
Citation: Zhang, L.; Zhao, M.;

Xiao, M.; Im, M.-H.; Abd El-Aty AM;

Shao, H.; She, Y. Recent Advances in

the Recognition Elements of Sensors

to Detect Pyrethroids in Food: A

Review. Biosensors 2022, 12, 402.

https://doi.org/10.3390/

bios12060402

Received: 7 May 2022

Accepted: 8 June 2022

Published: 10 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Review

Recent Advances in the Recognition Elements of Sensors to
Detect Pyrethroids in Food: A Review
Le Zhang 1 , Mingqi Zhao 1, Ming Xiao 2, Moo-Hyeog Im 3, A. M. Abd El-Aty 4,5 , Hua Shao 1,*
and Yongxin She 1,*

1 Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of
Agricultural Sciences, Beijing 100081, China; nkyzhangle@163.com (L.Z.); zhaomingqi1995@163.com (M.Z.)

2 Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810000, China;
1993990035@qhu.edu.cn

3 Department of Food Engineering, Daegu University, Gyeongsan 38453, Korea; imh0119@daegu.ac.kr
4 Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;

abdelaty44@hotmail.com
5 Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
* Correspondence: nkshaohua@163.com (H.S.); sheyongxin@caas.cn (Y.S.)

Abstract: The presence of pyrethroids in food and the environment due to their excessive use and
extensive application in the agriculture industry represents a significant threat to public health.
Therefore, the determination of the presence of pyrethroids in foods by simple, rapid, and sensitive
methods is warranted. Herein, recognition methods for pyrethroids based on electrochemical and
optical biosensors from the last five years are reviewed, including surface-enhanced Raman scattering
(SERS), surface plasmon resonance (SPR), chemiluminescence, biochemical, fluorescence, and colori-
metric methods. In addition, recognition elements used for pyrethroid detection, including enzymes,
antigens/antibodies, aptamers, and molecular-imprinted polymers, are classified and discussed
based on the bioreceptor types. The current research status, the advantages and disadvantages of
existing methods, and future development trends are discussed. The research progress of rapid
pyrethroid detection in our laboratory is also presented.

Keywords: agriculture; pyrethroids; sensor; recognition elements; recent advances

1. Introduction

The withdrawal of highly hazardous organophosphate pesticides from the world market
over the last ten years has resulted in pyrethroid insecticides becoming the preferred alterna-
tive pesticides due to their effectiveness in pest control [1,2]. Pyrethroids have the broadest
application, highest efficiency and lowest residue in addition to their moderate toxicity and
biodegradability in plants. To date, more than 70 pyrethroid pesticides have been used in agri-
culture [3]. Type I pyrethroid pesticides lack α-cyanogen and are represented by permethrin,
bifenthrin, and others, while type II structures contain α-cyanogen and are represented by
fenpropathrin, cyfluthrin, deltamethrin, and fenvalerate [4,5]. Type II pyrethroid pesticides
have good efficacy and stability and are widely used to control pests during crop production.

Pyrethroid pesticides show developmental and neurotoxic effects on mammals and
aquatic organisms, which can delay embryo development, increase mortality and the
risk of cancer, and even lead to the extinction of aquatic species [6–8]. They are also
potentially toxic to plants, soil, and aquatic ecology. For example, they are phytotoxic
to cucumber seed germination rate, root elongation, branch length, and leaf length [9].
They also disturb soil microbial communities and reduce natural biodegradation [10] and
are widely used in household hygiene due to their effective treatment of household pests
such as mosquitoes; however, direct contact with pyrethroid pesticides increases health
risks [11,12]. Pyrethroid pesticides have strong absorbability and are directly and indirectly
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transmitted into the food chain, which eventually poses a threat to human health and
life [13]. Pyrethroid pesticides are endocrine-disrupting compounds (EDCs) that indirectly
interfere with upstream endocrine signal transduction signaling pathways through direct
receptor interactions by mimicking and cooperating with endogenous hormones [14].
The pyrethroid metabolite 3-phenoxybenzaldehyde (3-PBA) bioaccumulates in human
breast milk, which negatively impacts babies relying on breast milk [15,16]. Although
pyrethroid pesticides have no acute toxic effects on humans, long-term exposure may
damage male sperm quality and reduce sperm count in F1 offspring during pregnancy and
lactation [17,18].

The wide use of pyrethroid insecticides has prompted food safety research to focus on
pyrethroid residue detection in crops. Therefore, many countries and organizations have
employed strict residue limits for pyrethroid pesticides. For example, the maximum residue
level (MRL) of pyrethroid pesticides is in the range of 0.01–4 mg/kg (up to 31 mg/kg
for tea) for crops in the European Union; 0.01–20 mg/kg in the USA; 0.01–20 mg/kg
(up to 50 mg/kg for hops) in Japan; and 0.01–10 mg/kg (up to 20 mg/kg for tea) in
China. Therefore, rapid, sensitive, and effective detection methods should be established to
monitor pyrethroid residues in crops and reduce human exposure.

Pyrethroid detection technology includes instrument-based methods [19–24] and
sensor-based methods. Instrument-based confirmation methods can utilize separation by
chromatography [25] combined with strong selectivity and mass spectrometry. This has
the advantage of more structural information and high-throughput rapid detection for the
accurate analysis of pyrethroid pesticides is possible [25]. The instrument-based method is
time-consuming and expensive and requires professional technicians for operation. There-
fore, sensor-based methods of agricultural residues have quickly developed. Currently,
many recognition elements used to detect pyrethroid pesticides are being used in conjunc-
tion with detection techniques. However, few reports have summarized the identification
elements and sensor-based methods of pyrethroid pesticides. This review introduces the
recognition elements (enzymes, antigens/antibodies, aptamers, and molecular-imprinted
polymers) for pyrethroid pesticides and the corresponding determination sensor (SERS
or surface-enhanced Raman scattering, SPR or surface plasmon resonance, chemilumi-
nescence sensor, biochemical sensor, fluorescence sensor, and colorimetric sensor) used
for detection. Furthermore, the pros and cons associated with sensor-based methods for
pyrethroid pesticide detection were analyzed (Table 1).
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Table 1. Representative examples of pyrethroid residue detection based on sensors.

Pyrethroid Recognition Element Reading Device Linear Range LOD Sample Mertis Reference

β-cyhalothrin P-AGSAE SWCASV 3.0 × 10−6–1.0 × 10−5 mol/L 8.1 µg/L water, tea high robustness, good
stability, sensitivity Silva et al. [26]

Deltamethrin ELISA amperometric biosensor - 4.7µg/L seawater without any
pretreatment Fruhmann et al. [27]

cypermethrin amine-functionalized
Fe@AuNPs/2D-hBN

molecular imprinted
sensor 1.0 × 10−13–1.0 × 10−8 M 3.0 × 10−14 M wastewater stability, repeatability Atar and Yola [28]

fenvalerate SiO2@TiO2@Ag@MIPs SERS 1.0–100 nmol/L 0.2 nmol/L river water functionality, selectivity,
self-cleaning Li et al. [29]

deltamethrin Fe3O4-MNPs SPR 0.01–1 ng/mL 0.01 ng/mL soybean

increases the SPR signal,
improves sensitivity,

low background
interference

Liu et al. [30]

10 pyrethroids MIP chemiluminescence
sensor 0.3–6.0 pg/mL - chicken samples short detection

time, repeatable Huang et al. [31]

cypermethrin ELISA-like method MIP-QDs 0.05–60.0 mg/kg 1.2 µg/kg fish rapid, sensitive, high
specificity, sensitivity Xiao et al. [32]

λ-cyhalothrin SiO2@FITC-
APTS@MIPs fluorescence quenching 0–60 nm/L 9.17 nM/L Chinese spirits

good monodispersity,
high fluorescence

intensity, good
selective recognition

Wang et al. [33]

cyfluthrin FeSe-MIP-QD fluorescence quenching 0.010–0.20 mg/L 1.0, 1.3
µg/kg, respectively fish, sediment samples selectivity, sensitivity Li et al. [34]

λ-cyhalothrin blue and green CDs ratiometric fluorescence
core–shell nanosphere 1–150 mug/L 0.048 mug/L tap water, tea,

cucumber, apple
sensitivity and
selection range Zhu et al. [35]

cypermethrin,
fenvalerate

immunochromatographic
assay (ICA) SERS 10−5–100 ng/mL 2.3 × 10−4,

2.6 × 10−5 ng/mL
tap water, river

water, milk
simple, sensitive,
nonexpert people Li et al. [36]

cypermethrin,
3-PBA metabolite

dual-channel im-
munochromatographic

test strip (ICTS)
smartphone 1–100 ng/mL,

0.1–100 ng/mL, respectively 0.35 ng/mL/0.04 ng/mL standard sample
low cost, high
sensitivity, and

simple operation
Zhao et al. [37]
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2. Recognition Elements for Pyrethroid Pesticide Detection

Pesticide sensors use biorecognition elements to directly contact the conduction system
in space and convert biochemical information into electrical, thermal, optical, and other
output forms [38]. These chemical sensors are called biosensors (or biomimic recognition
sensors) and can be classified as enzymes, antigens/antibodies, and artificial receptors such
as molecularly imprinted polymers (MIPs) and aptamers. They have the advantages of
simplicity, rapidity, specificity, high sensitivity, and low cost [39]. The mertis and demertis
of the recognition elements for the determination of pyrethroids are summarized in Table 2.

Table 2. The advantages and disadvantages of the recognition elements for the determination
of pyrethroids.

Sensors Example Mertis Demertis

enzymes
P450 monooxygenase, GST,

phosphotriesterase,
carboxyesterase

sensitivity, universality

strict preservation conditions,
poor stability and selectivity,
inactivated at high-organic

solvent concentration

antigens/antibodies - specificity, high specificity
sacrifice animals, long
experimental period,

difficult-to-construct haptens

aptamers single-stranded DNA
(ssDNA) or RNA

high affinity, selectivity,
stability, environmentally
stable, easier to synthesize

time-consuming, unpredictable
structures, ineffective folding,

non-specificity

chemical synthesis MIP

predetermination, recognition,
practicability, simple

preparation, low cost, good
chemical stability

non-specificity

2.1. Enzyme-Based Biosensors

Enzyme-based sensors have been studied since 1962 [40] and their sensitivity and uni-
versality allow for widespread use in pesticide detection. These are divided into two types
of biosensors for pesticide detection: inhibitory and catalytic. Pyrethroids are degraded
by the oxidation of P450 monooxygenase, coupling with glutathione S-transferase, and the
hydrolysis of phosphotriesterase or carboxyesterase [41]. The hydrolysis of pyrethroids by
carboxyl esterase is the primary means of pyrethroid microbial biodegradation. Dongqing et al.
described the ester bond catalytic mechanism of carboxylesterase PytH (pyrethroid-degrading
carboxylesterase) for pyrethroid pesticides. Carboxylesterases from Sphingobium faniae JZ-2
have α/β hydrolase folding proteins that typically catalyze Ser–His–Asp triples and can
effectively hydrolyze many pyrethroid pesticides. PytH has no isomer selectivity compared
to other reported pyrethroid-hydrolyzing carboxylesterases, making it a good candidate for
pyrethroid residue elimination. Since the hydrolysis efficiency of PytH is relatively low, it
can be improved by direct evolution or rational protein design [42]. However, enzymes have
strict preservation conditions, poor stability and selectivity, and are inactivated at high organic
solvent concentrations [43]. Therefore, to improve their detection performance for pesticides,
enzymes are used in conjunction with electrochemical sensors [44].

2.2. Antigen/Antibody-Based Biosensors

Immunoassays generally require two steps: hapten construction and antibody prepara-
tion. Hapten construction is a prerequisite to obtain the complete antigen of pesticides [45].
Pyrethroid pesticides are hydrophobic molecules and there are therefore great challenges
involved in constructing effective haptens for immunoassay methods. Cui et al. [46]
synthesized β-cyhalothrin haptens using a one-step method by selectively hydrolyzing
the -CN group with a low-toxicity reagent. The haptens were coupled with succinic
anhydride-activated carrier protein and the complete antigens were used to prepare poly-
clonal antibodies (Figure 1). This method replaced the trimethylchlorosilane catalyst with
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trimethylsilyl trifluoromethane sulfonate to increase the acidity and yield of the preparation
to 69%. The method has higher structural fidelity and maintains the integrity of most of
the functional groups while modifying the reaction groups. Fruhmann et al. [27] selected
and synthesized the immune deltamethrin hapten D133 and cypermethrin hapten C134,
established antisera As358-363, and encapsulated the antigens C134-AD, D133-AD, F1-BSA,
F2-BSA, F3-BSA, and 3-PBA-BSA. The best combination is As360 (C134-HCH), and the
homologous competitor C134-AD can be used for the direct determination of deltamethrin.
The IC50 was 21.4 ± 0.3 µg/L, and the detection limit was 1.21 ± 0.04 µg/L. The IC50 of
cypermethrin was 78.6 ± 0.7 µg/L and the limit of detection was 4.56 ± 0.05 µg/L. The
antiserum induced by chlorinated compounds was better able to recognize brominated
derivatives. This may be because bromine atoms are larger than chlorine atoms and are
more suitable for antibody binding sites, which facilitates the antibody recognition of
deltamethrin. Alternatively, the difference in electron distribution between chloride and
bromide may facilitate recognition. The antibodies prepared by this study are specific to
deltamethrin and do not interfere with the determination of other contaminants commonly
found in environmental samples by cross-reactivity.
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2.3. Aptamer-Based Biosensors

Aptamers are single-stranded DNA (ssDNA) or RNA molecules that are synthesized
by in vitro chemical methods with high affinity, selectivity, and stability [47]. They consist
of 25–30 bases and are systematically optimized for aptamer selection by exponential en-
richment using the systematic evolution of ligands by the exponential enrichment (SELEX)
technique. Aptamers are more environmentally stable than antibodies and are easier to syn-
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thesize in large quantities. Trace targets of ng/kg or even pg/kg can be detected when used
in combination with optical and electrochemical techniques [48,49]. However, aptamer
development is time-consuming, and complex computational methods can reduce the time
and cost by minimizing experimentation [50]. Aptamers are used for pesticide detection
by folding ssDNA or RNA into tertiary structures. However, false positive and nonspe-
cific signals may occur due to unpredictable structures and ineffective folding in complex
matrices [44]. Yang et al. [48] solved this problem by using a modified capture-SELEX
strategy for the selection of λ-cyhalothrin pesticide adaptors. The ssDNA library was fixed
to the magnetic bead, and the binding affinity sequence was competitively captured in
the magnetic bead after target addition. The recognition mechanism and action site of
the aptamer and target were studied using molecular docking technology (Figure 2). A
new λ-cyhalothrin colorimetric detection method was established using the aptamer as
the recognition molecule and colloidal gold-controlled aggregation mediated by a cationic
polymer as the sensing signal. This study provides a reference method for small molecule
detection in food. However, aptamers specific to whole-cell SELEX showed significant
non-specificity, which may be due to antigen-binding sites on membrane proteins that are
ubiquitous in cells [51].
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5 High-Throughput Sequencing (HTS) and secondary structure prediction; 6 Binding characteristics of
affinity sequences).

2.4. MIP-Based Sensors

MIPs take target molecules [52] or structural analogs [42,43] as templates and func-
tional monomers to synthesize highly cross-linked three-dimensional network structures
through covalent or noncovalent crosslinking agents. Template molecules washed with
organic solvents leave specific recognition sites in the polymer network that are comple-
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mentary to template molecules in shape, size, and function [53]. MIPs can be used as a
bionic adhesive for biosensors and for grabbing samples during pretreatment. It is superior
to antibodies in terms of stability and shelf life, and its target binding performance is
equal to or superior to that of natural antibodies [54]. Therefore, MIPs are often used
as substitutes for natural antibodies, receptors, and enzymes in biosensors due to their
predetermination, recognition and practicability, simple preparation, low cost, and good
chemical stability [55] and wide use in environmental monitoring. For instance, Herav-
izadeh et al. [56] synthesized an MIP with highly specific adsorption for permethrin by
precipitation polymerization. The adsorption mass of cis-permethrin and trans-permethrin
was up to 7.71 mg, and the method was reliable and effective for the detection of perme-
thrin isomers in biological and environmental samples. Chen et al. [57] used a cyhalothrin
template to prepare magnetic MIPs for the rapid high-affinity detection of cyhalothrin in
honeysuckle by the precipitation polymerization with an adsorption capacity of 4.9 mg/g.
This provides a method to increase MIP binding sites and improve their selectivity. How-
ever, using pesticide as the template prevents its complete washing, resulting in template
leakage and causing false positive results during detection [58]. Materials with structures
and properties similar to those of the target molecule can be used as templates in the syn-
thesis of MIPs to overcome these challenges and improve the application range of MIPs [59].
Cai et al. [60] used phenyl ether as a virtual template to replace pyrethroid pesticides to
synthesize molecularly imprinted microspheres (MIMs) and fluorescent tracers (Figure 3).
An optimized multiple fluorescence method was then used to simultaneously determine
10 pyrethroid pesticides from 60 real beef and mutton samples with standard recovery rates
of 67.77–109%. The advantage of this experiment lies in the virtual template, but its low
specificity cannot accurately screen specific pesticides. This problem may be caused by the
large MIP surface area, which binds to nonspecific sites such as the sample matrix [61].
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3. Sensor-Based Methods for Pyrethroid Pesticide Determination
3.1. Detection of Pyrethroids Based on Electrochemical Sensors

Electrochemical sensors are a change in current or impedance caused by the
combination of a target on an electrode. Changes in the chemical signal modify the
electrical signal to quantify pesticides [44]. Esquivel-Blanco et al. [62] developed an
electrochemical method for the determination of the pyrethroid metabolite 3-PDB
(3-phenoxybenzaldehyde) using laccase as an alternative recognition element. The
enzyme is immobilized onto a gold electrode layered with alkanethiol through amide
bond formation between the lysine residue of the enzyme and the activated carboxyl
group of alkanethiol. The enzyme directly oxidizes the substrate onto the gold elec-
trode with a detection limit of 0.061 µM. In this context, Silva et al. [26] used a polished
silver solid alloy electrode (P-AGSAE) related to square wave cathode adsorption
stripping voltammetry (SWCASV) as an electrical element for the determination of
β-cyhalothrin in water and tea. There was no significant difference compared with
gas chromatography–mass spectrometry at the 95% confidence level, proving that the
electrochemical method is robust with good stability and sensitivity. Furthermore,
Ribeiro et al. [63] used Molegro Virtual Docker-MVD to simulate the docking of four
permethrin pesticides at the active site of GST. The results showed that the compounds
they selected had high affinity for the catalytic site of the GST enzyme. Therefore,
a GST-based screen-printed electrochemical biosensor was developed with LODs of
0.9, 1.6, 3.6, and 9.5 µg/L, respectively, with good accuracy, reproducibility, and sta-
bility. Moreover, Borah et al. [64] demonstrated that glutathione S-transferase (GST)
immobilized in graphene oxide can be used as an electrocurrent bioelectrochemical
sensor for the determination of β-cypermethrin containing 25% methanol, showing that
biosensors can be used in relatively high organic solvent concentrations. Additionally,
Fruhmann et al. [27] developed an immunosensor based on antigen–antibody mea-
surements and amperometric electrochemical readings that can detect deltamethrin
in different water environments by changing electrical parameters, and the limit of
detection was 4.7 mug/L in water. MIPs make important contributions to the selec-
tivity and sensitivity of traditional electrochemical methods. If nanomaterials are
reintroduced into molecular imprinting, electrochemical sensors will have improved
catalytic performance and enhanced conductivity through a rough conductive sensing
interface surface [65]. Chansi et al. [66] established a novel immune sensing platform,
BSA/Chi-AuNP-rIgG-BSA/MOF/ITO, which used MOF and IgG polyclonal antibody
dual screening to detect a variety of pesticides including pyrethroids (Figure 4). The
theoretical analysis of rIgG binding was consistent with its functional affinity for a
variety of pesticides. Sample detection may be performed with a portable device for
simplifying pesticide analysis with minimal heavy metal ion interference, short anal-
ysis time, and good stability. Two-dimensional hexagonal boron nitride nanosheets
(2D-hBN or white graphene) were used as binding nanomaterials for electrochemical
sensors due to their high temperature stability, large surface area, high mechanical
strength, and terminal conductivity [67,68]. For instance, Atar and Yola prepared
layered nanosheets of an amine-functionalized Fe@AuNPs/2D-hBN nanocomposite
electrochemical sensor, which improved the sensitivity of β-cypermethrin detection in
wastewater samples based on the synergistic effect of MIPs and nanocomposites [28].

3.2. Detection of Pyrethroids Based on Optical Sensors
3.2.1. Surface-Enhanced Raman Scattering Method

SERS is an ultrasensitive vibrational spectroscopy technique used to detect molecules
on or near the surface of plasma nanostructures [69]. It has the characteristics of super-
sensitive, quantitative, real-time detection and multiplexing, and has a wide range of
applications in biochemistry and life sciences [70]. The instability of biological components
and their insensitivity in identifying small molecule analytes limits their application. When
the analyte is adsorbed on the surface of heavy metals, the Raman signal is enhanced,
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whereas the service life of the SERS substrate is shortened since it does not eliminate the
molecules adsorbed on the surface. However, MIP shows high mechanical and chem-
ical stability for small molecule detection, and its molecular selectivity combined with
spectroscopy provides a synergistic effect for the fingerprint identification of complex
samples [71]. In addition, MIP prevents SERS substrate oxidation and protects the core
material [29]. SiO2@TiO2@Ag@MIPs were designed by Li et al. [29] for the detection of
fenvalerate in river water (Figure 5). The use of SiO2 prevents the agglomeration of TiO2
and Ag and ensures good optical transparency. The composite structure material improves
the functionality and selectivity of the SERS substrate, enhances the SERS performance
of Ag particles, and degrades the templates adsorbed on its surface. Wang et al. [72]
synthesized Fe3O4/GO/Ag-MIPs (FGA-MIPs) and combined SERS technology to form
an FGA-MIP/SERS-imprinted sensor that shows selectivity, good magnetic separation,
and the sensitive detection of λ-cyhalothrin in water. This provides a new method for the
determination of pyrethroid pesticides in aquatic environments.
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SPR is a kind of charge density oscillation with the resonance oscillation of the con-
duction electron generated by incident light irradiating the interface of a material—such
as a dielectric metal film—and the corresponding quantum called a surface plasmon [73].
SPR works by measuring the refractive index near a metal surface, although it cannot
distinguish between solutions with the same refractive index. However, modifying the
SPR system or modifying the metal film by the active layer or sensing element rectifies this
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The combination of small molecule pesticides on the surface of traditional SPR sensors
results in a small refractive index with the introduction of nanomaterials enhancing the



Biosensors 2022, 12, 402 11 of 22

change in refractive index [75,76]. For example, Liu et al. [30] combined an SPR sensor
with Fe3O4 magnetic nanoparticles (MNPs) by coupling Fe3O4 and an antibody with
MNPs to deliver the carrier of the target analyte to the surface of the sensor. The favorable
characteristics of MNPs (large surface area, good magnetism, high refractive index, and high
molecular weight) increase the SPR signal, improve sensitivity, and reduce the background
interference. This method can simplify sample pretreatment and improve the determination
accuracy. The sensitivity of this method for deltamethrin in soybean increases by four
orders of magnitude compared with the direct SPR method. In addition, the SPR phase
measurement based on the topological properties of the system can replace the amplitude
measurement [77].

3.2.3. Chemiluminescence Method

Chemiluminescence sensors can selectively respond to receptor molecules and extract
information about specific analytes in complex samples. The optical changes of receptor
molecules are of great concern [78]. However, chemiluminescence sensitivity is low and
the highly specific recognition of MIPs can play a synergistic role [79]. For example,
Zang et al. [80] developed a highly selective chemiluminescence system for fenvalerate by
synthesizing fenvalerate MIP using in situ polymerization and applying the quenching
mechanism of the luminol–H2O2–NaOH chemiluminescence system. A chemiluminescence
method for fenpropathrin detection was developed in a similar way by Zhao et al. [81] in the
same laboratory. This method improved the adsorption performance of MIP and enhanced
the enrichment performance of fenpropathrin compared with the chemiluminescence
method by synthesizing double-sided hollow MIP microspheres. However, the special
Y-shaped tubes used in these two articles meant that only fenvalerate and fenprothrin were
determined instead of multiple simultaneous detections. Huang et al. [31] prepared an
MIP that identifies 10 pyrethroid pesticides using double virtual templates and designed
a chemiluminescence sensor for the determination of chicken pyrethroid pesticides. This
method was repeatable four times, had a detection time of 12 min, and the limits of detection
were in the range of 0.3–6.0 pg/mL in the 10 analytes.

3.2.4. Fluorescence Method

A fluorescent biosensor measures analytes by fluorescence enhancement or quenching
caused by direct interaction between the fluorescent probe and analyte [82]. Current
fluorescent substances used for analysis and determination include quantum dots, carbon
dots, rare earth elements, and fluorescent dyes [83].

The fluorescence detection method has high efficiency, simplicity, and sensitivity and
may be combined with an MIP for specific recognition and enrichment [33]. Samples are
detected by fluorescence quenching after the target substance binds with MIP. Wang et al. [33]
showed that the 5(6)-isothiocyanate (FITC) and 3- aminopropyltriethoxysilane (APTS)/SiO2
composite fluorescent MIP selectively recognizes and detects λ-cyhalothrin. This method
eliminates the interfering substances in the sample and improves the detection limit.

Quantum dots. QDs are a new type of semiconductor fluorescent nanocrystal with
a high quantum yield and narrow emission spectrum. Narrow photoluminescence
bands caused by quantum dots provide bright light even for individual molecules [65].
Most quantum dots are synthesized by toxic, unstable heavy metals such as cadmium,
which potentially harm the environment and organisms [84]. Therefore, it is necessary
to passivate the shell to reduce heavy metal leakage. Quantum dots can be protected
by coupling them with enzyme-, antibody-, and MIP-based nanomaterials on their
surface [85]. For example, MIP-QDs obtained after the surface functionalization of
quantum dots show high selectivity and fluorescence characteristics for the target and
may be used for pesticide detection [86–88]. Li et al. prepared a novel eco-friendly
MIP-QD sensitive fluorescence nanosensor for the selective quenching fluorescence
of cyfluthrin based on FeSe-QDs using an optimized reverse microemulsion method
(Figure 7). The specific recognition of cyfluthrin is due to ionic interactions, molecular
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structure selection and hydrogen bond interactions to prevent charge transfer from
FeSe-QDs to cyfluthrin, resulting in the phenomenon of fluorescence quenching. This
method has excellent linearity, selectivity, and sensitivity, and was used for detecting
cyfluthrin in fish samples [34].
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Carbon dots. Fluorescent carbon dots (CDs), also known as carbon quantum dots, are
novel, zero dimensional (0D; diameter below 10 nm), nontoxic photoluminescent carbon
nanomaterials [89]. They are used as a fluorescence response signal due to their strong
luminescence and controllable performance [90,91]. They are widely studied because of
their chemical stability, good electrical conductivity, biocompatibility, luminescence, and
wide absorption wavelength range [92–94]. In recent years, many studies have applied
CDs to provide technical guidance for pollutant detection in the environment [95]. In
most cases, the fluorescence quenching of solid CDs occurs [96] but their combination with
titanium, nickel, and cadmium enhances light absorption and the visible light response,
which improves their photocatalytic performance [97]. Although fluorescent CDs can
be directly used to detect analytes, their sensitivity and anti-interference ability are low.
However, MIPs can compensate for this defect, and combination with CDs to prepare
fluorescent nanomaterials for pesticide detection is possible [98–100].

Zhu et al. [35] developed a simple and effective two-channel specific fluorescence
method for the determination of λ-cyhalothrin based on dual-emission blue–green CD
functionalized core–shell nanospheres. The blue and green CDs were taken as the reference
signal and the detection signal, respectively. The use of ionic liquids with a wide viscosity
range and good stability can improve the detection sensitivity and selection range of core–
shell nanospheres. Combination with smartphone integrated optics enables the real-time
detection of λ-cyhalothrin by monitoring the fluorescence changes from green to blue. The
interference of shortwave backgrounds was overcome by the introduction of functional
groups resulting in the development of a red-emitting carbon point (RCD) with stable
emission characteristics wherein the CD moves in the direction of red wavelengths [101].
Zhu et al. prepared an on-site visualization and rapid detection RCD MIP sensor for the
quantitative detection of λ-cyhalothrin using a smartphone (Figure 8) [102].
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Time-resolved fluorescence microsphere. Ordinary fluorescent groups are easy to quench
during detection, and the detection time is greatly reduced (Stokes shift is 1–100 nm) due
to high photobleaching and chemical degradation efficiency [103]. Trivalent rare earth
ions such as Eu(III), Tb(III), and Sm(III) were used as labels in time-resolved fluorescence
analysis and may be used as a fluorescence quantitative immunoassay. The Stokes shift
and fluorescence lifetime were above 150 nm and up to 1 millisecond, respectively [104].
Lanthanide chelates produce high-intensity fluorescence, strongly resist photobleaching,
and have a long decay time (1250 µs). This delays the measurement time and eliminates the
interference of natural fluorescence, which greatly improves method sensitivity [105–107].
Rare earth-based nanomaterials are stable and bright fluorescent probes, so they are often
the best nanoprobes for hypersensitive biological detection [108]. They are typically used
to detect agricultural residues through the preparation of an immunochromatographic
strip [109–112]. However, we did not find relevant literature in the Web of Science contain-
ing time-resolved fluorescence and pyrethroid pesticides as keywords.

3.3. Detection of Pyrethroids Based on Biosensors
3.3.1. Biochemical Method

The use of antibodies and enzymes as recognition elements has the advantage of high
throughput, convenience, good sensitivity, and simplicity [113]. Typically, enzyme-linked
immunoassays (ELISAs) are employed. The enzyme has very high sensitivity and can be
used for the trace detection of pesticides with a detection limit of 10−10 M. However, the
short lifetime of the enzyme and the interference of impurities such as metal ions in the
matrix result in weaker specificity and limit its application [46,114]. Although ELISA has
good detection sensitivity, there may be technical difficulties during pesticide labeling [115].
López Dávila et al. [116] used the Abraxis pyrethroid assay kit to determine permethrin
in water (control group), cucumber, tomato, and bell pepper and determined a minimum
detectable concentration of 10 µg/L using the Log10 value of B/B0% as the Y axis and the
permethrin concentration as the X axis. The cross-reaction test of 12 pesticides showed
consistent results with gas chromatography–electron capture detection (GC-EDC) and
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ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS).
This study became the basis for the Cuban pesticide residue detection program ELISA kit.
Huo et al. [117] developed a fast and sensitive direct competitive fluorescein immunoassay
(DC-FEIA) to detect the pyrethroid metabolite 3-PBA based on a nanobody (Nb)-alkaline
phosphatase (AP) fusion protein. The IC50 of this method is nearly ten times higher than
that of direct ELISA and can detect 3-PBA in urine. Xiao et al. [32] established an ELISA
method to detect 0.05–620 mg/kg cypermethrin fish based on MIP-QDs (MIP-quantum
dots) (Figure 9). The method shows linear fluorescence quenching and combines the
advantages of rapid, sensitive, and efficient ELISA with the high specificity and sensitivity
of MIP-QDs.
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3.3.2. Colorimetric Method

Some colorimetric signals can be observed with the naked eye or read with a smart-
phone. Although colorimetric methods are easy to prepare and enable rapid detection,
most food extracts are colored, which interferes with detection [118]. Colorimetric re-
action methods are mostly based on membranes and paper or microfluidic chips [119].
Immunochromatography is a colorimetric analysis method that combines immunoassays
with chromatography. It is widely used for monitoring agricultural products because of
its fast detection, strong specificity, and lack of requirement for professional instruments
or specialized staff for operation, in contrast to ELISA [120]. Therefore, market regulators
and ordinary consumers can instantly detect pesticide residues in agricultural products. In
addition, immunochromatography can detect pyrethroids within 10 min, which is much
faster than ELISA.

Most experiments involving small molecule antigens with single epitopes—such as
pesticides and veterinary drugs—are designed and explored by the competition method.
Meanwhile, large molecule antigens with multiple epitopes, such as proteins and toxins,
are determined by the sandwich method. A traditional immunochromatographic technique
involves labeling colloidal gold [121] or fluorescent substances [122] on the monoclonal
antibody to conjugated antigen at the test line. By reading the values of the test line
and control line, the results can be qualitatively and quantitatively judged. However,
antibody labeling with colloidal gold results in low sensitivity compared with labeling
using fluorescent substances [123]. Costa et al. [124] developed a silicon dioxide-coated
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mesoporous material to selectively identify type I pyrethroids based on lateral-flow strips.
The analyte can be detected in 2 min with a limit of detection of 1 ppb using signal
readings from smartphones. Although this method can quickly detect permethrin with
high sensitivity, the experimental design is complicated and unsuitable for large-scale use.
Li et al. [36] established an immunochromatographic method for the determination of
cypermethrin and fenvalerate using two test lines(Figure 10). Competitive interference
between the different pesticides was prevented by coating the two test lines with two types
of haptens with qualitative analysis observed from the two color changes. The method
determined dual pesticides in tap water, river water, and milk with the data analyzed by
the 2plex-speclysis application. SERS technology was used for the quantitative analysis of
the tested pesticides with the following limits of detection for cypermethrin and fenvalerate:
2.3 × 10−4 and 2.6 × 10−5 ng/mL, respectively. In addition, the data analysis method is
customized and can be used by nonprofessionals.
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A typical successful case involving the combination of a colorimetric biosensor and
a fluorescent biosensor is fluorescence immunochromatography. This enables sensors on
antibodies to fluoresce under certain excitation wavelengths. Fluorescein is commonly used
in immunoassay methods, including fluorochrome [125], carbon dots [126], and lanthanide
series [127]. For example, Zhao et al. [37] developed smartphone-based dual-channel
immunochromatographic strips (ICTS) to synthesize carbon point PCD with ultrahigh
fluorescence brightness as a signal amplifier to simultaneously detect cypermethrin and its
3-PBA metabolite. Images were analyzed and recorded on smartphone devices according
to the red fluorescence obtained. This has potential in the direct detection of pyrethroid
insecticides. However, it is difficult to produce antibodies against pesticides in animal
bodies due to their small molecular structure, long antibody preparation period, harsh
preservation conditions, and the need for sacrificing animals. Therefore, it is necessary
to develop a highly specific bionic recognition material to replace animal antibodies and
combine immunological methods for the rapid determination of pyrethroid pesticides.
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MIPs can be used as a biomimetic material for the rapid and specific identification of
pyrethroid pesticides when combined with immunofluorescence technology. However, if
the lateral flow chromatography strip is designed according to the preliminary study of our
laboratory, the free MIP is directly fixed on the nitrocellulose membrane of the strip, and the
polymer will elute with the chromatography liquid, resulting in inaccurate results. Therefore,
a substance that can be used as a carrier to fix the polymer on the nitrocellulose membrane
as a material for antigen recognition is required for immunochromatographic analysis. The
combination of molecularly imprinted electrospinning identification material can replace the
use of monoclonal antibodies in immunoassays. For example, He et al. [128] established
a method to determine triazolin in water based on a molecularly imprinted biomimetic
immunofluorescence strip from our laboratory (Figure 11). In this method, triazolin MIP was
fixed on the strip by an electrospinning membrane to replace antibodies. All water samples
were negative, which was consistent with the LC–MS/MS results. This experiment provides
a worthy idea for studying immunological methods by combining molecularly imprinted
electrostatic bionic materials with fluorescence immunochromatography.
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Figure 11. (a) Structure diagram of the molecularly imprinted electrospun test strip and (b) direct
competitive fluorescence detection process ([128]).

Our laboratory improved the sensitivity of the method while reducing background
interference by using time-resolved fluorescent latex microspheres labeled with fenvaler-
ate hapten-IgG as a fluorescent probe in immunochromatography for the detection of
pyrethroid pesticide residues. This study is based on a competitive experimental design.
When fenvalerate is present in the sample, it competes with the fluorescent probe for the
specific binding site of MIP and causes fluorescence signal changes. These ideas were used
to construct a new bionic fluorescent immunochromatographic strip for the detection of
pyrethroid pesticides.

4. Conclusions and Future Perspectives

The use of pyrethroids in agriculture and health is increasing; therefore, rapid detection
has become the mainstream research direction. Sensors that specifically identify pyrethroids
are becoming more popular. Most pyrethroids are optical isomers containing chiral carbon
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atoms with similar structures. Therefore, the immunoanalysis cross-reaction rate is high,
and the pesticide is a small molecule that results in the time-consuming preparation of
traditional monoclonal antibodies. In comparison, bionic identification materials can solve
the technical problems encountered during monoclonal antibody preparation and may
replace animal antibodies in the future. However, low sensitivity is a key problem that
urgently needs an breakthrough. The use of fluorescent material for labeling can improve
the detection sensitivity. The combination of a variety of technologies may further improve
the rapid detection of pyrethroid pesticides, which is of great significance for agricultural
planting and public health.
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