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With the increasing use of functional brain network properties as markers of brain
disorders, efficient visualization and evaluation methods have become essential.
Eigenvector centrality mapping (ECM) of functional MRI (fMRI) data enables the
representation of per-node graph theoretical measures as brain maps. This paper
studies the use of centrality dynamics for measuring group differences in imaging
studies. Imaging data were used from a publicly available imaging study, which included
resting fMRI data. After warping the images to a standard space and masking cortical
regions, ECM were computed in a sliding window. The dual regression method was
used to identify dynamic centrality differences inside well-known resting-state networks
between gender and age groups. Gender-related differences were found in the medial
and lateral visual, motor, default mode, and executive control RSN, where male subjects
had more consistent centrality variations within the network. Age-related differences
between the youngest and oldest subjects, based on a median split, were found in the
medial visual, executive control and left frontoparietal networks, where younger subjects
had more consistent centrality variations within the network. Our findings show that
centrality dynamics can be used to identify between-group functional brain network
centrality differences, and that age and gender distributions studies need to be taken
into account in functional imaging studies.

Keywords: graph theory – graph algorithms, trees, functional MRI (fMRI) methods, imaging studies, age-related,
gender-related

INTRODUCTION

Functional brain network properties are increasingly studied as markers of neurological and
psychiatric disorders. With the availability of fast computer hardware and increased memory,
analyses have been focusing on the dynamics of networks. We describe an efficient implementation
and application of dynamic centrality and its differences between males and females.

Resting functional magnetic resonance imaging (RfMRI) acquires MR images of the brain that
are sensitive to blood oxygenation, which serves as a proxy for local brain activity. In the absence
of a task, a number of recurring patterns in RfMRI data (Smith et al., 2009) are referred to as
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resting-state networks (RSNs) computed from pairwise similarity
matrices between voxel time series (Damoiseaux et al., 2006). In
the case of these non-evoked, non-causal, undirected similarities,
the term ‘functional connectivity’ is used, and (Pearson)
correlation is a common connectivity measure.

Visualization and interpretation of complete network
connections matrices is increasingly problematic with
increasing network size. Voxelwise whole-brain network
analyses therefore focus on properties of network nodes.
The concept of centrality of a node in a network
represents the proportion of the network traffic involving
that node. It can be expressed in a number of ways,
for example:

– the number of connections of a node (degree centrality)
– the number of times a node appears in the shortest path

between two other nodes (betweenness centrality).

For eigenvector centrality EC, this measure is the coefficient
in the dominant eigenvector (the one with the largest eigenvalue)
of the connections matrix. It can be computed iteratively as the
weighted sum of centralities of a node’s neighbors. Voxelwise
EC computation, or eigenvector centrality mapping (ECM)
(Lohmann et al., 2010), has shown to provide a measure for
functional brain network analysis that is robust with respect to
physiological and technical confounding factors and sensitive to
changes correlated with pathology.

Eigenvector centrality mapping has been used to identify
functional brain network changes in patients, e.g., with
Alzheimer’s disease (AD) (Binnewijzend et al., 2014), multiple
sclerosis (Eijlers et al., 2017), and healthy subjects at risk for AD
(Wink et al., 2018).

The observation that functional brain properties vary over
time led to the emergence of dynamic functional connectivity
(Tagliazucchi et al., 2016; Preti et al., 2017). Unlike dynamic
causal modeling experiments, where a change in cognitive tasks
leads to a different connection pattern, dynamic functional
connectivity itself is also non-evoked and non-causal. Functional
similarities such as the correlation between time series, are
measured inside a sampling interval, and network dynamics are
often measured by shifting a fixed-size time window across the
scan duration. The result is a time series of network measures
which can be further analyzed.

This makes dynamic functional connectivity as a method
bit of a double-edged sword: properties of temporal
connectivity can be studied in greater detail, but the
method produces an enormous amount of intermediate
results, requiring an extra step in analysis, visualization,
and interpretation.

We propose dynamic eigenvector centrality mapping (dECM),
which produces a time series of centrality maps, each of which is
an image of the same size as the original volumes. This allows easy
and intuitive visualization of each window position for which
centrality is computed. This technique has been used before as
an intermediate result (Preti and Ville, 2017), which showed that
dominant EC patterns over time are similar to RSN. This paper

uses those previous findings to detect group-based differences
in EC variability.

We use dual regression, an analysis used for functional
connectivity studies (Nickerson et al., 2017), to demonstrate how
differences between males and females and age groups can be
found in a public example data set.

MATERIALS AND METHODS

Data From OpenNeuro
Imaging data was downloaded from the OpenNeuro project1.
The “Washington 120” data set includes structural T1-weighted
MR images and resting fMRI time series of 120 healthy subjects
(59 male), recruited from Washington University. Subjects were
right-handed native English speakers, reported no neurological
or psychiatric disease, were not on medication and had previously
given written informed consent (Power et al., 2013). Mean age
was 24.7 years at scanning (median: 24.5) and standard deviation
2.4 years (interquartile range: 3.1). Ages were not significantly
different between males and females (Kruskal–Wallis p = 0.5).

Imaging was done on a Siemens MAGNETOM Trio 3T
scanner (Erlangen, Germany) with a Siemens 12 channel
Head Matrix Coil. The T1-weighted scans used the MP-RAGE
sequence with TE = 3.06 ms, TR-partition = 2.4 s, TI = 1000 ms,
flip angle = 8◦ and 127 slices with 1 mm × 1 mm × 1 mm
voxels. Resting fMRI (RfMRI) was acquired using an EPI
sequence with TE = 27 ms, TR = 2.5 s, flip angle = 90◦
and 32 contiguous interleaved 4 mm axial slices with in-plane
resolution = 4 mm × 4 mm. Subjects kept their eyes open
during scanning, fixating on a cross displayed on the screen.
The duration of scan varied from 130 volumes ∼ 5 min, to 720
volumes∼ 30 min.

The OpenNeuro website provides the preprocessed data, using
SPM2 version 8 (Ashburner and Friston, 2005), in standard space.
The original scans had been corrected for slice timing to align the
start times of all slices per volume, spatially realigned to correct
head motion, and their intensities normalized to a mean of
1000. Images were then resampled to MNI-space on an isotropic
3 mm grid (Power et al., 2014). The preprocessing using mriqc
(Esteban et al., 2017) reported five subjects with a mean frame
displacement FD (Power et al., 2012) of 0.2 mm. We excluded
these five subjects from our analysis. Remaining motion-related
effects were removed from the standard-space time series by
computing the effects of motion using single-subject GLMs with
the motion parameters as covariates, and subtracting these from
the data (Soares et al., 2016). The resulting data set were 115
subjects (57 male) with median age 24.5 years (57 below) whose
time series had the linear effects of rigid-body motion parameters
for removed for each volume.

The T1-weigted images available from the OpenNeuro website
were accompanied by segmentations into tissue types and
parameters for mapping those to the MNI space in SPM. We

1https://openneuro.org
2https://www.fil.ion.ucl.ac.uk/spm
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applied these parameters to the anatomical images to bring them
in the same space as the RfMRI data.

The gray matter masks were thresholded at 20% gray matter
density and binarized before being mapped into MNI space.
The MNI-space masks were then thresholded again at 0.2 and
binarized, to create one gray matter mask for the group. A mask
of each of the functional images was created by taking the time
series’ minimum at each voxel, and thresholding the map of
temporal minima at the 20th percentile, yielding a binary mask.
The group mean over all subjects’ binary masks was thresholded
at 75% yielding one binary mask for the group. Every RfMRI
data set was masked by the intersection of the group gray matter
and functional masks and an additional mask to exclude the
cerebellum. Using the same mask for every subject ensured that
sizes between the RfMRI networks did not vary, which would
have been a source of variance (Van Wijk et al., 2010).

Eigenvector Centrality Mapping
Most connectivity analyses for RfMRI are based on the matrix
R of pairwise correlations between voxels or brain regions.
In the voxelwise case, the size of this matrix poses two
problems: (i) the matrix is too big for the working memory
of standard computers and (ii) the total connectome, i.e., the
set of connections describing a condition or an experiment,
is to big to visualize or interpret. A common solution is to
spatially downsample the data or to group the voxels into sub-
networks or parcellations. Another approach is to look at node
properties instead of connections, with the benefit of keeping
the full imaging resolution. The centrality property signifies
the prominence of a node in terms of the participation in the
connections of the network.

Centrality can be expressed using a growing number of
measures. The simplest is degree: the number of connections
of a node to others. One of the more intuitive measures of a
node’s centrality is betweenness: the proportion of all the shortest
paths between pairs of nodes in the network on which it lies
(Fletcher and Wennekers, 2016).

A node’s eigenvector centrality (EC) is defined as the sum
of its neighbors’ centralities (Lohmann et al., 2010) and can be
efficiently computed from the connections matrix R using power
iteration if this matrix is semi-definite and positive (or irreducible
and non-negative). Power iteration starts with an estimate vector
v0 and computes

νi+1 = R∗νi (1)

followed by L2 normalization, for subsequent steps, until
a convergence criterion is met. A computationally efficient
definition of voxelwise ECM uses R+1 as the connections matrix
to ensure positivity and the fact that for intensity-normalized
scaled fMRI data Y[N×T] of N voxels and T time points
(Equation 1) can be re-written as

νi+1 = Y[N×T] ∗
(

YT
[T×N] ∗ νi[N×1]

)
(2)

so that it needs to store at most NT values during
computation instead of N2 (Wink et al., 2012). The ECM

technique has since been used in a number of settings to
differentiate between experimental conditions and patient groups
(Lohmann et al., 2010; Wink et al., 2012, 2018; Binnewijzend
et al., 2014; Schoonheim et al., 2014; Duinkerken et al., 2017;
Eijlers et al., 2017).

Correlations of signals measured during a time interval
are static measures, yet we know that functional connections
in the brain are dynamic in that their strength varies in
time (Tagliazucchi et al., 2012; Zalesky and Breakspear, 2015;
Breakspear, 2017). To capture the temporal evolution of
centrality, we computed voxelwise EC in a sliding window,
resulting in a time series of 3-dimensional EC maps. We used
the fastECM matlab toolbox3 for ECM computations, which
enables the computation of centrality time series as follows:
given the number T of volumes in the input time series
and a requested number M of centrality maps, it moves a
window of T-M+1 volumes over all M different positions and
returns the time series of centrality maps. For the data used
in this paper, with input time series of different lengths, this
meant that the size of the window for EC computation varied
between subjects.

We used M = 100, resulting in a time series of 100 ECMs per
subject (see Figure 1), containing each voxel’s centrality given the
starting time of the interval in which it was computed. Maps were
multiplied to have intensities around 4500.

Statistics of EC Variability Over Time
Each map of the EC time series shows the spatial pattern of
the voxelwise temporal correlations inside its time window,
and if well-defined RSNs such as the default mode network
(DMN) and visual networks (Damoiseaux et al., 2006) vary over
time, these variations should be visible in the time-varying EC
maps. One way to determine this temporal variability is using
dual regressions, DR (Nickerson et al., 2017). This method first
regresses each fMRI data set onto a set of spatial patterns,
e.g., ones that represent RSN, resulting in a representative
time series per pattern, per subject. After that, the fMRI data
are regressed onto these representative time series, yielding
a voxelwise measure of temporal correspondence with each
pattern, for each subject. Both steps are generalized linear models:
for data Y[N×T] and a set C[N×M] of M spatial patterns, the first
step solves

Y[N×T] = C[N×M]
∗ S[M×T] + ε[N×T] (3)

for the pattern-specific time series S[M× T], and the next step
solves

Y[N×T] = D[N×M]
∗ S[M×T] + ε[N×T] (4)

for the voxelwise correspondence D[N×M] to S[M×T], and
can be computed with a least squares method. The dual
regression method, first introduced in 2009 (Beckmann, 2009)
has been used to identify between-group RSNs differences
(Smith et al., 2014; Nickerson et al., 2017). We computed DR
using 10 spatial components linked to RSN by performing

3https://github.com/amwink/bias/tree/master/matlab/fastECM
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FIGURE 1 | (Top) Eigenvector centrality maps (ECM) computed in a sliding window at 100 different positions, at window position 0∗TR (a) and 65∗TR (b). (Bottom)
Mean-centered centrality timecourses for voxels at position (3, –67, 35) in MNI space (green), position (3, –37, 50) in MNI space (blue) and position (3, –7, 65) in MNI
space (orange).

independent component analysis (ICA) on the results of 7,342
fMRI analyses (Smith et al., 2009), resulting in 10 regression
maps per subject between-group differences in temporal EC
variations between female and male participants, and young vs.
old participants, respectively, were assessed for each RSN mask
except the ‘cerebellar’ RSN with permutation statistics, using
10000 permutations and family-wise error (FWE) control with
threshold-free cluster enhancement (TFCE) and a significance
threshold of p < 0.05. FWE was done by re-computing the
statistics (Equation) after group/age permutation, respectively
and storing the maximum statistic found (Nichols and Holmes,
2002). Observed statistics were compared with the histogram of
these maximum statistics, thus achieving location independence,
and therefore, FWE control. TFCE (Smith and Nichols, 2009)
increases the statistic values of each peak that is part of
a spatial cluster by integrating the cluster’s spatial extent at
different levels below the peak, providing a balance between
correction for multiple voxelwise tests and relaxing the correction
for voxels that are part of a cluster (and therefore not
independent). Effects of gender and age were investigated
in the between-group design using a contrast between male
and female participants and younger and older participants,
respectively, the latter being defined by a median split.
A covariate for scan length (and thus, window length) was also
included in the model. The dual regression script was slightly
modified to only test for EC variations with each RSN pattern
inside the mask (of Z-scores for that pattern above Section
“Statistics of EC Variability Over Time”), as used previously
(Binnewijzend et al., 2012). Analysis scripts for this paper are
available at https://github.com/amwink/openNeuro.

RESULTS

Participant Sub-groups
The median(mean) age of the female and male participants,
respectively, were 24.4(24.5) and 24.9(24.5), and their standard
deviations (interquartile ranges) were 1.9(3.1) and 2.6(3.2),
respectively. The median split of the subjects into younger
and older resulted in a ‘younger’ and ‘older’ group with
mean (median) age of 22.8(23.2) and 26.5(26.3), respectively,
and standard deviations (interquartile ranges) of 1.1(1.3) and
1.5(2.1), respectively. The ‘younger’ and ‘older’ group both
consisted of 28 males and 29 females. The distributions of
ages did not differ significantly for males and females in the
young subjects (Kruskal–Wallis p = 0.39; it did so in the old
subjects (Kruskal–Wallis p = 0.04) where the males were older
than the females. Across the whole group there was no effect
(Kruskal–Wallis p = 0.32).

Eigenvector Centrality Mapping
Time averages of each subject’s voxelwise EC time series were
combined for four subgroups: young-old × male-female. The
averages across these groups are shown in Figure 2 The overall
features of the maps are very similar in the groups and to
individual EC maps per volume (see Figure 1), indicating robust
features and temporal stability.

Statistics of EC Variability Over Time
The dual regression analysis and non-parametric testing showed
effects for a number of resting network patterns. Many of these
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FIGURE 2 | EC time series means, averaged per subgroup: (a) younger males, (b) younger females, (c) older males, (d) older females. The groups are generally
similar; the female participants show more contrast than the males participants and the older groups show higher peaks than the younger groups of the same
gender.

were limited to single voxels; we report only the clusters of
more than 10 voxels. These were found in the medial and
lateral visual networks (see Figures 3a,b), the default mode
network (Figure 3c), the sensorimotor network (Figure 3d),
the auditory network (Figure 3e), and the left fronto-parietal
network (Figure 3f). The EC variations in the other networks
(occipital visual, lateral visual, cerebellum, executive control and
right fronto-parietal) did not differ between male and female
subjects or between the two age groups.

In the medial visual network (Figure 3a), EC covariations with
the mean time course were lower in females than in males (blue
voxels) in the precuneus. In a partly overlapping region they were
also lower in the older group than the younger (green voxels).
This region was concentrated in the cuneus and precuneus,
touching visual cortices V1 (Brodmann area 18) and, to a lesser
extent, V2 (Brodmann area 17).

Two small clusters in the lateral visual network (Figure 3b)
showed lower correlations in the female group compared to male
(blue voxels). These voxels were in the right medial temporal
gyrus and bilateral inferior temporal gyrus.

In the default mode network, DMN (Figure 3c), two voxel
locations showed lower covariatons in EC with its mean time
course in the female group compared to the male (blue voxels).
These voxels were contained in the parietal lobe: precuneus and
posterior cingulate cortex.

EC covariations with the sensorimotor network (Figure 3d)
were lower in females than in males (blue voxels) in a
small region in the primary motor cortex (Brodmann area
4) and premotor cortex (Brodmann area 6) and primary
somatosenory cortex (BA 2).

Smaller clusters were also found in the executive control
network (Figure 3e), with lower covariations in females than
males in the right medial frontal gyrus (blue voxels) and lower

covariations in the older group than the younger in the left and
right middle and superior frontal gyrus (green voxels).

In the left frontoparietal network (Figure 3f), EC covariations
with the mean time course were lower in the older group
than the younger in the left lateral occippital cortex (green
voxels). No corresponding clusters were found in the right
frontoparietal network.

Plots of the group mean network time courses found during
dual regression were made by averaging the result of the spatial
regressions (yielding a time course per network mask) of subjects
by group, and then plotting the winsorized mean time course for
each network (with a trim of 0.1), and the standard deviation
divided by 5 as a ribbon to show the relative variability inside the
group for each network (see Figure 4).

Although no obvious difference is visible between males and
females, the older groups on the right show less EC variability
than the younger groups on the left. There is a partial ordering
in the networks in average centrality that is consistent across
groups: the DMN has the highest mean centrality in all four
groups, followed by the medial and lateral visual networks. The
right frontoparietal and occipital visual networks are generally
next, with the sensorimotor network being in different positions
around them. The auditory and executive control networks
are below those. Interestingly, the left frontoparietal network,
consistently consistently has the lowest mean EC in all groups,
showing a large difference with its right counterpart.

DISCUSSION

The method of dynamic voxelwise brain network centrality
computed from fMRI combines the advantage of ECM of being
able to investigate functional brain network properties on the
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FIGURE 3 | Difference in covariability of EC with established resting-state networks (RSN, salmon) between males and females (blue) and younger and older
subjects (green): the medial visual network (a), the lateral visual network (b) the default mode network (c), the sensorimotor network (d), the executive control
network (e), and the left fronto-parietal network (f).

FIGURE 4 | Mean time courses per resting network. Average time series were made from the spatial regression maps minus the cerebellum, which were then
averaged per group using a winsorized mean.

voxel level so that the results can be presented together with other
brain image statistic maps, and the sensitivity to time-dependent
changes of sliding-window correlation-based analyses of fMRI
experimental data.

Comparisons of single-window ECM (Figure 1) with the
mean ECM taken over all windows (Figure 2), and their
comparison with single ‘static’ ECM from previous studies
(Binnewijzend et al., 2014; Duinkerken et al., 2017; Eijlers et al.,
2017) show that the pattern of centralities is relatively stable
across windows; changes over time are mainly fluctuations
around the pattern represented by the mean ECM. This is also

in line with the dominant patterns found previously in EC time
series (Preti and Ville, 2017).

In line with earlier findings in resting fMRI data network
analysis (Achard et al., 2006; Kiviniemi et al., 2011), we found
slowly varying variability in our centrality maps. Other methods
for studying functional brain network dynamics (Fraiman et al.,
2009; Allan et al., 2015; Thompson et al., 2018) find different
spatiotemporal dynamics. As our method uses a sliding window,
slow temporal variability is expected (Hindriks et al., 2016).

Differences in resting fMRI connectivity between males and
females have been described before (Gong et al., 2011) but
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gender differences in the stability/rigidity of functional brain
networks have had less attention. Earlier studies have found
lower connectivity with the primary visual and auditory cortex
in female participants (Filippi et al., 2013; Smith et al., 2014),
indicating that their strength is lower than in men; but this does
not mean that centrality in these networks is lower. Synaptic
density in the visual cortex has been reported to be higher in male
subjects than female (Alonso-Nanclares et al., 2008), although
it is not immediately clear that this would lead to stronger
covariations within the visual cortex.

Not much is known about resting between-gender functional
connectivity differences in the motor network. Ritchie et al.
(2018) found stronger functional connectivity in males than
in females between the sensorimotor network and visual and
prefrontal areas. This could indicate an increased centrality,
which could in turn lead to increased temporal correspondence
in centrality variations within the motor network. Another study
found higher fractional amplitudes of low-frequency fluctuations
(fALFF) in the sensorimotor cortex in males than females (Biswal
et al., 2010). These slower oscillations may cause a more stable
temporal behavior in signal, connectivity, and centrality.

The effect of age on resting-state connectivity has been
studied extensively, although this has concentrated more on
older subjects. The regions in the first network that shows
differences between the age groups in temporal EC variability,
medial visual (Figure 3a), have been previously reported as
having decreased centrality in patients with Alzheimer’s disease
(AD) compared with controls (Binnewijzend et al., 2014) and
in subjects with elevated risk factors for AD, including age
(Wink et al., 2018). If synchronization in these regions with
the rest of the visual network deteriorates, this may cause
a lower covariability with the centrality of the rest of the
network as well. The fact that an age effect can already
be measured in the young adults included here, confirms
previous findings of the age-sensitivity of eigenvector centrality
in the visual cortex.

Decreased connectivity with age has been measured in the
DMN (Vidal-Piñeiro et al., 2014; Sala-Llonch et al., 2015).
Geerligs et al. (2015) report age-related changes in the same
networks found in this study, where segregation of networks is
higher in younger participants: the networks can more clearly
be separated. The DMN and the frontoparietal network showed
a reduction in local efficiency, which me be related to our
intra-network reductions in connectivity and centrality with
age. A difference was also found in visual and motor networks
between the ‘participation index’ between younger and older
subjects, that is: the proportion of signal that is directed toward
other RSN. This was higher in older subjects. Our findings may
relate to this, in that better concordance with external networks
may lead to weaker intra-network connectivities and centralities.

Older adults have also been shown to use the fronto-parietal
network more ‘efficiently’ in cognitive tasks to reduce the
influence of external distractions, and this network showed lower
connectivity at rest (Campbell et al., 2012, 2013). There is also
evidence that connectivity between the DMN and frontoparietal
networks is an indication of cognitive flexibility (Douw et al.,
2016), suggesting mental agility but also distractability, which

would decrease with age. However, this combination of
terminology is speculative at the moment.

Mean network-specific centralities as measured with the
sliding-window approach (Figure 4) show smooth and slow
dynamics, indicating that they are relatively stable on the time
scale of an fMRI experiment, in agreement with earlier findings
on time-varying centrality (Liao et al., 2015), indicating that
functional networks are associated with structural connections.
This is also reflected by the fact that relative mean network
centralities are stable within and between age and gender groups,
with the DMN having the highest average centralities in all cases.

The differences in dynamic eigenvector centralities between
gender and age groups enjoin graph theoretic analyses of fMRI
data studies to model or correct for these factors.

Limitations
One of the aims of this paper was inviting others to reproduce
these analyses. For this reason, we used a publicly available data
set with fully pre-processed images to minimize differences in
outcomes to pre-processing. A disadvantage of this strategy is
the reduced level of control over these previous steps (such
as the correction of motion effects between realignment and
standard space mapping).

Not all subjects were scanned for the same amount of time,
which yields variable underlying signal to noise ratios for the
volumes of different ECM time series. At the moment it is not
known how this influences the ECM time series dynamics; this is
the subject of ongoing work.

The connections matrix used for ECM is the correlations
matrix, increased with 1 to guarantee non-negativity (Wink
et al., 2012). This equation, which negatively correlates with the
squared L2-norm of signals with a Gaussian distribution, cannot
be as trivially used for more advanced measures of connections,
such as partial correlation (Zhen et al., 2007).

The statistical tests between groups are corrected for multiple
voxel comparisons, but not for multiple contrasts (resting
networks). If this correction is applied (p = 0.05/10) then none
of the RSNs show significant differences in dynamics.

CONCLUSION

We have presented dynamic ECM, provide an implementation
in the fastECM package and demonstrate its application in
a publicly available dataset, demonstrating changes
in EC variability inside resting networks between
gender and age groups.
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