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Abstract: The environmental behaviors of uranium closely depend on its interaction with natural
minerals. Ferrihydrite widely distributed in nature is considered as one main natural media that
is able to change the geochemical behaviors of various elements. However, the semiconductor
properties of ferrihydrite and its impacts on the environmental fate of elements are sometimes
ignored. The present study systematically clarified the photocatalysis of U(VI) on ferrihydrite under
anaerobic and aerobic conditions, respectively. Ferrihydrite showed excellent photoelectric response.
Under anaerobic conditions, U(VI) was converted to U(IV) by light-irradiated ferrihydrite, in the
form of UO2+x (x < 0.25), where •O2

− was the dominant reactive reductive species. At pH 5.0, ~50%
of U(VI) was removed after light irradiation for 2 h, while 100% U(VI) was eliminated at pH 6.0.
The presence of methanol accelerated the reduction of U(VI). Under aerobic conditions, the light
illumination on ferrihydrite also led to an obvious but slower removal of U(VI). The removal of U(VI)
increased from ~25% to 70% as the pH increased from 5.0 to 6.0. The generation of H2O2 under
aerobic conditions led to the formation of UO4•xH2O precipitates on ferrihydrite. Therefore, it is
proved that light irradiation on ferrihydrite significantly changed the species of U(VI) and promoted
the removal of uranium both under anaerobic and aerobic conditions.

Keywords: ferrihydrite; photocatalysis; U(VI/IV); uranium peroxides; immobilization

1. Introduction

The rapid development of nuclear power requires an increasing demand for uranium,
the primary fuel for nuclear reactors [1,2]. In recent years, the worldwide natural uranium
production is between 55,000 and 65,000 tons per year [3]. However, the nuclear fuel cycle
including mining, milling, and power production typically generates a substantial quantity
of uranium waste. Due to the serious health hazards caused by uranium [4], investigation
on the environmental fate of uranium is extremely important. Under natural conditions,
most uranium exists as hexavalent uranyl (U(VI)) with high solubility and mobility [5].
Once released to the environment, U(VI) would be adsorbed by natural media or reduced to
immobile U(IV) under reduction conditions [5–9], subsequently affecting the transportation
and environmental risks of uranium. Therefore, the interactions between U(VI) and natural
media such as minerals have received great attentions.

Iron is one of the most important elements on earth, and iron (oxyhydr)oxides are
widely distributed in natural environments [10,11]. Ferrihydrite, a poorly ordered iron
oxide, can be found in soils, sediments, rocks, and waters [11,12]. Because of the relatively
large surface area and abundant reactive sites, ferrihydrite is generally regarded as an out-
standing scavenger for cations and anions [13–16]. Especially, ferrihydrite has been verified
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to be an excellent scavenger for arsenate [16]. It has been proven that ferrihydrite also
shows excellent adsorption affinity for U(VI), which was much higher than goethite and
magnetite [8]. Owing to the wide distribution of ferrihydrite in nature, the environmental
fate of uranium should be markedly impacted by ferrihydrite. Although iron oxides have
received much attention owing to their excellent adsorption ability, their photocatalytic
properties are sometimes ignored. It is well known that the light irradiation on semicon-
ductor minerals would excite electrons (e−) from the valence band (VB) to the conduction
band (CB) and result in the charge separation [17,18]. The photogenerated electrons, holes,
together with the subsequently produced 1O2, •O2

−, •OH, and H2O2 can induce complex
redox reactions. which would further impact the environmental fate of various metal ions
and organic matters [18–21]. Studies have indicated that some iron oxides can act as natural
photocatalysts to catalyze the oxidation of organic matters [22–24], and ferrihydrite could
also act as a semiconductor material for Mn(II) oxidation [25,26] and organic matter degra-
dation [23]. Hence, ferrihydrite is expected to show photocatalytic properties and induce
redox reactions. For U(VI), it has been suggested that the presence of semiconductors would
lead to rapid reduction of U(VI) under anaerobic conditions, forming reduced deposits on
solid surface [27–34]. Therefore, it is considered that light-irradiated ferrihydrite would
bring change to the chemical state of uranium and subsequently impact its environmental
behaviors, deserving further exploration.

The objective of this research is to probe the influence of the photocatalytic reactions
induced by ferrihydrite on the environmental behaviors of U(VI). Uranium exists in both
anaerobic and aerobic environments, and oxygen generally brings significant influence on
the photo-generated species. Therefore, the reactions were investigated both in N2 and air
atmosphere to simulate the anaerobic and aerobic conditions in nature. The findings may
help improve understanding the geochemical behaviors of uranium in nature.

2. Results and Discussion
2.1. Physicochemical Properties of Ferrihydrite

Figure 1A depicts the XRD pattern of the as-prepared ferrihydrite. Two peaks centered
at about 34.8◦ and 62.2◦ corresponded to the (110) and (115) planes of 2-lines ferrihy-
drite [35]. No signal from impurities was found in the XRD pattern, suggesting that the
prepared sample was pure ferrihydrite. The photoelectrochemical (PEC) properties of
ferrihydrite were further tested. As shown in Figure 1B, the ferrihydrite electrode showed
an immediately enhanced photocurrent upon light illumination, indicating that ferrihydrite
had a sensitive light response and efficient photo-charge separation ability. The electro-
chemical impedance spectroscopy (EIS) (inset in Figure 1B) also supported this. A small
arc radius on the EIS Nyquist plot was observed, corresponding to a fast interfacial charge
transfer in ferrihydrite. Moreover, the arc radius became smaller under light irradiation
(Figure S1 in the Supporting Information), which was mainly due to the difference in
the electron density of the electrode. The decreased resistance value suggested enhanced
electron transport performance under light illumination [36]. DRS was used to investigate
the optical absorbance of ferrihydrite. From Figure 1C, ferrihydrite exhibited an obvious
absorbance for visible light. The corresponding bandgap (Eg) of ferrihydrite was esti-
mated to be 1.70 eV using the Tauc plots transferred from Kubelka–Munk function (inset in
Figure 1C) [37]. The VB-XPS was collected to evaluate the valance band potential (EVB) of
ferrihydrite. From Figure 1D, the VB maximum (EVBM) of ferrihydrite located at 1.60 eV.
The EVB was determined to be 1.16 V (vs. NHE) according to the Eqn. [38]:

ENHE = Φ + EVBM − 4.44 (1)

where ENHE was standard electrode potential, and Φ represents the electron work function
of the analyzer (4.00 eV). Combining the above results, the conduction band potential (ECB)
of ferrihydrite was −0.54 V vs. NHE (Figure 1E). Therefore, it was proved that prepared 2-
lines ferrihydrite showed excellent optical absorbance, sensitive photoelectric response, and
moderate band structures that is promising for the photocatalysis for U(VI) [27]. In addition,
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the EIS and Fe 2p spectra of ferrihydrite remained unchanged after the photocatalytic
reactions (Figures S2 and S3), indicating the stability of ferrihydrite under light.
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Figure 1. Physicochemical properties of ferrihydrite, XRD pattern (A), time-dependent photocurrent
measurement and EIS (inset) (B), UV–Vis diffuse reflectance spectra (C) and the optical band gap
energy (inset), valence band X-ray photoelectron spectroscopy (VB-XPS) (D), and the band edge
positions (E).

2.2. The Photocatalytic U(VI) Reduction under Anaerobic Conditions

Figure 2A displays the U(VI) removal on ferrihydrite in N2 atmosphere. After in-
teraction in darkness for 2 h, adsorption equilibrium was achieved and removed ~30%
of U(VI) at pH 5.0, while it increased to ~50% of U(VI) at pH 6.0. However, under light,
the amount of solution U(VI) was gradually reduced at pH 5.0, and approximately 20%
of U(VI) was removed after light irradiation for 120 min. U(VI) removal occurred much
faster at pH 6.0, where all U(VI) was eliminated during the same period. By contrast,
the blank test without ferrihydrite as catalyst showed that U(VI) was hardly removed
under light (Figure 2A), indicating the negligible self-photolysis of U(VI). Therefore, it was
evidenced that light-irradiated ferrihydrite promoted the U(VI) removal under anaerobic
conditions, which should be closely related to the semiconductor properties of ferrihydrite.
Recent studies proved that U(VI) was rapidly reduced by light-irradiated semiconductors,
especially under anaerobic conditions [28–34]. The enhanced photocatalytic U(VI) reduc-
tion at higher pH was attributed to the weaker competition of H+ for the photogenerated
reactive reductive species [34]. Moreover, in the presence of methanol, despite the slightly
inhibited adsorption of U(VI), the photocatalytic U(VI) reduction was obviously promoted
(within 60 min) (Figure 2A). This suggests that the presence of such kind of low molecular
weight organic matters in nature may promote the reduction of U(VI). Typically, these
low molecular weight organic matters including methanol, formate, ascorbic acid, and
ethanol could act as the scavengers for the photogenerated holes, prolonging the lifetime of
electrons [39]. In addition, some reductive free radicals (such as •CO2

−) generated during
the oxidation of these organic matters could also contribute to the U(VI) reduction [40].
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Figure 2. The photocatalytic reduction of U(VI) by ferrihydrite under anaerobic conditions (A), ESR
spectra of •OH and •O2

− radicals (B), the photocatalytic kinetics of U(VI) on ferrihydrite by the
addition of PBQ (scavenging•O2

−) and TPA (scavenging •OH) (C), and U 4f XPS spectra for the
products after adsorption and photocatalytic reaction (D).

To clarify the mechanisms for the photocatalytic U(VI) reduction on ferrihydrite, the
reactive reductive species were investigated using ESR and free radical capture experi-
ment. Figure 2B shows that no signal was found in the ESR spectra in darkness, whilst
obvious characteristics of DMPO-•O2

− and DMPO-•OH were detected upon illumination.
This confirmed the generation of •O2

− and •OH radicals on light irradiated ferrihydrite.
The roles of •O2

− and •OH in reducing U(VI) were determined with radical capture ex-
periments, as exhibited in Figure 2C. Obviously, the photocatalytic reduction of U(VI)
was remarkably inhibited by p-benzoquinone (PBQ), while tertiary butanol (TBA) slightly
affected the reduction of U(VI). Therefore, •O2

− radicals were proved to be the dominant
reductive species for U(VI) reduction on ferrihydrite [33,40].

The transformation of U(VI) on ferrihydrite during the photocatalytic process was
further determined by XPS investigation. Figure 2D compares the U 4f spectra of the
uranium loaded ferrihydrite before and after light irradiation. In darkness, two peaks
appeared at 381.9 eV and 392.9 eV, corresponding to the characteristics of U(VI) adsorbed
on ferrihydrite [34]. After irradiating the sample by light, U 4f5/2 and U 4f7/2 peaks
shifted by ~0.4 eV to lower binding energy, both of which could be deconvoluted into
two peaks, respectively. Comparing with the results of U(VI) adsorbed on ferrihydrite,
new peaks appeared at 380.8 eV and 391.6 eV, corresponding to the characteristics of
U(IV) [34]. This result confirmed the reduction of U(VI) on light-irradiated ferrihydrite.
However, XPS analysis also indicated that uranium partially existed in its hexa-valence
in the products after the photocatalytic reactions. This phenomenon was similar to all
studies involving the photocatalytic U(VI) reduction [27–34]. It was considered that the
products were UO2+x (x < 0.25) [40–42], or the reduced products was re-oxidized again on
the surface [34]. Figure 3A shows the morphology of raw ferrihydrite. Pristine ferrihydrite
formed relatively uniform aggregates with diameter of about 20 nm. Comparing with the
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small aggregates of raw ferrihydrite, the size of aggregates became much bigger after the
photocatalytic reactions (Figure 3B). The HRTEM image of raw ferrihydrite showed that
the space of the lattice fringe was about 0.25 nm (Figure 3C), corresponding to the (110)
plane of ferrihydrite [43]. Upon light illumination, additional fringes with a spacing of
0.31 nm were observed (Figure 3D), which is in accord with the characteristic of the (111)
facet of UO2+x [33,40]. The formation of the uranium-containing deposits on ferrihydrite
surface could be further verified by the elemental mapping (Figure 3E), where uranium
uniformly deposited on ferrihydrite surface. The above results proved that U(VI) was
photocatalytically reduced by ferrihydrite, forming uranium oxides with crystal struc-
tures similar to UO2. In summary, it was proved that light irradiated ferrihydrite could
induce photocatalytic reactions under anaerobic conditions, reducing U(VI) to insoluble
U(IV) deposits, which subsequently changed the behaviors and fate of uranium in nature.
This may help to better understand the environmental behaviors of uranium in anerobic
environment, such as subsurface waters containing semiconductor minerals.
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2.3. The Photocatalytic Immobilization of U(VI) under Aerobic Conditions

Comparing with the reactions under anaerobic conditions, it is more valuable to
explore the photocatalysis under aerobic conditions. This is mainly because more natu-
ral semiconductors are generally exposed to both light irradiation and the atmosphere.
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However, it has been proved by numerous studies that the photocatalytic U(VI) reduction
mostly occurred in anaerobic environment [27–32,40]. This was mainly because: (1) the
exposure of the catalytic system to air would increase the concentration of dissolved oxy-
gen, which furthered competition for the photogenerated electrons [44]; (2) the presence
of excess oxygen molecules would result in more oxidative species such as •OH, which
strongly suppressed the reduction of U(VI) [40]; and (3) high concentration of dissolved
oxygen easily made the reduced products re-oxidized [34]. In fact, the limited photocat-
alytic U(VI) reduction under aerobic conditions has become one major problem limiting
its application [27]. Recently, few studies have achieved the photocatalytic U(VI) reduc-
tion in atmosphere by designing catalysts with proper band structures to reduce reactive
oxidative species (ROS) [33]. However, the band structures of the natural semiconductors
are fixed. Therefore, it is critical to evaluate if the behaviors of uranium can be affected
by the photocatalytic reactions under aerobic conditions. Figure 4A,B show the photo-
catalysis of U(VI) over ferrihydrite in air atmosphere at different pHs. In darkness, the
adsorption equilibrium was reached within 0.5 h, where 10% and 25% of U(VI) was ad-
sorbed at pH 5.0 and 6.0, respectively. Compared with the results obtained in anaerobic
environment, U(VI) adsorption in air atmosphere was weaker. This was mainly because
the continuous bubbling of air into the suspension increased the concentration of dissolved
carbonates, which would result in the inhabitation on U(VI) adsorption [42]. Upon light
irradiation, unexpectedly, U(VI) was gradually removed from solution. ~25% of U(VI) was
removed at pH 5.0 after light irradiation for 6 h, while the removal of U(VI) reached ~70%
at pH 6.0. Compared with the photocatalytic U(VI) reduction in anaerobic environment,
the photocatalysis induced U(VI) removal in air atmosphere was slower but still effective.
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To clarify this unexpected result, free radicals capture experiments were conducted.
Similar to the reactions under the anaerobic conditions, the presence of PBQ inhibited U(VI)
removal. Surprisingly, the removal of U(VI) was completely restrained in the presence of
TBA, which acted as the scavenger for •OH (Figure 4C). This suggested a new reaction
process for U(VI) removal under aerobic conditions, which was different from that under
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anaerobic conditions. For in-depth understanding the reaction mechanisms, the products
were analyzed by XPS investigation. It is interesting to notice that the U 4f signals of the
products appeared at 382.3 eV and 393.1 eV, respectively (Figure 4D), being higher than the
characteristics of adsorbed U(VI) and U(IV). This indicates that the removal of U(VI) by light
irradiated ferrihydrite in air atmosphere was not caused by the reduction of U(VI) or simple
adsorption, being different from the results under the anaerobic conditions. TEM images
show that the size of the observed ferrihydrite particles also increased obviously after
the photocatalytic reactions (Figure 5A). The deposit of uranium-containing products was
confirmed by the element distribution, as shown in Figure 5C. However, from the HRTEM
images (Figure 5B), the products only clearly show the lattice fringes of ferrihydrite and
the other part showed no fringe, indicating the formation of uranium products with non-
crystal structure. This proved that the products of the photocatalysis of U(VI) under aerobic
conditions differed from that obtained in N2 atmosphere, and should be caused by different
mechanisms. It is well known that H2O2 is a common product of the photocatalytic
reactions in air atmosphere, and H2O2 was usually regarded as one main ROS [45]. It was
considered that the photogenerated H2O2 would react with uranyl to form UO4•xH2O (s)
precipitates. The reaction occurred as follows [46,47]:

UO2
2+ + H2O2 + xH2O = UO4•xH2O (s) + 2H+ (2)
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Actually, this has become one of the traditional processes for producing the so-called
‘yellowcake’. To verify this, the generation of H2O2 on ferrihydrite was detected by adding
N,N-diethyl-p-phenylenediamine (DPD) to the sample after light irradiation [48]. As shown
in Figure 6A, the generation of H2O2 was verified by the characteristic red color of DPD•+

and strong absorbance at ~550 nm in the UV–vis absorbance spectrum (inset in Figure 6A).
The concentration of H2O2 remained at about 3.5 × 10−6 mol/L. The critical role of H2O2
in the photocatalytic removal of U(VI) under aerobic conditions was also supported by
the results of the radical capture experiments. The suppressing of •O2

− and •OH radicals
restrained the generation of H2O2, and subsequently made the removal of U(VI) hardly
occurred. Furthermore, the XPS spectra of UO4•xH2O standard was obtained and shown
in Figure 6B. The binding energy of UO4•xH2O standard located at 382.3 eV (U 4f7/2) and
391.1 eV (U 4f5/2), respectively, which were the same with the photocatalysis products of
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U(VI) obtained in air atmosphere. This also supported the formation of UO4•xH2O deposits
on ferrihydrite under aerobic conditions. In general, it was proved that the irradiation of
light on ferrihydrite under the aerobic conditions led to the generation of H2O2, which
subsequently resulted in the precipitation of uranyl, in the form of UO4•xH2O (s).
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3. Materials and Methods
3.1. Materials

UO2(NO3)2•6H2O was dissolved in Milli-Q water to prepare U(VI) solution. Ferrihydrite was
prepared using the method reported by Wang et al. [49]. Briefly, 1.0 mol/L NaOH solution
was added into 500 mL 20 mmol/L Fe3+ solution until the pH reached 7.5. After stirring
for 2 h, the brown precipitates were filtered and the solid was washed for several times
by pure water. Finally. the obtained products were freeze dried and ground to pass a
200-mesh screen. UO4•xH2O standard was prepared by adding H2O2 into uranyl solu-
tion. The obtained yellow precipitates were then separated and freeze dried. The X-ray
diffraction (XRD) pattern of the products was shown in Figure S4.

3.2. Photocatalysis Test

A total of 9.0 mg of ferrihydrite was mixed with 15 mL 0.1 mmol/L U(VI) solution.
The pH was adjusted by using HCl and NaOH solution. For the experiments under
anaerobic conditions, the reaction cell was bubbled with N2 for 2 h in the dark to remove
O2. As for the experiments under aerobic conditions, the reaction cell was bubbled with
air. To simulate the irradiation of sunlight, a 300 W Xe lamp was used to illuminate the
suspension, while control experiments were conducted in darkness. At desired time, 1.0 mL
of the suspension was taken out and filtered to obtain the supernatant, and the residual
U(VI) in solution was measured using the method in reference [34].

3.3. Characterization

The samples were characterized by transmission electron microscopy (TEM, Fei Tecnai
G2 F30), X-ray diffraction (XRD, D/Max-2400, Rigaku, Tokyo, Japan), and UV–vis diffuse
reflection spectrum (DRS, UV-2550, Shimadzu, Kyoto, Japan). The chemical states of ura-
nium and valence band of the catalysts were obtained by X-ray photoelectron spectroscopy
(XPS, Thermo Scientific ESCALAB Xi+, Waltham, MA, USA) with Al-Kα X-ray source.
The binding energies were calibrated by C 1 s at 284.8 eV. The electron spin resonance
(ESR) was gained on Bruker A300 spectrometer, and 5,5-dimethyl-l-pyrroline N-oxide
(DMPO) was used as the probe. The electrochemical measurements were conducted on
electrochemical workstation (CHI-600e, Chenghua, Shanghai, China). The concentration of
H2O2 was measured using the method in reported research [48].
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4. Conclusions

In summary, we investigated the photocatalysis of U(VI) over ferrihydrite under
anaerobic and aerobic conditions, respectively. Ferrihydrite exhibited excellent photo-
electric properties. Under anaerobic conditions, U(VI) was photocatalytically reduced
by light-irradiated ferrihydrite, which acted as a natural semiconductor. U(VI) was re-
duced to U(IV) by •O2

− radicals, in the form of UO2+x (x < 0.25) precipitates. On the
contrary, a considerable amount of H2O2 was generated by irradiating ferrihydrite in
open air. The presence of H2O2 led to the precipitation of uranyl, forming UO4•xH2O (s).
Therefore, it was proved that light irradiation on ferrihydrite would change the species of
uranium both under anaerobic and aerobic conditions, making soluble U(VI) to convert to
its immobile forms and promoted U(VI) removal. This would subsequently result in the
change of the environmental fate of uranium in nature. These results should be helpful for
better understanding and evaluating the behaviors of uranium in the natural environment.
Moreover, it may also reveal the important roles of semiconductor minerals in tuning the
geochemical behaviors of elements. Further clarification of the photocatalytic activities
of other natural semiconductor minerals and the impacts of environmental factors on the
catalytic reactions would enhance its scalability.
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