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Quantum metrology is the state-of-the-art measurement technology. It uses quantum resources to 
enhance the sensitivity of phase estimation over that achievable by classical physics. While single 
parameter estimation theory has been widely investigated, much less is known about the simultaneous 
estimation of multiple phases, which finds key applications in imaging and sensing. In this manuscript 
we provide conditions of useful particle (qudit) entanglement for multiphase estimation and adapt 
them to multiarm Mach-Zehnder interferometry. We theoretically discuss benchmark multimode Fock 
states containing useful qudit entanglement and overcoming the sensitivity of separable qudit states 
in three and four arm Mach-Zehnder-like interferometers - currently within the reach of integrated 
photonics technology.

Quantum metrology exploits particle entanglement in the probe state to enhance the precision of parameter  
estimation beyond what is reachable with classical resources (see refs 1,2 for reviews). The role of particle 
entanglement in the estimation of a single parameter has been clarified3–6 and investigated experimentally in 
Mach-Zehnder interferometers (MZIs)7. However, much less is known about the role of particle entanglement 
in the joint estimation of multiple parameters. Multiparameter estimation is relevant in many practical applica-
tions, including quantum imaging8, quantum process tomography9, as well as probing of biological samples10. 
Interestingly, the theory of multiphase estimation does not follow trivially from what is known about the single 
parameter case11,12. Indeed, ultimate multiphase estimation bounds are not saturable in general13, due to the 
non-commutativity of the operators generating the phase shift transformations14,15. First insights on this scenario 
have been recently reported16–22.

A natural platform for multiparameter quantum metrology is provided by multiport interferometry, general-
izing conventional two-mode interferometry. Recent progresses in the realization of multiport devices have been 
achieved by exploiting integrated photonics23–31. Three- and four-port beam-splitters (tritters and quarters) have 
been produced with integrated optics31–34. This paves the way toward the realization of multiarm interferometers 
created by two tritters (quarters) in succession35. Quantum-enhanced single parameter estimation in integrated 
interferometers has been theoretically predicted17, while multiparameter estimation in multi-arm interferometers 
has been examined and compared with the sensitivity achievable by multiple single-parameter estimation18.

In this manuscript we provide conditions of useful particle entanglement for the simultaneous estimation of 
multiple phases. We study a general multimode scenario where each particle is treated as a qudit. Furthermore, 
we adapt the theory to the case of multiarm Mach Zehnder interferometers (MMZIs) considering an experimen-
tally relevant framework, with multiphoton Fock states as probe and photon counting measurement. Our analysis 
generalizes the case of twin-Fock MZI which has attracted large experimental7,36–38 and theoretical39–41 interest 
for quantum-enhanced single phase estimation. From the analysis of the Fisher information and employing an 
adaptive multiphase estimation, we predict a multiparameter estimation sensitivity beyond the limit achievable 
with separable qudit probe states.

Results
Multiparameter estimation. We consider here the estimation of a n-dimensional vector parameter 
λ =  (λ1, , λn)11,12. In our benchmark, every parameter corresponds to a phase to be estimated in a multiarm 
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interferometer. A general approach (see Fig. 1a) consists in preparing a probe state ρ̂0, applying a λ-dependent 
unitary transformation λÛ  and performing independent measurements on ν identical copies of the output state 
ρ ρ=λ λ λˆ ˆ ˆ ˆ †

U U0 . The measurement is described by a positive-operator valued measure (POVM), i.e. a set Π̂{ }x  of 
positive operators satisfying ∑ Π =ˆ �x x , λ ρ| = Πλ

ˆP x( ) Tr[ ]x  being the probability of the detection event x. 
Finally, the sequence x ≡  (x1, , xν) of ν measurement results is mapped into a vector parameter Λ(x) =  (Λ 1(x), 


, Λ n(x)), representing our estimate of λ. A figure of merit of multiparameter estimation is the covariance matrix

∑ λ Λ Λ= − Λ − Λ¯ ¯x x xPC ( )[ ( )] [ ( )],
(1)x

i j i i j j,

where λ λ= ∏ν=xP P x( ) ( )i i1  and Λ Λ Λ≡ 

¯ ¯ ¯( , , )n1  is the mean value of the estimator vector. For locally unbi-
ased estimators (i.e. Λ λ δ∂ ∂ =¯ /i j i j, ) the covariance matrix is bounded, via the Cramer-Rao theorem11, as

ν≥ −C F / (2)1

(in the sense of matrix inequality), where

∑ λ
λ λ
λ λ

=
∂
∂

∂
∂p x

p x p x
F 1

( )
( ) ( )

(3)
i j

x i j
,

is the Fisher information matrix (FIM). Notice that Eq. (2) can be derived only when the FIM is invertible. The 
equality sign in Eq. (2) is saturated asymptotically in ν by the maximum likelihood estimator11. Here we quantify 
the phase sensitivity by the variance of each estimator, (δλj)2 ≡  Cj,j. We have

δλ
ν ν

≥ ≥
−F

F
( )

[ ] 1 ,
(4)

j
j j

j j

1
2 ,

,

Figure 1. (a) General scheme of multiparameter estimation. (b) Three-mode MMZI for two-parameter phase 
estimation which can be obtained by two cascaded three-port beam-splitters. Phases (φ1, φ2) on modes (k1, k2) 
are the parameters to be estimated, while (ψ1, ψ2) are two additional controlled phase-shifts (c). Four-mode 
interferometer for two-parameter phase estimation which can be obtained by two cascaded four-port beam-
splitters. Phases (φ1, φ2) on modes (k1, k2) are the parameters to be estimated, while (φ0, ψ1, ψ2) are assumed 
known and controlled. Controlled phases are introduced for adaptive estimation schemes.
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where the first inequality is due to (2) and the second follows from a Cauchy-Schwarz inequality (see 
Supplementary Information). Since 1/(νFj,j) is the Cramer-Rao bound for single parameter estimation, inequality 
(4) tells us that sensitivity in the estimation of λj can be optimized when fixing all the other parameters to known 
values. We will also consider

∑ ∑δλ
ν ν

≥ ≥ .
=

−

=

F
F

( ) Tr[ ] 1 1

(5)j

n

j
j

n

j j1

2
1

1 ,

The right-hand side inequality in Eqs (4) and (5) is saturated if and only if the FIM is diagonal. Furthermore, 
the FIM is bounded by the quantum Fisher information matrix (QFIM): F ≤  FQ (in the sense of matrix inequal-
ity), where

ρ ρ= +λ λ
ˆ ˆ ˆ ˆL L L LF[ ] Tr[ ]/2, (6)i j i j j iQ ,

and L̂ j is the symmetric logarithmic derivative of ρλ with respect to parameter λj, defined by ρ ρ∂ = +λ λL̂(j j  
ρλL̂ )/j 2 10. In the single parameter case, the QFIM reduces to a single scalar quantity and it is always possible to find 
a POVM for which F =  FQ and δλ =  1/FQ holds42,43. In contrast, in the multiparameter case, it is generally not possi-
ble to achieve the Cramer-Rao bound13–15.

Sensitivity bounds for qudit-separable states. In the following we consider the estimation of n param-
eters in a system made of d =  n +  1 modes (e.g. the number of arms in a MMZI, see below). A single particle 
occupying the n +  1 modes is generally indicated as a qudit. The notion of qudit generalizes the concept of qubit 
(a two-mode particle, n =  1) and is relevant in multimode interferometry2. Here we set sensitivity bounds for 
multiparameter estimation when the probe state is qudit-separable. A state ρ̂0 of N qudits is said to be 
qudit-separable if it can be written as ρ ρ ρ= ∑ ⊗ ⊗ˆ ˆ ˆpk k k k

N
sep

(1) ( ), where ρ̂k
l( ) (l =  1, 



, N) is a single qudit state, 
pk >  0 and ∑ k pk =  1. A state which is not qudit-separable is qudit-entangled. We take the generator of each phase 
shift, ≡ λλ

∂
∂
λˆ ˆˆ †

G i Uj
U

j
 (j =  1, … , n labels the parameter), to be local in the qudit, i.e. it can be written as = ∑ =ˆ ˆG gj l

N
j
l

1
( ) 

where ĝj
l( ) is an arbitrary operator acting on the lth qudit. In particular, the transformation λÛ  does not create 

entanglement among the N qudits. For simplicity, we will take the same operator =ˆ ˆg gj
l

j
( )  for each particle. For a 

generic separable probe state ρ̂sep, the inequality

≤ −N g gF ( ) (7)j j j j, ,max ,min
2

holds for all possible POVMs (see Supplementary Information), where gj,max and gj,min are the maximum and 
minimum eigenvalue of ĝ j, respectively. Inequality (7) gives a bound on the diagonal elements of the FIM. It 
corresponds, via the inequality (δλj)2 ≥  1/νFj,j, to a bound on the sensitivity reachable with qudit-separable states 
for the estimation of the single parameter λj, when all other parameters are set to zero. Inequality (7) can be 
always saturated by optimal states and measurements (see Supplementary Information). For the estimation of a 
single parameter, the violation of Eq. (7) is a necessary and sufficient condition of useful qudit entanglement2,4: 
only those qudit-entangled states that violate Eq. (7) allow to estimate the parameter λj with a sensitivity over-
coming the one reachable with any qudit-separable state. Regarding the simultaneous estimation of multiple 
parameters, we can use Eq. (7) and the chain of inequalities (4) to obtain

≥
−

.−

N g g
F[ ] 1

( ) (8)
j j

j j

1
,

,max ,min
2

Inequality (8) is a bound of sensitivity in the estimation of the single parameter λj with qudit-separable states, 
when all the parameters are unknown. Summing Eq. (8) over all parameters, we obtain

∑≥
−

.−

=N g g
FTr[ ] 1 1

( ) (9)j

n

j j

1

1 ,max ,min
2

According to Eqs (8) and (9), for qudit-separable states such that the FIM is invertible, we recover – at best – the 
shot noise scaling of phase sensitivity, δλj ∝  N−1/2, which also characterizes single parameter estimation3,4. Notice 
that the quantity (gj,max −  gj,min)2 is equal to one for any qubit transformation and might be larger than one for gen-
eral qudit transformations. We finally recall that the phase estimation scenario we are considering – as well as the 
notion of useful qudit-entangement – refers to interferometric scheme involving liner qudit transformations and 
multiple independent measurements done with identical copies of the same probe. Inequalities (8) and (9) have 
no concern with the qudit-entanglement of the initial probe state for (nonlinear) parameter dependent processes 
that entangle/disentangle the probe or non-independent multiple measurements.

Multimode Mach-Zehnder interferometry. In the following we discuss the estimation of a phase vector 
φ =  (φ1, … , φn) in a MMZI (see Fig. 1b,c). The MMZI can be obtained by cascading a d-mode balanced 
beam-splitter Û

d( )
, a phase shift transformation φ = φ− ∑ =ˆ ˆ

U e( ) i Nj
n

j j1 , being N̂j the photon-number operator for 
the ith mode, and a second multiport beam-splitter Û

d( )
. The d-mode beam-splitter Û

d( )
 is the natural extension 

of the standard 50-50 beam-splitter to more than two optical input-output modes41. Hence, the MMZI can be 
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adopted as a benchmark to investigate simultaneous estimation of n =  d −  1 optical phases. Indeed, it allows for a 
direct comparison between classical and quantum probe states and represents a flexible platform for the analysis 
of multiparameter scenario by changing the unitary transformation of the input and output multiport 
beam-splitters.

In order to adapt the discussion of the previous section, we consider N particles as input of the MMZI and 
identify a single particle in the d arms of the interferometer as a qudit, whose Hilbert space has thus dimension d. 
The generator of phase shift in the jth mode is φ= =φ

φ
∂
∂

ˆ ˆ ˆˆ †
G i U N( )j

U
j

( )

j

. One can thus write = ∑ =ˆ ˆG gj l
N

j
l

1
( ) where 

ĝ j
l( ) as the operator projecting the lth qudit on the jth mode. Finally, gj,max −  gj,min =  1 and the inequalities (8) and 

(9) read

≥ ≥− −

N
n
N

F F[ ] 1 , and Tr[ ] , (10)j j
1

,
1

respectively. The violation of one of these inequalities in the MMZI is a signature of useful qudit-entanglement 
in the probe state.

The recent experimental implementation of symmetric multiport beam-splitting31–34, by adopting integrated 
platforms, paves the way toward the future realization of optical MMZIs. For d =  3 modes, the tritter matrix (3) , 
corresponding to its unitary transformation Û

(3)
, has diagonal elements = −( ) 3i i

(3)
,

1/2  and off-diagonal ele-
ments = π− e( ) 3i j

i(3)
,

1/2 2 /3  with i ≠  j. For d =  4 modes, the quarter matrix  (4) is = −( ) 2i i
(4)

,
1  and 

= − −( ) 2i j
(4)

,
1  for i ≠  j. The overall matrix for the MMZI is then obtained as    φ= ( )d d( ) ( ). The phase 

vector is estimated from the measurement of the number of particles in each mode. As probe, we focus on multi-
mode Fock states with a single photon in each input mode of the interferometer18, |1, 1, 1〉  and |1, 1, 1, 1〉  for the 
three- and four-mode MZI, respectively. Here, |1, 1, 1〉  ≡  |1〉 1 ⊗  |1〉 2 ⊗  |1〉 3 (and analogous definition for |1, 1, 1, 1〉 ), 
where |1〉 j is a Fock state identifying a single particle in the jth mode.

For the three-mode MZI, the results of the calculation for F−1 are shown in Fig. 2a–c. Analytic expression of 
the FIM is reported in the Supplementary Information. We observe that Tr[F−1] and the diagonal elements 
[F−1]1,1 and [F−1]2,2 depend on the phases φ1 and φ2. Notably, the inequalities (10) are violated at certain optimal 
values of the parameters, signaling that the Fock state |1, 1, 1〉  contains useful qudit entanglement: we find 

= .φ φ
−Fmin Tr[ ] 0 59,

1
1 2

 (see Fig. 2a) and = .φ φ
−Fmin [ ] 0 25j j,

1
,1 2

 (see Fig. 2b,c), which are smaller than the 
bound for qudit-separable states Tr[F−1] =  0.667 and [F−1]j,j =  0.33 (here N =  3 and n =  2), respectively. 
Additionally, we observe characteristic features. (i) F ≠  FQ, in particular, the minimum value of Tr[F−1] is greater 
than the corresponding minimum value of the QFIM: = . > = .φ φ

− −F Fmin Tr[ ] 0 59 Tr[ ] 0 5Q,
1 1

1 2
 (see Fig. 2a).  

(ii) The FIM is not always invertible: at the phase values for which det F =  0 the bound (2) is not defined. Around 

Figure 2. (a–c) Optimal phase sensitivity of the three-mode balanced MZI with |1, 1, 1〉  probe state and 
photon-number measurement. Contour plots of (a) Tr[F−1], (b) (F−1)1,1, (c) (F−1)2,2, as a function of φ1 and φ2. 
Tr[F−1] is minimized at the working points Q1 and Q2 (see main text). (d–f) Optimal phase sensitivity of the 
four-mode balanced MZI with |1, 1, 1, 1〉  probe state and photon-number measurement. Contour plots of (d) 
Tr[F−1], (e) (F−1)1,1, (f) (F−1)2,2, as a function of φ1 and φ2. These are shown for φ0 =  0.01 to avoid undetermined 
points in the plot. The QCRB is achieved, for instance, at the point O1 =  [π, π]. Red areas indicate the violation 
of the separable bound defined in Eq. (10). Tables A and B report −FTr[ ]Q

1  and −F( )Q i i
1

,
 for different input states 

and their comparison with the separable bound (Sep).
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these points (white regions in Fig. 2a–c) [F−1]1,1 and/or [F−1]2,2 diverge. (iii) The working points to obtain the 
minimum of the multiparameter bound do not lead to symmetric errors on the single parameters φ1 and φ2. More 
specifically, when Tr[F−1] =  0.59, the bounds for the error on the single parameters are different: δφ δφ≠1

min
2
min. 

This is  obtained for instance for working point Q1 =   (φ 1,φ 2)  =   (0.892,  2.190),  leading to 
. .− −

F F([ ] , [ ] ) (0 282, 0 310)1 1
1,1 2,2

 and for working point Q2 =   (φ1,φ2) =   (2.190, 0.892), leading to 
. .− −

F F([ ] , [ ] ) (0 310, 0 282)1 1
1,1 2,2

, see Fig. 2a. In summary, with this choice of probe state and measurement it 
is not possible to saturate the quantum Cramer-Rao inequality simultaneously for the two parameters. 
Furthermore, according to point (iii) an adaptive estimation strategy (which we discuss below) is necessary to 
obtain the minimum sensitivity on both parameters with symmetric errors, and thus saturate the multiparameter 
Cramer-Rao bound.

We have repeated the above analysis for the four-mode interferometer (d =  4) with two unknown phases, φ1 
and φ2, and a known control phase φ0 (see Fig. 1c). This configuration allows a comparison between three- and 
four-arm interferometers for the two parameter estimation. In the latter case the control phase φ0 gives us an 
additional degree of freedom. We choose as input the Fock State |1, 1, 1, 1〉 . In Fig. 2d–f the results of our calcula-
tions are reported for a fixed value of φ0, as well as the numerical analysis of det F. We observe that as in the pre-
vious cases the FIM depends on the value of the parameter to be estimated. Furthermore, also in the four-mode 
the achievable sensitivity falls below the bound (10) for separable states: we have = .φ φ

−Fmin Tr[ ] 0 375,
1

1 2
, 

= .φ φ
−Fmin [ ] 0 1875,

1
1,11 2

 and = .φ φ
−Fmin [ ] 0 1875,

1
2,21 2

 which are below the bounds 0.5 and 0.25 given by 
Eq. (10) (N =  4 and n =  2, here), respectively. The most notable difference with respect to the previous case is that 
the QCRB is achieved, for instance in working point O1 =  [π, π]. In addition, both diagonal terms are equivalent 
and only a two step adaptive protocol is needed to reach the QCRB for any arbitrary phase vector (see discussion 
below).

We have also compared the obtained results with the one achievable with other probe states. For instance, we 
consider a set of distinguishable particles ψ = ⊗ = qd

q
d

dis 1  (where |q〉  stands for a single photon on mode kq), or 
an input coherent state ψα

d  on input mode k1 with α = 3 for d =  3 (α =  2 for d =  4) and no phase reference. We 
obtain =−FTr[ ] 1Q

1  for both ψdis
3  and ψα

3 , within the bound Tr[F−1] ≥  0.667 given by Eq. (10) for separable 
inputs. Similarly, = .−FTr[ ] 0 75Q

1  for both ψdis
4  and ψα

4 , within the bound Tr[F−1] ≥  0.5. Results are summarized 
in Tables A and B.

Adaptive phase estimation. In this section we present the adaptive estimation protocols required to max-
imize the precision on the simultaneous estimation of two arbitrary phases in a three- and four- mode MZI. The 
resources (the number of independent measurements ν) are split between multiple steps. A first step is needed 
to obtain a rough estimate of the unknown phases and requires a small subset of the resources which becomes 
negligible when the number of repetitions ν of the experiment is large enough. The subsequent steps exploit the 
available information to optimize the estimation procedure.

Regarding the three-mode interferometer, the above analysis has identified working points (Q1 and Q2) where 
the minimum uncertainty for the estimation of the two phases φ1 and φ2 does not give the same error on the two 
individual parameters. To overcome this limitation – and obtain approximatively a symmetric error in the joint 
estimation of the two phases – we exploited a three-step adaptive algorithm. The protocol requires ν independent 
measurements and the adoption of controlled phase shifts ψi on modes ki, with i =  1, 2, which have to be tuned 
during the protocol to perform the estimation at different working points (see in Fig. 1b). In a first step,  
we set ψ1,2 =  0 and obtain a rough estimate of the phases φi after a number of measurements much smaller than ν. 
Then, in step 2 the tunable phases ψi are adjusted so that φi +  ψi on arms 1 and 2 are set to be close to the working  
point Q1. In this step essentially half of the remaining resources are spent so as to obtain φ ψ δφ+ ±( )Q Q

1
( )

1 1
( )1 1  

and φ ψ δφ+ ±( )Q Q
2
( )

2 2
( )1 1  with an adequate estimator. Here φi

Q( )1 , δφi
Q( )1  represent respectively the estimation 

and the uncertainty of φi around working point Q1. In step 3 the same procedure is repeated for working point Q2. 
Finally the tunable phases ψ1.2 are subtracted so to recover φ1,2 ±  δφ1,2. The results of the adaptive algorithm are 
shown in Fig.  3a–d. Half of the measurements (ν1 =   ν/2) are performed at point Q1, where 
δφ ν ν= .−

F[ ] / 0 531/1
1

1,1 1 1  and δφ ν ν= .−
F[ ] / 0 556/2

1
2,2 1 1 , while the other half (ν2 =  ν/2) are 

performed at point Q2, where δφ ν ν= .−
F[ ] / 0 556/1

1
1,1 2 2  and δφ ν ν= .−

F[ ] / 0 531/2
1

2,2 2 2 . The 

expected error on a single phase δφi after the two steps is then obtained as an appropriate combination of the 
values on the points Qi. More specifically, as the Fisher information is additive, the overall FIM reads 
F =  ν1F1 +  ν2F2, where Fi is the FIM in working points Qi. We observe that the protocol permits to achieve the 
bound of the working point, which for ν1 =  ν2 is δφ δφ δφ ν= ≡ . 0 543/m1 2 . Note that the bound is lower than 
the bound (10) for separable states δφ ν= .0 577/i .

The adaptive scheme for the four-mode interferometer is slightly different: in this case there are optimal work-
ing points, as the point O1, see Fig. 2, where QCRB is achieved for both phases. To reach the QCRB for arbitrary 
phases, we thus apply a two-step adaptive protocol. In the first step, we obtain a rough estimate of the parameters 
with an initial error δ. Then, in the second step we apply two supplementary phases ψ1 and ψ2 to translate the 
working point of the protocol to the neighbourhood of O1. It should be noticed that a convergent estimation pro-
tocol in the second step requires to set φ0 such that the quantity Tr[F−1] has no singularities. Note that the more 
φ0 deviates from φ0 =  0, the larger is the regular region around O1 (see Supplementary Information). The price to 
pay is a slightly increasing the error in the estimation process. The value of φ0 has to be chosen in order to move 
the singularity away from a neighbourhood of O1 larger than the inital error δ of the first step. The results of the 
protocol for the four-mode case with φ0 =  0.01 are then shown in Fig. 4a,b. Similarly to the three-mode case, we 
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observe that the protocol permits to achieve the bound of the working point, which is δφ δφ δφ ν= ′ ≡ . 0 437/m1 2  
for φ0 =  0.01 (plane in Fig. 4), while the quantum Cramer-Rao bound reads δφ ν= .0 433/i . This shows that 
achieving a convergent numerical protocol leads to a slight decrease in phase sensitivity due to singular points in 
the neighborhood of the working regions. Also in this case, the adaptive protocol allows to reach a sensitivity over-
coming the bound of separable state for any vector parameter.

Conclusions
In this manuscript we have developed the general theory of quantum-enhanced multiphase estimation. In par-
ticular, we provide conditions of useful qudit-entanglement for the simultaneous estimation of multiple phases 
below the ultimate sensitivity limit achievable with qudit-separable states. We have focused on interferometers 
involving linear qudit transformations and multiple independent measurements. In a realistic experimental sce-
nario, using multi-mode Mach-Zehnder interferometers and photo-counting measurements, Fock state probes 
can be exploited for multiphase estimation with quantum-enhancement phase sensitivity. With respect to the 
estimation of a single phase, where Fock states are known to be a useful resource, our analysis evidences a rich 
scenario: most notably, the phase sensitivity strongly depends on the phase value (the Cramer-Rao bound being 

Figure 3. Numerical simulation of adaptive estimation of two phases, φ1 and φ2 with the three-mode 
interferometer injected by a |1, 1, 1〉. The adaptive protocol (see text) aims at reaching a phase uncertainty 
δφ1 ≈  δφ2 after ν =  10000 independent measurements. (a,b) Uncertainties δφ1/δφm and δφ2/δφm obtained for 
different values of φ1 and φ2 (points) and normalized with respect to the expected value δφm =  0.543/ ν  (see 
text). As an example, we report the results obtained for the specific cases φ1 =  π (c) and φ2 =  π (d). In these 
panels the blue line is the estimated value of φ1, the red line is the estimated φ2. The inset shows the difference 
between the estimated value and the actual value of the phases, error bars are obtained by repeating 1000 times 
the numerical simulation of the protocol.

Figure 4. Numerical simulation of adaptive estimation of two phases, φ1 and φ2 with the four-mode 
interferometer injected by a |1, 1, 1, 1〉, for φ0 = 0.01 and ν = 10000 independent measurements.  
(a,b) Uncertainties δφ δφ ′/ m1  and δφ δφ ′/ m2  obtained for different values of φ1 and φ2 (points) and normalized  
with respect to the achievable bound δφ ν′ = .0 437/m . The horizontal red line in the legend corresponds to  
the quantum Cramer-Rao bound for the single-parameter.
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not always definite) and on the interferometer configurations such as the three- and four-mode interferome-
ters. Finally, we discuss and numerically simulate an adaptive estimation protocol which permits to achieve the 
expected bounds for any vector parameter. The adaptive strategy becomes crucial in multiparameter estimation 
since the simultaneous saturation of the ultimate limits for all parameters is in general not guaranteed.

During the completion of this manuscript, a first implementation of a tritter-based interferometer for 
single-phase estimation has been reported45.
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