of 2 wt % NaClO2 buffered with acetic acid at pH 4.6 was prepared for the delignification. The dried
specimens were immersed in the prepared solution via the vacuum-pressure method to insure the
specimens were fully impregnated with the solution. After being heated at 100 ◦C for 8 h, the specimens
were washed with distilled water 3 times, and the delignified specimens were obtained. Then, the
delignified specimens were immersed in a 5 wt % NaOH solution at 80 ◦C to remove hemicellulose in
the wood. The alkali treatment time was 4 h, 8 h, and 12 h, respectively. The specimens were carefully
washed with distilled water at 80 ◦C 3 times to remove the residual chemicals. Finally, the specimens
were frozen in a freezer at −18 ◦C for 24 h and then dried in a freeze-dryer for 36 h to obtain the wood
aerogel. The delignified specimens were frozen and dried as wood aerogel to obtain delignified wood.

2.3. Characterization

The morphology and structure of the wood specimens were characterized by scanning electron
microscopy (SEM; Quanta 200, FEI, Hillsboro, OR, USA). X-ray diffraction (XRD) measurements
were performed on an X-ray diffractometer (D/max 2200, Rigaku, Tokyo, Japan) in the range of
10◦–80◦ with a scan rate of 4◦/min. Fourier transform infrared spectroscopy (FTIR) was recorded
on a spectrometer (Nicolet 6700, Thermo Scientific, Waltham, MA, USA) in the range of 600–4000
cm−1. Specific surface area and pore size distribution were calculated by the Brunauer–Emmett–Teller
method on BET (JW-BK132F, JWGB, Beijing, China). Mechanical compressive tests of the wood
specimens were conducted on a mechanical testing machine (AI-7000S TC160701511, Gotech, Taiwan,
China) equipped with a 200 N load cell. The direction of the compressive force was perpendicular
to the radial section. Thermal stability of the wood specimens was taken on the thermogravimetric
analyzer (TGA; Q20, TA, Newcastle, DE, USA) from 30 to 800 ◦C with a heating rate of 10 ◦C/min in a
nitrogen atmosphere. The thermal conductivity of wood specimens was determined by the transient
hot-wire method using a thermal conductivity tester (TC3000, Xi’an Xiatech Electronic Technology
Co., Ltd., Xi’an, China). Thermographic images of wood specimens were collected by an infrared
thermal camera with a resolution of 320 × 240 pixels (E6, FLIR, Wilsonville, OR, USA). The α-cellulose,
holocellulose, and lignin content were measured according to the GB/T744-1989, GB/T2677.10-1995,
and GB/T2677.8-1994, respectively.

3. Results

3.1. Morphology and Structure

The morphology and structures of wood specimens were characterized by SEM images. As shown
in Figure 2a, the original balsa wood possessed a pale yellow appearance, simultaneously exhibiting
a ring-shaped growth wheel in the cross section. In Figure 2b,c, the ordered pentagon cell lumen
and elliptical vessels of the original balsa wood in cross section were observed. The thickness of the
cell wall was only 0.47 µm and the ratio of the wall to the cavity was much smaller than 1, which
demonstrated better performance in the elasticity of fibers [27]. In the tangential section of the wood,
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cells were closely connected and the cell surface was smooth without any wrinkles (Figure 2d). After
the delignification, the color of the delignified wood turned to white, because most of lignin was
oxidative-decomposed by acidified NaClO2 at 100 ◦C (Figure 2e). In Figure 2f,g, the middle lamella of
the delignified wood was completely dissolved, resulting in the separation of wood cells. Due to the
presence of a wood ray perpendicular to the wood fibers (Figure S1), the hierarchical structure of the
wood aerogel was protected during the chemical treatment. In Figure 2h, wood fibers separated from
each other were observed. Some small microfibrils were shedding from the surface of the cell wall,
because lignin was also present on the primary and secondary walls of the cell. The wood aerogel was
obtained from delignified wood by further removing hemicellulose. Interestingly, at visual inspection,
the appearance of the natural wood was basically preserved in the wood aerogel (Figure 2i). However,
the appearance of the wood aerogel was different from the natural wood and delignified wood in the
low resolution SEM image. The regular cell structure was replaced with a multiply layered structure
(Figure 2j). Moreover, a series of small damages occurred in the secondary wall and nanofiber was
also observed in the high resolution image (Figure 2k), which was attributed to the hemicellulose
degradation in the NaOH solution. In Figure 2l, cellulose fibers with good alignment on the cell surface
were observed. Meanwhile, the nanoscale pore appearing in the inset of Figure 2l was related to the
removal of lignin and hemicellulose.
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Figure 2. Morphology of different wood specimens. (a) Photograph of the natural wood. (b–d)
scanning electron microscopy (SEM) images of natural wood. (e) Photograph of the delignified wood.
(f–h) SEM images of delignified wood. (i) Photograph of the wood aerogel. (j–l) SEM images of wood
aerogel. Inset of (l) showing a pore in the surface of cell wall.

3.2. Chemical Characterization

To further characterize the changes in the chemical structure of the wood specimens before and
after the chemical treatment, XRD, FTIR, and a component content test were conducted. In Figure 3a,
the diffraction peaks of the wood samples at around 14.9◦, 16.5◦, 22.7◦, and 34.8◦ for (110), (110),
(200), and (040) planes are characteristic for cellulose I crystal, confirming that the types of cellulose
crystal were not changed after chemical treatment [28,29]. The relative crystallinities of the samples
were calculated according to the Segal peak height method [30]. It is worth noting that the relative
crystallinity of the different wood specimens was changed periodically after the chemical treatment.
The relative crystallinity of the natural wood, delignified wood, and wood aerogel were 62.3%, 75.9%,
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and 77.1%, respectively. This was because most amorphous regions of cellulose were removed at the
initial stage of the chemical treatment. However, the relative crystallinity of specimens treated for
12 h slightly decreased to 68.8% because the peeling phenomena was conducted during the 12 h of
processing [31]. The composition of the specimens was further determined by the infrared spectroscopy
in Figure 3b. After the delignification, the peaks at 1593, 1502, and 1462 cm−1 belonging to aromatic
skeletal vibrations of lignin disappeared, indicating lignin was removed. Moreover, after being treated
with NaOH, the peaks at 1731 and 1234 cm−1 attributed to carbonyl stretching and C–O stretching also
disappeared, demonstrating that hemicellulose was dissolved in the solution. To further demonstrate
the above phenomena, the relative content of three components were tested in Figure 3c. The relative
contents of cellulose, hemicellulose, and lignin of the natural wood were 41.38%, 36.38%, and 20.1%,
respectively, while the relative contents of the wood aerogel were 81.28%, 9.25%, and 0.12%, respectively.
This finding was consistent with that from the FTIR examination, further confirming the removal of
lignin and hemicellulose from the natural wood.
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wood specimens. (c) Relative content of cellulose, hemicellulose, and lignin of wood aerogel.

3.3. Specific Surface Area and Pore Size Distribution Analysis

The specific surface area and mesopore size distribution of wood aerogel were characterized by the
nitrogen adsorption-desorption isotherms and the Barrett–Joyner–Halenda (BJH) method, as shown in
Figure 4. The wood aerogel exhibited type IV adsorption isotherms and possessed a type H3 hysteresis
loop in Figure 4a [32,33]. The latter demonstrated the presence of a mesoporous structure in the wood
aerogel. The pore diameters of the wood aerogel were mainly distributed at 2–40 nm (Figure 4b),
which further confirmed the previous findings. In the process of removing lignin and hemicellulose,
the middle lamella disappeared, exposing the nanoscale pores on the cell wall, resulting in a gradual
increased in the specific surface area and pore volume of the wood specimens. The specific surface
area and pore volume of the wood aerogel were 32.18 m2/g and 0.146 cm3/g, which were 4 times and
8 times higher than natural wood, respectively. However, the wood specimens treated for 12 h showed
poor specific surface area and pore volume because of the collapse of the aerogel structure caused by
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the degradation of cellulose after the lengthy chemical treatment. Table 1 gives detailed information
about the specific surface area, pore diameter, and pore volume of the wood specimens.
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Figure 4. (a) Nitrogen adsorption–desorption isotherms of wood aerogel; (b) Mesopore size distribution
of wood aerogel.

Table 1. Specific surface area, pore diameter, and pore volume of wood samples.

Sample BET Specific Surface Area (m2/g) Pore Diameter (nm) Pore Volume (cm3/g)

Natural wood 7.24 12.94 0.019
Delignified wood 17.29 3.81 0.036
Wood aerogel-4 h 18.06 6.69 0.086
Wood aerogel-8 h 32.18 7.63 0.146
Wood aerogel-12 h 21.99 7.55 0.100

3.4. Thermal Stability

The thermal stability of the wood aerogel was essential for thermal insulation applications.
The TGA (thermogravimetric analysis) and DTG (Derivative Thermogravimetry) curves of the wood
specimens are shown in Figure 5. Due to the inherent properties of biomass materials, all wood
specimens began to degrade at 200 ◦C. Interestingly, the residue content of wood aerogel-8 h was
higher than other specimens at 800 ◦C and the temperature of the maximum weight loss rate of the
wood aerogel-8 h was 327 ◦C. The high thermal stability of the wood aerogel-8 h was attributed to
its pure component (~81% cellulose) and high crystallinity (~77.1% relative crystallinity). However,
the temperature of maximum weight loss rate of the natural wood was slightly higher than that of the
wood aerogel-8 h, because the degradable temperature of lignin (160–900 ◦C) was higher than that of
cellulose (315–400 ◦C) [34]. Furthermore, the specimens treated for 12 h showed the worst thermal
stability, because the crystalline region of the cellulose was destroyed and the specific surface area was
reduced. This result also revealed the effect of the structure on enhancing performance. By combining
the specific surface area analysis, pore structure analysis, and thermal stability examination, the optimal
treatment time (delignification process and sodium hydroxide treatment for 8 h) was further determined.
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3.5. Mechanical Compressibility

The mechanical compressibility of natural wood and wood aerogel-8 h was illustrated by
stress-strain curves. In Figure 6a, the stress-strain curves show two distinct regions, including a linear
elastic region at strain value <0.5% and a densification region at strain valve >0.5% [35]. In the first
region, the compressive stress increased linearly with the strain, due to the bending of cell walls. In the
densification region, the stress increased rapidly owing to the collapse and extrusion of cell. When
external force was unloaded, the volume of the natural wood cannot be recovered. The stress-strain
curves with different compression strain (20%, 40%, and 60%) for wood aerogel-8 h are shown in
Figure 6b. There were also two distinct regions, including a linear elastic region below 20% compression
strain and a densification region at strain value >20%. In the second region, the stress increased rapidly
with the strain and the stress was 33.04 kPa at 60% compression value. Interesting, the strain can
decrease to zero when the stress is unloaded, suggesting that the volume of wood aerogel-8 h can be
recovered without deformation [36,37]. By removing the lignin and hemicellulose, the wood aerogel-8
h with layered structure was obtained, showing unique compressibility compared to natural wood.
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3.6. Thermal Insulation

In addition to compression properties, thermal conductivity was also examined to evaluate the
thermal insulation properties of wood aerogels. Figure 7a,b are schematics of heat conduction in the
natural wood and wood aerogel-8 h, respectively. The thermal conductivity of the aerogel depends on
the sum of heat conduction and heat radiation in the solid materials and gas phase [38,39]. The thermal
conductivity factor, content, and density of the solid material change the thermal conductivity [40,41].
The main building blocks to assemble wood aerogel-8 h were purity and high crystalline cellulose,
which not only exhibited high thermal stability, but also had lower thermal conductivity than metallic
materials [20]. After the chemical treatment and freeze-drying, the lignin and hemicellulose were
removed, resulting in a decrease in density from 98 mg/cm3 of the natural wood to 31.68 mg/cm3

(Figure S2). In addition, the gaseous thermal radiation of wood aerogel-8 h also played a significant
role [42]. The multilayer structure of wood aerogel-8 h separated channels for gas transmission, and the
large amount of nanopores in the cell walls further restricted the movement of gas molecules, leading
to poor gaseous radiation thermal conductivity [12,43]. The low density, multilayer structure, and
exposed nanopores reduced the thermal conductivity from 0.113 W/mK of the natural wood to 0.033
W/mK of the wood aerogel-8 h (Figure 7c).
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To further illustrate thermal insulating properties, the surface temperature variation of wood
aerogel-8 h during the heating cooling processes was recorded using an infrared thermal camera
as shown in Figure 8. In order to obtain a temperature-stable hot plate, an aluminum plate with a
thickness of 1 cm was placed on an electric calefaction plate. The surface of the aluminum plate was
covered with a layer of tape (ε = 0.95) to increase the surface emissivity. The wood aerogel-8 h was
placed on the ~80 ◦C hot plate. Due to the low thermal conductivity of the wood aerogel-8 h, the high
temperature was observed across the contact surface. After being heated for 30 min, the temperature
of the top surface did not change. In the side view, the thermal diffusion along the layer structure was
observed. Similarly, the cool plate was obtained by placing the tape-covered aluminum plate on ice.
After being cooled for 30 min, the temperature of the top surface did not change and the temperature
of the wood aerogel-8 h was close to the environmental temperature.
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In practical applications, a low thermal conductivity was important for thermal insulation
materials, while the density of the material was also critical. In Figure 9, the thermal conductivity and
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density of the wood aerogel-8 h and common thermal insulation materials are compared. Traditional
synthetic organic thermal insulation materials such as expanded polystyrene and polyurethane
had a low thermal conductivity of 0.022–0.034 W/mK as well as a density of 25–30 mg/cm3 [3,44].
However, the drawbacks of releasing toxic gas and poor biodegradability hindered their further
applications. Inorganic materials such as carbon aerogel and silica aerogel also exhibited low thermal
conductivity of 0.026–0.033 W/mK and their density was slightly higher than organic materials, but
they were fragile [8,45]. Wood aerogels directly obtained from natural wood possessed lower thermal
conductivity and density than natural wood and wood waste [46]. It is worth mentioning that,
although the thermal insulation performance of wood aerogel was lower than traditional organic
materials and cellulose-based aerogel [47], the developed wood aerogel in this study showed much
better biocompatibility, biodegradability, and mechanical compressibility, as well as simpler process
technology [13,48].
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4. Conclusions

In summary, the lightweight, anisotropic, and mechanical compressible wood aerogel with a
multilayer structure was designed and fabricated via a facile method directly from natural wood for
application as a thermal insulation material. The removal of lignin and hemicellulose optimized the
structure of the natural wood, involving the disappearance of the middle lamella and the degradation of
the cellulose amorphous regions and hemicellulose, resulting in low density (~31.68 mg/cm3) and high
specific surface area (~32.18 m2/g). The destroyed ultrathin cell walls and the presence of wood rays
gave the wood aerogel a great multilayer structure, endowing wood aerogel with great compressible
properties (~33.04 kPa at 60% strain). Moreover, the synergistic effect of the multilayer structure
and the micropores reduced the thermal conductivity of the wood aerogel from 0.113 W/mK of the
natural wood to 0.033 W/mK of the wood aerogel. The combination of low density, great mechanical
compressibility, low thermal conductivity, and biodegradability makes the wood aerogel an ideal
candidate for green and cost-effective thermal insulation materials.
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