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Spin to orbital light momentum 
conversion visualized by particle 
trajectory
Alejandro V. Arzola   1, Lukáš Chvátal2, Petr Jákl2 & Pavel Zemánek2

In a tightly focused beam of light having both spin and orbital angular momentum, the beam exhibits 
the spin-orbit interaction phenomenon. We demonstrate here that this interaction gives rise to series 
of subtle, but observable, effects on the dynamics of a dielectric microsphere trapped in such a beam. 
In our setup, we control the strength of spin-orbit interaction with the width, polarization and vorticity 
of the beam and record how these parameters influence radius and orbiting frequency of the same 
single orbiting particle pushed by the laser beam. Using Richard and Wolf model of the non-paraxial 
beam focusing, we found a very good agreement between the experimental results and the theoretical 
model based on calculation of the optical forces using the generalized Lorenz-Mie theory extended to a 
non-paraxial vortex beam. Especially the radius of the particle orbit seems to be a promising parameter 
characterizing the spin to orbital momentum conversion independently on the trapping beam power.

Laser beams may spatially confine and drive dielectric particles via so called optical forces following the intensity, 
phase and polarization profile of the electromagnetic field1,2. In this paper we deal with a vortex beam which is 
focused and resembles a bright doughnut intensity profile with a characteristic helical wave front3. Depending on 
the topological charge , vortex beams carry axial orbital angular momentum density (OAM) (ħ per photon)4,5 
which can be transferred upon an illuminated particle resulting in an optical torque acting on the particle6–10. 
Vortex beams have been used to initiate rotation of absorbing microscopic particles11–13, orbiting of dielectric 
spheres14–16, and spin of non-spherical objects17,18.

Besides the orbital angular momentum, a circularly polarized beam can carry axial spin angular momentum 
(SAM) σħ per photon, with σ = +1 for right hand circular polarization (RH) or σ = −1 for left hand circular 
polarization (LH). Transfer of SAM to non-spheres, absorbing or birefringent sphere results in spinning of micro-
objects. It has found applications in rheology as optically driven pumps19–23, as a tool quantifying the properties 
of fluids or gases from a microscopic point of view19,24–27, navigating nerve fiber growth28 or as a probe in a new 
generation of photonic force microscopes29 with the ability to detect tiny external torques in addition to tiny 
external forces30–32.

Obviously an elliptically polarized vortex beam carries both types of angular momenta. In the paraxial approx-
imation, the total axial angular momentum density of the beam is done as the sum + s( ) 4,13, with s being the 
density of circular polarization or spin density, which is given in terms of the energy densities in the circular basis, 
I+ and I−, by s = (I+ − I−)/(I+ + I−). However, when the beam is tightly-focused, i.e. non-paraxial, a small amount 
of the spin angular momentum is converted into the orbital one33–35 and all azimuthal, radial, and axial compo-
nents of the optical force depend on this spin-orbit interactions. Since this phenomenon is possible to observe 
only at the focal volume of the beam, we placed a dielectric particle into the focus and detected the particle trajec-
tory coming from its interaction with the tightly-focused elliptically-polarized vortex beam. We analyzed the 
radial equilibrium particle position, which reflected the radial force influence, and the particle orbiting frequency 
proportional to the azimuthal force. Both reveal measurable influence of the spin-orbit conversion. Up to our best 
knowledge this is the first precise quantitative experimental and theoretical study how the radius of the particle 
trajectory and its orbiting frequency in a vortex beam is influenced by the polarization and topological charge of 
the beam.
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Geometry and Experimental Arrangement
A laser beam passes thought the system as Fig. 1d illustrates and enters the sample cell pointing vertically against 
the gravity. The vortex beam is focused on a diluted solution of polystyrene microparticles dispersed in the sam-
ple cell. A particle which enters the beam is pushed by the laser beam against the top glass interface and orbits in 
the vortex beam (see Fig. 1f). As we show below in Figs 2 and 3, the particle does not orbit at the radial distance 
corresponding to the highest optical intensity of the vortex beam ring. In contrast to other reported approaches33 
we cautiously trapped a single particle and used the same particle for the whole parametric study presented below.

A broad Gaussian beam with waist diameter 2wSLM =17.5 ± 0.5 mm hits the spatial light modulator (SLM) 
where a particular phase mask is imposed. We use a blazed grating added to the original helical phase at the 
SLM, giving the characteristic fork dislocation (see Fig. 1a)36. The width, intensity and topological charge of the 
first order diffracted (paraxial) beam are controlled depending on the phase mask extend, modulation depths 
and vorticity and its lateral intensity profile is shown in Fig. 1b16,17. Such a flexibility of the system enabled us to 
modify the above mentioned beam parameters while we kept the same particle confined. On the top of that we 
also employed the SLM to compensate optical aberrations in the optical path17,37,38.

The elliptical polarization of this paraxial beam is controlled with a quarter-wave plate (QWP) placed close 
to the entrance aperture of the objective. The linear polarization of the beam incident on the QWP was set pre-
cisely along x axis by a high power polarizer. The angle β between the x axis and the fast axis of the quarter wave 
plate is set with a rotatory stage with an accuracy of δβ = 1°. The beam is focused by the high numerical aperture 
water immersion objective to the sample cell. An example of its image on the CCD is shown in Fig. 1c. The water 

Figure 1.  Geometry of the problem and experimental setup. (a) An example of the phase mask imposed on 
the SLM. (b) An example of the first order diffraction beam profile at the SLM plane. (c) Focused beam imaged 
on the CCD. (d) The opto-mechanical setup of the experiment. The laser beam from Verdi V6 (wavelength 
λ = 532 nm, input power 6W) is expanded 8× by the telescope T1 (not shown in the figure) (f = 25 mm, 
Thorlabs AC127-025-A and f = 200 mm, Thorlabs AC254-200-A) and reflected from the spatial light modulator 
(SLM, Hamamatsu PAL-SLM, X8267-5080DB), passes through the achromatic doublet L1 (focal length 
f = 400 mm, Thorlabs AC254-400-A), aperture that blocks all diffraction orders except the first one, achromatic 
doublet L2 (f = 250 mm, Thorlabs AC254-250-A), telescope T2 (0.75X, with lenses f = 200 mm, Thorlabs 
AC254-200-A and f = 150 mm, Thorlabs AC254-150-A), polarizer (linear film polarizer with high extinction 
ratio and laser damage threshold, Thorlabs LPVISB050), quarter wave plate (QWP, multi-order quarter-wave 
plate,Thorlabs WPMQ05M-532), high-numerical aperture microscope objective (Olympus UPLSAPO 60× 
water immersion, NA = 1.2). (e) Detail how the objective is covered by a home made plastic collar to prevent 
water evaporation. The objective is mounted on Z piezo controller (Mad City Labs, NanoF-200, accuracy 
δz = 20 nm), and the sample cell is mounted on XY positioning stage (Prior Scientific, Proscan II). (f) A 
polystyrene particle (Bangs Laboratories, diameter 0.994 μm, refractive index np = 1.59) is dispersed in water 
(nm = 1.332), pushed by the beam against the top interface of the sample cell and orbits in the focused vortex 
beam. It is monitored by the microscope objective (Olympus UPLSAPO, 100×, oil immersion, NA = 1.40), 
lens tube L3 (Achromatic doublet with f = 250 mm, Thorlabs AC254-250-A) and CCD camera (Basler acA640-
100 gm) providing the sampling time of 2.8 ms and resolution of 40.5 nm/pixel. Capital letters A, B, C denote 
the planes placed at the rear focal plane of the objective, right behind the objective lenses, and in the focus of the 
objective, respectively.
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immersion objective suppresses the strong spherical aberrations appearing in oil immersion objectives when the 
sample is immersed in water several microns far from the cover glass.

Spin-to-Orbit Angular Momentum Conversion Visualized by Particle Trajectory
The azimuthal force component (see Appendix for details) gives rise to the orbiting motion of the particle around 
the axis of the beam. It is important to stress that the dynamics of the particle is not deterministic, but in general 
it is subjected to the thermal fluctuations of the surrounding medium. The dynamics of the particle is recorded 
with a video-microscopy system providing sampling time of 2.8 ms and resolution 40.5 nm/pixel. The trajectory 
followed by the centroid of the particle is estimated from the digitalized images with an accuracy of less than 5 nm 
using the least-squares fitting method39. Usually units of mW are enough to maintain the particle on a stable orbit 
near the top glass against the thermal fluctuations and the gravity force.

Figure 2 shows the trajectories acquired for the same particle in the focused vortex beam with the topological 
charge = 4 and = 10 and for both circular polarizations. For = 4 (Fig. 2a), when the beam goes from 
left-handed (LH) to right-handed (RH) circular polarization, there is a significant qualitative change in the parti-
cle dynamics, transiting from an equilibrium position in the center of the beam for LH to a stable orbit around it 
for RH. It is known that the on-axial or off-axial equilibrium position of the particle depends on the ratio of the 
particle diameter and the radius of the narrowest ring defined by the maximum of the energy density Red

40,41. 
Therefore this observation proves in a very sensitive way the existence of significantly different lateral equilibrium 
positions for LH and RH circular polarizations34. We also observed experimentally that for < 4 the particle is 

Figure 2.  Trajectories followed by the particle center in a vortex beam with topological charge (a) = 4 and (b) 
= 10 at the xy plane axially placed at the beam waist position and maximal NA = 1.2. The red and blue curves 

indicate the trajectories for right-handed (RH) and left-handed (LH) circular polarizations, respectively. The 
gray line in (b) records the subtle elliptical shape of the trajectory followed by the particle when the beam is 
linearly polarized (LP).

Figure 3.  Comparison of the radial position of the maximum of the field energy density Red and equilibrium 
trajectories Req of the particle for experimental parameters summarized in Appendix Table A1 at the beam waist 
at maximal NA = 1.2. Red and blue dots correspond to RH and LH, respectively, the spread of theoretical Req 
corresponds to the spread of the experimental parameters.
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always trapped close the beam axis. For > 4 and any polarization the particle is pushed away from the beam axis 
to an equilibrium radial position where the particle orbits around the beam center following the optical torque 
coming from the azimuthal scattering force. We can see already in Fig. 2b a more elliptical trajectory if the polar-
ization is linear. To compare qualitatively the radii of the particle orbit for different beam parameters, we fit an 
ellipse to the experimental data42 denoted by the thick curves in Fig. 2. The white dots in Fig. 2 denote the mean 
local radius. For simplicity, hereafter, we will denote the mean radius of the circular trajectory Req which was 
determined as the minimal radial distance between the circle and all the particle positions43.

Comparison with theoretical results in Fig. 3 demonstrates that Req is generally different from the radial posi-
tions of the maxima of the field energy density Red and its experimental values correspond very well to the theo-
retical model. For large values of  ( ≥ 7) the equilibrium positions of the particle grow approximately linearly 
with the slope m = 0.093 μm, and with a constant gap beneath circular polarizations of 0.058 μm. Later on we will 
discuss this phenomenon in more details.

Since the radius of the particle orbit varies with the axial position of the particle in the beam, Fig. 4a illustrates 
this dependence for the topological charge equal to = 5 and both polarizations. If the particle z positions are 
close to the beam waist (z = 0), the trajectory radii Req differ more with the beam polarizations. Let us highlight 
very good agreement between the theoretical description and the experimental data even though we have used 
only the parameters obtained from the experiment (see Appendix Table A1) without any fitting. In all the studies 
presented below we always first measured the axial dependence of the mean radius of the particle trajectory, 
determined the axial position giving the minimal orbit radius Req, and set this axial position as z = 0 (as in Fig. 4a).

Figure 4b compares experimental and theoretical results of Req at z = 0 for one selected vortex beam with 
= 5, both polarizations RH and LH, and NA going from NA = 0.4 until the maximum value of the objective 

NA = 1.2. The effective numerical aperture NA is set at the SLM by the diameter of the phase mask, diffracting the 
incident beam to the first order and thus controlling the diameter of the beam entering the objective38. As it is 
intuitively expected, noticeable differences between Req for both polarizations are seen for larger NA where the 
beam is more tightly focused and stronger spin-orbit coupling occurs. In contrary, negligible influence of the 
beam polarization on the particle trajectory radius Req can be found for NA bellow 0.5.

Figure 5 summarizes our main results as the dependence of the mean radius Req of the particle orbits on 
s = sin 2β and nine different topological charges from = 4 to = 12. The theoretical prediction is plotted in the 
same graph as black and gray curves. The vertical lengths of the full rectangles in this figure represent again the 
difference between minor and major semiaxis in the observed trajectory. Apart from = 4, as we go from s = −1 
to s = 1, for a fixed topological charge, the orbiting mean radius exhibits a linear growth with similar slopes for all 
the topological charges. To understand this behavior, it is important to realize that part of the energy of the vortex 
with topological charge  entering into the objective is redistributed in the focalized beam in four more vortices 
with topological charges ± 1 and ± 2 according to the ellipticity (see appendix). For example, for LH this part 
of the energy is redistributed in two extra vortices with topological charges − 1 and − 2 which in turn have 
smaller sizes than the main vortex with topological charge . For RH, the extra vortices have topolical charges 

+ 1 and + 2. Owing to this redistribution of energy, it is expected that the radial equilibrium position (Req) of 
the particle is not the corresponding to the maximum of intensity of the main vortex (), but it will be slightly 

Figure 4.  Comparison of measured (rectangles) and calculated (bands) mean orbiting radius Req as a function 
of the z-position of the particle with respect to the beam focus (a) and focusing numerical aperture NA (b) for 
the beam with topological charge = 5 and circular polarizations RH, LH and LP. Blue and red bands 
correspond to measured data for RH and LH polarizations, respectively. The horizontal lengths of the rectangles 
indicate the uncertainty of 1 degree in the orientation of the QWP. The vertical lengths of the full rectangles 
denote the difference between the semimajor and semiminor axes of the fitted elliptical trajectory, while the 
empty rectangles are related to the mean standard deviation of the Brownian trajectory along the radial 
direction. The underlying lighter bands account for the transversal stable positions of the particle coming from 
our theoretical analyses based on Mie-theory for the aperture angles θmax = 60–63° capturing the effect of 
experimental uncertainty in these parameters.
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shifted by the other components. Using highly simplified considerations, described in the appendix, we were able 
to express the radius of the particle orbit as

β δ≈ + +R m b sin2 (1)eq

where m, b and δ are constants. Fitting Eq. (1) with the data shown in Fig. 5 for ≥ 7, we obtain b = (0.029 ± 0.001) 
μm which is half the value of the total shift in the radial position when the polarization goes from LH to RH. 
Using the other fitted values, m = (0.095 ± 0.004) μm and δ μ= . ± .(0 09 0 03) m, we obtain b/m = 0.3 giving 
good agreement with the theoretical value calculated only with the focused-beam model b/m|theory = 0.27 (see 
Appendix Eqs (14) and (15)). In this context, the ratio b sin 2β/m quantifies the efficiency of spin-to-orbit angular 
momentum conversion. If the beam is linearly polarized, sin 2β = 0 and thus we can conclude there is no 
spin-to-orbit angular momentum conversion.

Orbiting Frequency
Due to the mainly non-conservative azimuthal force, the particle orbits and its orbiting frequency can be obtained 
directly from the experimental time record of the particle motion. Orbiting frequency is power dependent and is 
also influenced by the particle proximity to the surface via hydrodynamic drag coefficient. Therefore its compari-
son with the theoretical results is less straightforward comparing to the mean orbit radius Req.

We took two orbits of x particle coordinates and determined the orbiting frequency in this interval by fitting a 
cosine function. We repeated the procedure for all subsequent non-overlapping data sets corresponding to two 
orbits. Figure 6 shows the experimental results in colors as the function of sin 2β. They are compared with the 

Figure 5.  Orbiting radii Req as a function of the spin density of the incident beam s = sin 2β and topological 
charge . The rectangles denote the measured values and the symbolism is the same as in Fig. 4. The values at the 
leftmost and rightmost side ( = ±s 1) correspond to the case of circular polarizations, LH and RH 
correspondingly. The full black, or upper and lower gray curves denote Mie-theory calculations of the 
transversal stable position of the particle at z = 0 for experimental parameters (Appendix Table A1) assuming 
circular trajectory, or semimajor and semiminor axis of elliptical trajectory, respectively.

Figure 6.  Mean experimental orbiting frequency in colors corresponding to topological charges  denoted at 
right. Full lines give the best coincidence between theory and experiment if the same parameters as in Fig. 5 are 
used and the theoretical trapping power is adjusted by a factor 1.17 found by fitting. The ratio between found 
theoretical and experimental power is 1.17. Dashed lines used the same parameters and extrapolates the 
theoretical results for lower topological charges.
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theoretical results giving excellent agreement for ≤ ≤8 12 where the only optimized parameter was the trap-
ping power. Found ratio between optimal theoretical power and used experimental power is 1.17. Even though 
we implemented in the theory the experimental value of the increased drag coefficient due to the surface proxim-
ity (see Appendix Table A1), influence of such hydrodynamic interaction in combination with varying axial opti-
cal force due to the retro-reflected beam from the surface can be more complex and only experimental 
determination of the particle-surface distance could lead to deeper understanding. The non-uniformities 
observed in the beam profile is another important aspect not included in the theoretical description (see 
Appendix Fig. A2). Figure 6 presents another example of direct demonstration of spin-orbit interaction in 
focused vortex beam.

Conclusion
Up to our best knowledge this is the first comprehensive experimental and theoretical comparison of behavior of 
a single particle in the non-paraxial vortex beam with arbitrary elliptical polarization. Previous study reported 
either behavior of several particles in the vortex beam without relevant theoretical analysis33 or focused only on 
the orbiting frequency and linearly polarized beam16,44. We were able to control the spin to orbital conversion 
either by changing the circular polarization of the beam or by reducing the numerical aperture of the focusing 
system, and study its influence on the behavior of the trajectories of the trapped particles. We showed that for 
a certain topological charge (l = 4 in our case) it is even possible to observe a suppression of the orbiting of the 
particle if the circular polarization goes from the same sense of the vorticity to the opposite. We also showed that 
the orbiting trajectories can render elliptical trajectories if the polarization is not circular. We observed influence 
of the spin to orbital conversion in the radius of the equilibrium orbit and also in the orbiting frequency. The 
influence was stronger for smaller topological charges. Finally, we found a very good agreement between the 
experimental results and the theoretical ones which is based on the Lorenz-Mie and Richards-Wolf theories even 
using the experimentally determined parameters.

Data Availability
Data and resources in support of the findings of this study are available from the corresponding authors upon 
reasonable request.

References
	 1.	 Ashkin, A. Optical trapping and manipulation of neutral particles using lasers (World Scientific, London, 2006).
	 2.	 Jones, P. H., Maragò, O. M. & Volpe, G. Optical tweezers: principles and applications (Cambridge University Press).
	 3.	 Andrews, D. L. & Babiker, M. (eds) The angular momentum of light (Cambridge University Press, Cambridge, UK, 2013).
	 4.	 Allen, L., Beijersbergen, M., Spreeuw, R. & Woerdman, J. Orbital angular-momentum of light and the transformation of Laguerre-

Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).
	 5.	 Allen, L., Padgett, M. & Babiker, M. The orbital angular momentum of light. Progress in Optics 39, 291–372 (1999).
	 6.	 Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011).
	 7.	 Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161–204 (2011).
	 8.	 Parkin, S. et al. Optical torque on microscopic objects. Methods cell biology 82, 525–561 (2007).
	 9.	 Simpson, S. H. & Hanna, S. Orbital motion of optically trapped particles in laguerre–gaussian beams. J. Opt. Soc. Am. A 27, 

2061–2071 (2010).
	10.	 Nieminen, T. A. et al. Optical Vortex Trapping and the Dynamics of Particle Rotation. In David L. Andrews (Ed.), Structured Light 

and Its Applications: An introduction to Phase-Structured Beams and Nanoscale Optical Forces (United States: Academic Press 
(Elsevier Press), 2008).

	11.	 He, H., Friese, M., Heckenberg, N. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular-momentum to absorptive 
particles from a laser-beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995).

	12.	 Friese, M., Enger, J., RubinszteinDunlop, H. & Heckenberg, N. Optical angular-momentum transfer to trapped absorbing particles. 
Phys. Rev. A 54, 1593–1596 (1996).

	13.	 Simpson, N. B., Dholakia, K., Allen, L. & Padgett, M. J. Mechanical equivalence of spin and orbital angular momentum of light: an 
optical spanner. Opt. Lett. 22, 52–54 (1997).

	14.	 Volke-Sepúlveda, K., Garcés-Chávez, V., Chávez-Cerda, S., Arlt, J. & Dholakia, K. Orbital angular momentum of a high-order Bessel 
light beam. J. Opt. B: Quantum Semiclass. Opt. 4, S82–S89 (2002).

	15.	 Garcés-Chávez, V. et al. Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an 
Optically Trapped Particle. Phys. Rev. Lett. 91, 093602-1-4 (2003).

	16.	 Curtis, J. E. & Grier, D. G. Structure of Optical Vortices. Phys. Rev. Lett. 90(133901), 1–4 (2003).
	17.	 Arzola, A., Jákl, P., Chvátal, L. & Zemánek, P. Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate 

spheroidal microparticles. Opt. Express 22, 16207–16221 (2014).
	18.	 Brzobohatý, O. et al. Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap. Opt. 

Express 23, 7273–7287 (2015).
	19.	 Leach, J., Mushfique, H., di Leonardo, R., Padgett, M. & Cooper, J. An optically driven pump for microfluidics. Lab Chip 6, 735–739 

(2006).
	20.	 Kelemen, L., Valkai, S. & Ormos, P. Integrated Optical Rotor. Appl. Opt. 45, 2777–2779 (2006).
	21.	 Lin, C.-L., Vitrant, G., Bouriau, M., Casalegno, R. & Baldeck, P. L. Optically driven Archimedes micro-screws for micropump 

application. Opt. Express 19, 8267–8276 (2011).
	22.	 Neale, S. L., MacDonald, M. P., Dholakia, K. & Krauss, T. F. All-optical control of microfluidic components using form birefringence. 

Nat. Mater. 4, 530–533 (2005).
	23.	 Ladavac, K. & Grier, D. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express 12, 

1144–1149 (2004).
	24.	 Cheng, Z. & Mason, T. Rotational diffusion microrheology. Phys. Rev. Lett. 90, 018304 (2003).
	25.	 Bishop, A., Nieminen, T., Heckenberg, N. & Rubinsztein-Dunlop, H. Optical microrheology using rotating laser-trapped particles. 

Phys. Rev. Lett. 92, 198104 (2004).
	26.	 Di Leonardo, R. et al. Multipoint holographic optical velocimetry in microfluidic systems. Phys. Rev. Lett. 96, 134502 (2006).
	27.	 Arita, Y., McKinley, A. W., Mazilu, M., Rubinsztein-Dunlop, H. & Dholakia, K. Picoliter rheology of gaseous media using a rotating 

optically trapped birefringent microparticle. Anal. Chem. 83, 8855–8858 (2011).
	28.	 Wu, T. et al. A photon-driven micromotor can direct nerve fibre growth. Nat. Photon 6, 62–67 (2011).

https://doi.org/10.1038/s41598-019-40475-z


7Scientific Reports |          (2019) 9:4127  | https://doi.org/10.1038/s41598-019-40475-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

	29.	 Rohrbach, A., Tischer, C., Neumayer, D., Florin, E.-L. & Stelzer, E. H. K. Trapping and tracking a local probe with a photonic force 
microscope. Rev. Sci. Instrum. 75, 2197–2210 (2004).

	30.	 Bishop, A., Nieminen, T., Heckenberg, N. & Rubinsztein-Dunlop, H. Optical application and measurement of torque on 
microparticles of isotropic nonabsorbing material. Phys. Rev. A 68, 033802 (2003).

	31.	 Oroszi, L., Galajda, P., Kirei, H., Bottka, S. & Ormos, P. Direct measurement of torque in an optical trap and its application to double-
strand DNA. Phys. Rev. Lett. 97, 058301 (2006).

	32.	 Gutierrez-Medina, B., Andreasson, J. O., Greenleaf, W. J., LaPorta, A. & Block, S. M. An optical apparatus for rotation and trapping. 
Methods Enzymol. 475, 377–404 (2010).

	33.	 Zhao, Y., Edgar, J. S., Jeffries, G. D. M., McGloin, D. & Chiu, D. T. Spin-to-orbital angular momentum conversion in a strongly 
focused optical beam. Phys. Rev. Lett. 99, 073901 (2007).

	34.	 Bliokh, K. Y., Alonso, M. A., Ostrovskaya, E. A. & Aiello, A. Angular momenta and spin-orbit interaction of nonparaxial light in free 
space. Phys. Rev. A 82(063825), 1–7 (2010).

	35.	 Bliokh, K. Y. et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt. Express 19, 
26132–26149 (2011).

	36.	 He, H., Heckenberg, N. & Rubinsztein-Dunlop, H. Optical particle trapping with higher-order doughnut beams produced using 
high efficiency computer generated holograms. J. Mod. Opt. 42, 217–223 (1995).

	37.	 Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nat. Photon. 4, 
388–394 (2010).

	38.	 Čižmár, T., Brzobohatý, O., Dholakia, K. & Zemánek, P. The holographic optical micro-manipulation system based on counter-
propagating beams. Laser Phys. Lett. 8, 50–56 (2011).

	39.	 Franklin, S. V. & Shattuck, M. D. (eds) Handbook of granular materials (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2015).
	40.	 Šiler, M. & Zemánek, P. Optical forces in a non-diffracting vortex beam. J. Quant. Spectrosc. Radiat. Transf. 126, 78–83 (2013).
	41.	 Šiler, M., Jákl, P., Brzobohatý, O. & Zemánek, P. Optical forces induced behavior of a particle in a non-diffracting vortex beam. Opt. 

Express 20, 24304–24319 (2012).
	42.	 Fitzgibbon, A. W., Pilu, M. & Fisher, R. B. Direct least-squares fitting of ellipses. IEEE Transactions on Pattern Analysis Mach. Intell. 

21, 476–480 (1999).
	43.	 Kasa, I. A cicrcle fitting procedure and its error analysis. IEEE Transactions on Intrumentation Meas. 8–14 (1976).
	44.	 Chen, M., Mazilu, M., Arita, Y., Wright, E. & Dholakia, K. Dynamics of microparticles trapped in a perfect vortex beam. Opt. Lett. 

38, 4919–4922 (2013).

Acknowledgements
The research was supported by CONACYT-CAS Mexico-Czech Republic bilateral cooperation project (No. 
171478), Czech Science Foundation (GB14-36681G), Ministry of Education, Youth and Sports (MEYS) 
of the Czech Republic (LO1212) and the research infrastructure was supported by MEYS CR, EC, and CAS 
(CZ.1.05/2.1.00/01.0017, RVO:68081731). A.V.A. acknowledges support of DGAPA-PAPIIT project IA104917.

Author Contributions
A.V.A. and P.Z. suggested the experiment, methodology and supervised the project, A.V.A., P.Z. and P.J. 
performed the experiments and analyzed the data, L.Ch., P.Z. and A.V.A. developed the theory and provided the 
theoretical results, all contributed to the written version of the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-40475-z.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-40475-z
https://doi.org/10.1038/s41598-019-40475-z
http://creativecommons.org/licenses/by/4.0/

	Spin to orbital light momentum conversion visualized by particle trajectory

	Geometry and Experimental Arrangement

	Spin-to-Orbit Angular Momentum Conversion Visualized by Particle Trajectory

	Orbiting Frequency

	Conclusion

	Acknowledgements

	Figure 1 Geometry of the problem and experimental setup.
	Figure 2 Trajectories followed by the particle center in a vortex beam with topological charge (a) and (b) at the xy plane axially placed at the beam waist position and maximal NA = 1.
	Figure 3 Comparison of the radial position of the maximum of the field energy density Red and equilibrium trajectories Req of the particle for experimental parameters summarized in Appendix Table A1 at the beam waist at maximal NA = 1.
	Figure 4 Comparison of measured (rectangles) and calculated (bands) mean orbiting radius Req as a function of the z-position of the particle with respect to the beam focus (a) and focusing numerical aperture NA (b) for the beam with topological charge and
	Figure 5 Orbiting radii Req as a function of the spin density of the incident beam s = sin 2β and topological charge .
	Figure 6 Mean experimental orbiting frequency in colors corresponding to topological charges denoted at right.




