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Abstract
Default mode network (DMN) is a functional brain network with a unique neural activity pattern that shows high activity in

resting states but low activity in task states. This unique pattern has been proved to relate with higher cognitions such as

learning, memory and decision-making. But neural mechanisms of interactions between the default network and the task-

related network are still poorly understood. In this paper, a theoretical model of coupling the DMN and working memory

network (WMN) is proposed. The WMN and DMN both consist of excitatory and inhibitory neurons connected by AMPA,

NMDA, GABA synapses, and are coupled with each other only by excitatory synapses. This model is implemented to

demonstrate dynamical processes in a working memory task containing encoding, maintenance and retrieval phases.

Simulated results have shown that: (1) AMPA channels could produce significant synchronous oscillations in population

neurons, which is beneficial to change oscillation patterns in the WMN and DMN. (2) Different NMDA conductance

between the networks could generate multiple neural activity modes in the whole network, which may be an important

mechanism to switch states of the networks between three different phases of working memory. (3) The number of

sequentially memorized stimuli was related to the energy consumption determined by the network’s internal parameters,

and the DMN contributed to a more stable working memory process. (4) Finally, this model demonstrated that, in three

phases of working memory, different memory phases corresponded to different functional connections between the DMN

and WMN. Coupling strengths that measured these functional connections differed in terms of phase synchronization.

Phase synchronization characteristics of the contained energy were consistent with the observations of negative and

positive correlations between the WMN and DMN reported in referenced fMRI experiments. The results suggested that the

coupled interaction between the WMN and DMN played important roles in working memory.

Keywords Default mode network � Working memory � Contained energy � Task positive/negative network �
Correlation

Introduction

The brain’s default mode network (DMN) was originally

identified in a meta-analysis that mapped brain regions

were more active in passive as compared to active tasks

(often referred to as task-induced deactivation) (Buckner

et al. 2008). When people are meditating, daydreaming,

recalling the past, planning for the future etc., the brain is

awake but at rest (also called the resting state) and the

DMN is usually activated. While at task states, the DMN is

usually in a low-firing mode (Raichle 2015), or so-called

deactivated. Since it was first proposed in 2001, the DMN

has become a core research topic in theoretical neuro-

science, brain imaging, psychiatric diagnosis and medical

treatment (Hu et al. 2017).

Physiological experiments showed that the low firing

mode of the DMN in task states was not only an incidental

phenomenon of task-state brain activity, but also played an

extremely important role in maintaining normal cognitions

and psychological states (Hu et al. 2017; Greicius and

Menon 2004). Insufficient inhibition of the DMN in task

states would reduce activity in the dorsal attention network,

resulting in memory loss and cognitive impairment
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(Greicius and Menon 2004; Sambataro et al. 2010;

Weissman 2006), which was often detected in patients with

severe psychological diseases (Anticevic et al. 2012).

Some functional magnetic resonance imaging (fMRI)

studies have also shown that the physiological inhibition of

the DMN in healthy brains was stronger than that in

patients with ADHD, contributing to better accomplish-

ment of attention tasks in healthy individuals (Uddin et al.

2008). In patients with schizophrenia and depression, the

DMN was often found hyperactivated and functional

hyperconnected (Whitfield-Gabrieli and Ford 2012).

Behavioral research demonstrated that the hyperactivity of

the DMN make it difficult for patients to transfer attention

from the internal meditation to external stimuli, which

induced the loss of working memory and mood control

(Figueroa et al. 2017).

Due to the particular activity mode of the DMN,

researchers began to explore its unique dynamics mecha-

nism and functional significances in cognitions. Thus,

many resting state network models have been put forward

in order to further understand important roles of the DMN

in global and cognitive brain functions (Cabral et al. 2017).

Among those models, the conductance-based synaptic

model (Honey et al. 2007; Honey 2009; Gollo and

Breakspear 2014; Zalesky et al. 2014; Gollo et al. 1668),

the Kuramoto model (Cabral et al. 2014) with gamma

oscillators, and the oscillator model doped with Hopf

bifurcation (Deco et al. 2017), can reproduce resting neural

activity in the DMN observed in fMRI in time domain,

space domain, and energy spectrum simultaneously.

However, only the conductance-based synaptic model can

match physiological activities observed in experimental

studies better than other models, as well as overlap many

theoretical task state models. The synaptic model can not

only simulate the DMN’s activity in resting state but also

some specific functions of dorsal attention network (Dayan

2001). However, most theoretical studies of the DMN only

simulate its activity in resting state without considering the

relationship between the DMN and other task networks. It

is more likely that the DMN reflects its functions by

interacting with other task networks. So far, there has been

little understanding of the synergistic mechanism between

the DMN and task networks in task states.

To simulate functions of the DMN in the task state, a

task-oriented functional network is needed for cooperation.

Some fMRI studies have reported that working memory is

regulated by the DMN (Sambataro et al. 2010; Esposito

et al. 2009; Hampson et al. 2006). Therefore, the working

memory network (WMN) can be used to jointly study the

dynamics of the DMN. Many experimental studies have

observed couple interactions between the DMN and WMN

(Gotts et al. 2020; Raichle et al. 2001). Some fMRI

experiments have shown that BOLD signals in the DMN

and WMN presented an inverse correlation (or called

antagonism) where the DMN was inhibited (Fox et al.

2005; Dixon et al. 2016a). Nevertheless, some fMRI data

indicated that the DMN and WMN were not simply

antagonistic. For example, the correlation between activi-

ties in the DMN and WMN is found to be inconsistent in

three phases of working memory: encoding, maintenance

and retrieval (Piccoli et al. 2015). In encoding and retrieval

processes, the inferior parietal lobule (IPL) in the DMN is

activated and positively related with left dorsolateral pre-

frontal cortex (lDLPFC) and right intra-parietal sulcus

(rIPS) in the WMN. While in maintenance process, the

posterior cingulate/retrosplenial cortex (PCC/Rsp) and the

medial prefrontal cortex (MPFC) in the DMN are inacti-

vated and negatively correlated with the DLPFC and rIPS

in the WMN (Piccoli et al. 2015). These results suggest that

simple antagonistic relationship cannot fully explain the

coupling mechanism between the WMN and DMN.

Since the DMN, as a large-scale dynamic neural net-

work, involved multiple brain region activities and inter-

actions, exploring the functional relationship between the

DMN and other cognitive networks from the global per-

spective of brain activity could scientifically explain the

role and contribution of the DMN. Previous studies had

shown that neural energy theory could be effectively used

on different levels of brain networks and their coupling for

the construction of global neural brain models and coding

(Wang and Zhu 2016; Wang et al. 2020). It has been

known that theoretical energy theory could successfully

interpret the neural mechanism of brain hemodynamic

phenomena (Peng et al. 2021). Why the amount of data in

biological visual system would significantly reduce but not

affect the external world visual cognition could also be

explained by energy theory (Zhong and Wang 2020).

Quantitative neural energy analysis of spatial cognition and

maximum information coding of various animals also

obtained results that well matched the experimental data

(Wang et al. 2018, 2019).

In order to understand the coupling mechanism between

the WMN and DMN, a network model has been proposed

and implemented to simulate a working memory process

containing encoding, maintenance and retrieval phases in

this article. Using this model, we explored that the change

of excitatory neurotransmitter conductance between the

WMN and DMN would cause significant diversification in

firing patterns of the entire network. The use of neural

energy theory could not only reproduce energy consump-

tion changes in the dynamic interaction of DMN and

WMN, but also present the quantitative relationship

between firing rate and energy consumption. Phase locking

analysis on the contained energy of population neurons

demonstrated activity correlations in the DMN and WMN.

We found negative or positive correlations between the
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WMN and DMN during different phases in a complete

working memory process, which was consistent with

observations reported in a fMRI study (Piccoli et al. 2015).

The result could be utilized to make relevance between

negative and positive correlations of WMN and DMN.

Methods

Theoretical model

Based on the DMN characteristic, being deactivated in task

state and highly activated in resting state, the model pro-

posed in this paper consists of a Task Positive Network

(TPN, representing the WMN) and a Task Negative Net-

work (TNN, representing a sub-network of the DMN) to

simulate coupled interactions between the DMN and WMN

(Fox et al. 2005; Dixon et al. 2016a; Cheng et al. 2020;

Andreou et al. 2018). The TPN has low firing rates in the

resting state and high firing rates in the task state so that it

corresponds to the WMN. The TNN fires high in resting

state and low in task state so that it corresponded to the

DMN.

In this model, each network contained 2048 excitatory

neurons (pyramidal cells) and 512 inhibitory neurons (in-

terneurons). The ratio of excitatory and inhibitory neurons

was 4:1 (Markram et al. 2004; Sieghart 2012; Sillito 1975;

Priebe and Ferster 2008; Ozeki et al. 2009; Liu et al. 2010).

Only pyramidal cells in the TPN have direction selectivity,

while other neurons didn’t show direction selectivity either

in the TPN or in the TNN (Hollup et al. 2001). The con-

nections between the TPN and TNN were set up by NMDA

and AMPA channels, and the neuronal projections within

each network were constructed by NMDA, AMPA and

GABA channels according to excitatory or inhibitory

synapses. Figure 1 shows the schematic architecture of the

model (Fig. 1a) and direction selective weights of excita-

tory neurons in the TPN (Fig. 1b).

In the TPN–TNN coupled network model (Fig. 1a), the

activity of each neuron was calculated using Integrate-and-

Fire model (I–F model) with synaptic gated modulation

(Compte 2000; Wei et al. 2012). The membrane potentials

and synaptic currents of the excitatory and inhibitory

neurons in the TPN and TNN were described in Eqs. 1–8,

respectively.

Cm pyr
dVTPNpyrðtÞ

dt
¼ �gL pyrðVTPNpyrðtÞ � VLÞ

� ITPNpyr syn ð1Þ

Cm pyr
dVTNNpyrðtÞ

dt
¼ �gL pyrðVTNNpyrðtÞ � VLÞ

� ITNNpyr syn ð2Þ

ITPNpyr synðtÞ ¼ ITPNpyr AMPA þ ITPNpyr NMDA þ ITPNinh GABA

þ ITNNpyrtoTPNpyr AMPA þ ITNNpyrtoTPNpyr NMDA þ Inoise þ Iext

ð3Þ
ITNNpyr synðtÞ ¼ ITNNpyr AMPA þ ITNNpyr NMDA þ ITNNinh GABA

þ ITPNpyrtoTNNpyr AMPA þ ITPNpyrtoTNNpyr NMDA þ Inoise

ð4Þ

Cm inh
dVTPNinhðtÞ

dt
¼ �gL inhðVTPNinhðtÞ � VLÞ

� ITPNinh syn ð5Þ

Cm inh
dVTNNinhðtÞ

dt
¼ �gL inhðVTNNinhðtÞ � VLÞ

� ITNNinh syn ð6Þ

ITPNinh synðtÞ ¼ ITPNinh GABA þ ITPNpyrtoTPNinh AMPA þ ITPNpyrtoTPNinh NMDA

þ ITNNpyrtoTPNinh AMPA þ ITNNpyrtoTPNinh NMDA þ Inoise

ð7Þ
ITNNinh synðtÞ ¼ ITNNinh GABA þ ITPNpyrtoTNNinh AMPA þ ITPNpyrtoTNNinh NMDA

þ ITNNpyrtoTNNinh AMPA þ ITNNpyrtoTNNinh NMDA þ Inoise

ð8Þ

Equations 1, 2 described the membrane potential change

of one pyramidal cell in the TPN and TNN, respectively.

Equations 5, 6 were applied to calculate the membrane

potential of one inhibitory neuron in the TPN and TNN. Cm

was membrane capacitor, gL was leakage conductance, VL

was resting potential, V(t) was membrane potential, and

Isyn was the total synaptic current into neurons. Different

neuron population and networks were distinguished by

their subscripts.

Synaptic currents were divided into AMPA, NMDA and

GABA currents (Eqs. 3, 4, 7, 8). Both currents within each

network and between the TPN and TNN were calculated

basically with the same method (except for terms with

subscript TPN_pyr). AMPA and NMDA currents were

given by excitatory neurons, while GABA currents were

given by inhibitory neurons. Specific calculation methods

have been shown as following equations (Eqs. 9–15).

Values of constant parameters used in the simulation could

be found in the supplementary material.

Ii;NMDA ¼ ðVi � VEÞ
X

j

gji;NMDASj;NMDA

1þ ½Mg2þ� expð�0:062Vi=3:57Þ

ð9Þ

Ii;AMPA ¼ ðVi � VEÞ
X

j

gji;AMPASj;AMPA ð10Þ
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Ii;GABA ¼ ðVi � VIÞ
X

j

gji;GABASj;GABA ð11Þ

dSj;AMPA

dt
¼ � Sj;AMPA

sAMPA
þ
X

k

dðt � tkÞ ð12Þ

dSj;GABA
dt

¼ � Sj;GABA
sGABA

þ
X

k

dðt � tkÞ ð13Þ

dx

dt
¼ � x

sNMDA;rise
þ
X

k

dðt � tkÞ ð14Þ

dSj;NMDA

dt
¼ � Sj;NMDA

sNMDA;decay
þ bxð1� Sj:NMDAÞ ð15Þ

In Eqs. 9–15, i represented the label number of neurons

other than TPN excitatory neurons. Different g indicated

synaptic conductance of different neurotransmitter recep-

tors, distinguished by its subscripts. s with different sub-

scripts were time constants of various synaptic gate-

controlled variables. S and x were intermediate variables

for differentiate calculation. Summation symbol repre-

sented summing the action potentials of the presynaptic

neuron j at timepoint tk.

Excitatory neurons (TPN_pyr) in the TPN received an

external input with a preferred direction (Hollup et al.

2001) which presented a normal distribution centered on

the preferred direction angle (Eq. 21). Since pyramidal

cells in the TPN were selective to directional stimuli, their

connection weights were formed by a normal distribution

centered on the particular pyramidal cell with the preferred

direction hi (Eqs. 19, 20, Fig. 1b). This contribution

determined different NMDA currents among pyramidal

cells in the TPN (Eq. 16). In the TPN, AMPA currents and

GABA currents were also calculated by Eqs. 10, 13, but

NMDA currents of excitatory neurons were calculated by

the following Eqs. 16–20:

ITPNpyr i;NMDA ¼ ðVTPNpyr i � VEÞ
X

TPNpyr j

gTPNpyr ji;NMDASTPNpyr j;NMDAWðhTPNpyr i � hTPNpyr jÞ
1þ ½Mg2þ� expð�0:062VTPNpyr i=3:57Þ

ð16Þ
dxTPNpyr

dt
¼ � xTPNpyr

sNMDA;rise
þ
X

k

dðt � tkÞ ð17Þ

dSTPNpyr j;NMDA

dt
¼ � STPNpyr j;NMDA

sNMDA;decay
þ bxTPNpyrð1

� STPNpyr j:NMDAÞ ð18Þ

W hTPNpyr i � hTPNpyr j

� �
¼ J� þ Jþ � J�ð Þ

exp �
hTPNpyr i � hTPNpyr j

� �2

2r2

 !
ð19Þ

1

360

Z 360

0

W hTPNpyr i � hTPNpyr j

� �
dhTPNpyr j ¼ 1 ð20Þ

The external input stimulus (Eq. 21) and the background

activity (Eq. 22) were calculated as follows. The AMPA

Excitatory 
Selective  
Population

Excitatory 
Nonselective 
 Population

Inhibitory Population Inhibitory Population

Specific Spatial Input
AMPA, NMDA

( fully connected )

GABA

GABA

Task Positive Network (TPN) Task Negative Network  (TNN)

pyramidal neurons Interneurons

A B

TPN_pyr

TPN_pyr

Schematic diagram of  W in the TPN 
excitatory selective population 

Fig. 1 a The framework of TPN–TNN model. Red triangles represent

pyramidal cells, while violet dots represent interneurons. The orange

dashed box on the left represents the TPN, which physiologically

represents the dorsal lateral prefrontal cortex (DLPFC). The blue

dashed box on the right represents the TNN, which physiologically

represents the posterior cingulate cortex (PCC). Arrows indicate

directions of neurotransmitter transmission between neuron popula-

tions. Red arrows indicate excitatory synapses of AMPA and NMDA,

while violet arrows indicate inhibitory synapses of GABA; and the

black arrow indicates input stimulation. b Two-dimensional repre-

sentation of the connection weights in TPN pyramidal cells popula-

tion (TPN_pyr), showing a preference direction of 180�
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gated variable in the background response (Eq. 22) was

calculated in the same way as Eq. 12. hin;a represented

preferred direction as same as hi. I0 represented the max-

imum stimuli current. rs was a constant. Specific parameter

values have been listed in the supplementary material.

IextðhÞ ¼
Xn

a¼1

I0ffiffiffiffiffiffi
2p

p
rs

exp �
h� hin;a
� �2

rs

" #
ð21Þ

Ii;noise ¼ ðVi � VEÞ
X

j

gnoise;AMPASnoise;AMPA ð22Þ

It is worth noting that, due to the oscillatory activity

caused by AMPA channels, AMPA conductance between

neurons (Eqs. 10, 12) could sometimes be reduced to

negligible in theoretical simulation in order to highlight

stable anticorrelation results between the TPN and TNN

(Cheng et al. 2020). However, some studies have shown

that the oscillation caused by AMPA was an important

factor in neuronal rhythmic activities (Fuchs et al. 2001;

Zhang et al. 2019), closely related to formation and

retrieval of memories (Rogawski 2013). Moreover, the

rapid firing caused by AMPA was a possible causation of

synaptic plasticity (Carver et al. 2008). Therefore, we

accepted the oscillation caused by AMPA and kept the

normal AMPA impact on the whole network, so as to find

out the possible switching mechanisms from one phase to

another phase in the working memory process, and to find

out a more reliable coupling mechanism between the DMN

and WMN. In this paper, the AMPA conductance in the

network was adjusted to the similar magnitude of NMDA

conductance, and the ratio of AMPA/NMDA was modu-

lated to make the oscillation less noisily. Detailed model

parameters have been listed in supplementary material.

Most parameters were consistent with physiological

synaptic parameters referred to Compte et al. (2000) and

Wei et al. (2012). Simulation results illustrated in the paper

were only firing patterns of excitatory neurons.

The network model shown in Fig. 1a has one TPN

(representing the WMN) and one TNN (representing a

subnetwork in the DMN). Some experimental studies

demonstrated that the DLPFC, the major part of the WMN,

coupled with different brain regions of the DMN in dif-

ferent phases of working memory, and the DLPFC showed

positive or negative correlations with those different

default network brain regions (Piccoli et al. 2015). The

important question was that how the WMN interplayed

with different sub-networks in the DMN to generate posi-

tive or negative correlations in different phases in a

working memory process. In order to investigate this issue,

we had to extend the two-network model as shown in

Fig. 1a to a model consisting of three networks. One TPN

represented the WMN and two mutually coupled TNNs

indicated two sub-networks (e.g. PCC and IPL) of the

DMN (Fig. 2). We still used the basic framework of the

TPN–TNN model, but the DMN was divided into 2

mutually coupled TNNs to study a complete working

memory process. The specific network architecture has

been shown in Fig. 2.

The TNN1 at the upper right of Fig. 2 represented PCC

showing the negative correlation with the WMN during the

maintenance phase of working memory. The TNN2 at the

lower right of Fig. 2 represented IPL showing positive

correlation with the WMN during the encoding and

retrieval phases of working memory. The weights within

the excitatory neuron population in TNN2 have directional

selectivity (Eqs. 16–20). The excitatory neurons in TNN1

are fully connected each other without directional selec-

tivity (Fig. 2). The synaptic currents of pyramidal cells in

the TPN and two TNNs were calculated by Eqs. 23–25,

similar to the Eq. 3, 4 except that it was the interaction

among three networks. Synaptic currents, membrane

potentials, external stimulus and background response were

calculated in the same way by Eqs. 9–22 shown above.

ITPN synðtÞ ¼ ITPNpyr AMPA þ ITPNpyr NMDA þ ITPNinh GABA

þ ITNN1toTPNpyr AMPA þ ITNN1toTPNpyr NMDA

þ ITNN2toTPNpyr AMPA

þ ITNN2toTPNpyr NMDA þ Inoise þ Iext

ð23Þ
ITNN1 synðtÞ ¼ ITNN1pyr AMPA þ ITNN1pyr NMDA þ ITNN1inh GABA

þ ITPNtoTNN1pyr AMPA þ ITPNtoTNN1pyr NMDA

þ ITNN2toTNN1pyr AMPA

þ ITNN2toTNN1pyr NMDA þ Inoise

ð24Þ
ITNN2 synðtÞ ¼ ITNN2pyr AMPA þ ITNN2pyr NMDA þ ITNN2inh GABA

þ ITPNtoTNN2pyr AMPA þ ITPNtoTNN2pyr NMDA

þITNN1toTNN2pyr AMPA

þ ITNN1toTNN2pyr NMDA þ Inoise

ð25Þ

The three-phase transition of working memory was

realized by modifying NMDA channels connecting from

the TPN to the TNN1 or to the TNN2 at certain timepoints

from maintenance to retrieval phase. The stimulation phase

period was 750–1000 ms. The encoding phase period was

defined as 750–1750 ms, a little longer than the stimulation

period. The maintenance phase period was defined as

1750–8000 ms in which no external stimuli were inputted

and the activity in the networks kept in stable states. The

retrieval phase period was defined as 8000–9000 ms in

which stored information was retrieved to be used to

complete the working memory task. Those time windows

referred to the experimental task arrangement of Piccoli

(2015) where the encoding phase (with stimuli) was
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123



2000 ms, maintenance phase was 7000–10,000 ms, retrie-

val phase was 1000 ms (Piccoli et al. 2015). Combining the

reference with the theoretical results of TPN with single

TNN, encoding and maintenance periods were shortened in

this study. See the supplementary materials for specific

simulation parameters.

Contained energy

The excitatory neurotransmitter AMPA mentioned in

‘‘Theoretical method’’ section would cause a strong oscil-

lation in the model. Because the emergence of synchronous

oscillation in high frequency would make firing rate data

very noisy, firing rate curves could not well reflect positive

correlation or negative correlation between the TPN and

TNN. Therefore, another parameter needed to be intro-

duced to more intuitively represent neuronal population

activities.

Based on the research of Moujahid on the energy of HH

neurons (Moujahid et al. 2011; Wang et al. 2017), we

proposed a method to calculate the energy of I-F neurons

with synaptic gating modulation.

First, take a HH neuron as an example. In each simu-

lation time unit dt, the electric energy contained in one HH

neuron is:

HðtÞ ¼ 1

2
CV2 þ HNa þ HK þ Hl ð26Þ

The first term in Eq. 26 is the electrical energy accu-

mulated by the membrane capacitance, while the last three

terms seem the energy of sodium and potassium pump as

the internal storage energy of a chemical battery. Accord-

ing to the I–F neuron model and the basic form of synaptic

mechanism given in Eqs. 1, 2, it can be inferred that the

membrane potential V(t) has included the neurotransmitter

regulation when updating each time interval dt. Thus, for

the I-F neuron model (see Eqs. 1,2), the electric energy

contained in a single I–F neuron in each simulation time

unit dt can be obtained as follows:

HiðtÞ ¼
1

2
CmVðtÞ2 þ Hl ð27Þ

Here, i in Eq. 27 represented the index of a neuron in the

population. The leakage energy Hl can be obtained from

the leakage voltage term in Eq. 1. So, the electrical energy

contained in each population with N neurons (the black and

magenta circles in Figs. 1a and 2) is:

HðtÞ ¼
XN

i¼1

HiðtÞ ð28Þ

Connected with Gaussian 
distribution of preferred  direction 

Fully Connected

Excitatory  
Population

Population

Inhibitory Population

Population

Specific Spatial Input
(Preferred Direction)

AMPA, NMDA

( fully connected )

GABA

GABA

AMPA
NMDA

Task Positive Network (TPN) 

Task 
Negative 
Network 1
(Simulation
Network of
PCC in DMN)

pyramidal neurons

Interneurons

GABA

Task 
Negative 
Network 2
(Simulation
Network of
IPL in DMN)

excitatory neurotransmitter 
conductance

inhibitory neurotransmitter 
conductance

Fig. 2 The WMN–DMN coupling structure composed of one TPN

and two TNNs. Magenta circles represent neuron populations with

normal distribution of preferred directions to assign weights. Black

circles represent neuron populations without the normal distribution.

Connections between TPN and two TNNs are simplified, which were

similarly shown in Fig. 1a
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It should be noted that in general physics, the so-called

power is the energy consumption in per unit time. It can be

obtained by differentiating H(t) on time with addition of

electrochemical energy consumption, and is different from

‘‘contained energy’’ in this article. The contained energy

here means the total electrical energy accumulated in a

single I–F neuron.

The contained energy could better link the results of

theoretical models with BOLD signals measured in fMRI

experiments. Using the algorithm proposed by Friston to

convert neural activity into BOLD signals (Friston 2003;

Faro et al. 2010), firing rates of the TNN excitatory neurons

in a trial were converted into a BOLD-like signal here. The

simulated BOLD signal was compared with firing rates and

the contained energy from the same simulation trial

(Fig. 3).

It could be observed that the total energy of all excita-

tory neurons in the TNN was nearly consistent with the

firing rate curve and the simulated BOLD signal based on

firing rates. Even better, the contained energy (Fig. 3c)

could reflect special oscillation waveforms in the TNN

during and after the stimulation period, while firing rates

appeared noisy and the BOLD signal was unable to display

a characteristic waveform. This phenomenon might be

caused by the insufficient TNN inhibition or the abnormal

increase of firing rates due to the oscillation caused by

AMPA. However, some researches had shown that such

waveforms in the membrane potential could reflect direc-

tional selectivity (Carver et al. 2008). The contained energy

calculated from the membrane potential displayed more

characteristics of directional selectivity than the membrane

potential itself in the TPN.

Compared with the firing rate and the simulated BOLD

signal, the contained energy is more informative and has a

more concise definition, which makes it suitable for ana-

lyzing properties of population activities.

time/ms

With Stimuli
Saturated without stimuli

Insaturated 
without stimuli

A

B

C

With Stimuli Saturated without stimuli
Insaturated 
without stimuli

Stimulation
Period
750~1000ms

Fig. 3 The comparison of TNN firing rate, simulated BOLD signal,

and contained energy. The gray bars represented the stimulation time

period (750–1000 ms). a The firing rate result of TNN; b BOLD

signal calculated from firing rates of TNN excitatory neurons by using

hemodynamic algorithm (Friston 2003; Faro et al. 2010); c Contained
energy in the TNN. The amplified oscillation of BOLD signal and

contained energy marked with red circle was shown in sequences

from left to right in (b) and (c). Left: when the stimulus was applied;

Middle: when the stimulus was removed but the oscillation was

strong; Right: when the stimulus was removed but the oscillation was

weak
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Phase locking value (PLV) and phase lag index
(PLI)

The contained energy in the TNN and TNN showed a

special oscillation pattern at the energy level (Fig. 3), so an

index that reflected oscillatory relations between two

rhythmic signals was needed to identify the relationship

between the TPN and TNN in different working memory

phases. In this article, Phase Locking Value (PLI) (Aydore

et al. 2013) and Phase Lag Index (PLI) (Stam et al. 2007)

were used to analyze phase synchronization of energy

oscillations between the TPN and TNN1, between the TPN

and TNN2 separately in three stages of working memory. It

provided a possible method to verify that the negative and

positive correlations between the WMN and DMN could be

integrated and transformed.

Considering a pair of signals S1(t) and S2(t) with similar

frequencies, their analytic signals can be obtained by Hil-

bert transform (HT):

ziðtÞ ¼ siðtÞ þ jHTðsiðtÞÞ ði ¼ f1; 2g; j ¼
ffiffiffiffiffiffiffi
�1

p
Þ ð29Þ

In this way, the relative phases of the two analytic sig-

nals can be calculated by the following equation:

D/ðtÞ ¼ arg
z1ðtÞz�2ðtÞ
z1ðtÞj j z2ðtÞj j

� �
ð30Þ

Instantaneous PLV is defined as:

PLVðtÞ, E ejD/ðtÞ
h i���

��� ð31Þ

PLV is between [0,1]. The closer PLV is to 0, the more

out of sync the phase of two signals will be; the closer PLV

is to 1, the more synchronous the phase of two signals will

be. Therefore, PLV can reflect the degree of synchroniza-

tion between two signals by measuring their relative

phases.

When calculating synchronization of cortical neural

activity, a single source commonly mixed with the two

signals may produce non-zero PLV (Aviyente et al. 2010).

In this direct linear mixing, such two signals without phase

delay may result in a large PLV. In order to eliminate the

effect of linear mixing on phase locking, the phase lag

index (PLI) is proposed, which quantifies the symmetry of

relative phase around 0:

PLI, E signðD/ðtÞÞ½ �j j ð32Þ

PLI is between [0,1]. Only when the relative phase is 0

or p, PLI is 0. The nonparametric estimates of PLV and

PLI can be approximated by averaging trials.

PL̂Vtrial,
1

N

XN

n¼1

ejD/ðtÞ

�����

����� ð33Þ

PL̂Itrial,
1

N

XN

n¼1

signðD/ðtÞÞ
�����

����� ð34Þ

Non-parametric estimates of PLV and PLI were used to

conduct phase locking analysis on the contained energy

signals between the TPN and the two TNNs in three dif-

ferent phases of working memory, respectively.

Results

AMPA-caused oscillation was concerned
with working memory

Previous studies have shown that the TPN–TNN model

based on synaptic mechanism could simulate the anticor-

relation between the DMN and WMN (Cheng et al. 2020).

Reproduced results of these studies (Fig. 4) showed the

negative correlation between activities of the TPN and

TNN in the TPN–TNN model. This is an important con-

dition for exploring whether the positive and negative

correlationship between the WMN and DMN can be inte-

grated or transformed.

The basic results (Fig. 4) showed that the TPN–TNN

network presented a unique mutual suppression phe-

nomenon. Before 750 ms, the TPN did not receive the

external current (I_ext in Eq. 3 was 0). This situation

induced that synaptic currents of pyramidal cells in the

TPN into both excitatory and inhibitory populations in the

TNN were smaller than synaptic currents from the TNN

into excitatory and inhibitory populations in the TPN.

Then, inhibition of interneurons to pyramidal cells in the

TNN was weaker than inhibition of interneurons to pyra-

midal cells in the TPN, while the excitatory neurotrans-

mitter conductance in the TNN was larger than that in the

TPN (see the supplementary material). With weak initial

parameters, the TPN–TNN network presented such a spe-

cial phenomenon that the TNN had a high firing rate in

initial period without the external stimulus. This firing

result could well accord with the activity mode of the DMN

in resting state (Buckner et al. 2008; Raichle 2015).

However, in order to highlight the antagonistic effect,

the strength of AMPA channels in the TPN (or in the TNN

or between the TPN and TNN) was set a small value to

eliminate synchronous oscillations in the TPN–TNN net-

work. But setting small strength of AMPA channels hin-

dered to further reveal the coupling mechanism between

the DMN and WMN in a complete working memory pro-

cess. Therefore, we adjusted the AMPA conductance in the

network to the same order of the NMDA conductance, so

as to introduce normal synchronous oscillations from

AMPA. We set a higher value for AMPA conductance and
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keep other parameters and preferred direction as same as

those in the basic trial (Fig. 4) to simulate neural activity in

the TPN–TNN network (Fig. 5). We found acute oscilla-

tions in the firing rate (Fig. 5a), in scatter records (Fig. 5b,

c) or in the contained energy (Fig. 5d). And the firing

difference between neurons became significant. When

calculating the firing rate, the Z-axis of 3D plot became no

longer effective due to the prominent differences between

neurons, so only the two-dimensional scattered plot with

density color temperature was selected to redisplay the

firing patten (Fig. 5b, c).

Relatively stable firing rates after 2000 ms were selected

and averaged to obtain baseline values in the TPN and

TNN, respectively. As could be seen from Fig. 5a, the TPN

was still relatively stable after its firing rate approached the

baseline value in the presence of AMPA, but the TNN

presented a noisier firing rate curve. This phenomenon

might be induced by the larger value of NMDA excitatory

neurotransmitter conductance in the TNN, which led to a

larger AMPA conductance proportionately. Hence, obvious

oscillations appeared. Although the firing rate curve in

Fig. 5a was reasonable, it was inappropriate to show the

antagonism between the TPN and TNN.

The difference between Figs. 5a and 4a shows that the

TPN–TNN network with larger AMPA excitatory synaptic

connections had a more drastic oscillation. Although the

firing rate curve (Fig. 5a) still showed the TPN–TNN

anticorrelation, the relative positions of those two baselines

altered. In Fig. 4a, the TNN baseline was lower than the

TPN baseline; while in Fig. 5a, the TNN baseline was

higher than the TPN baseline. This meant that, in the case

of the same weight and inter-network conductance

parameters, the mutual inhibition between the TPN and

TNN with larger AMPA synaptic connections was weak-

ened. AMPA had a significant impact on neuronal syn-

chronous oscillation (Fuchs et al. 2001), making the default

network unable to be well inhibited in task state.

It has been explored that the AMPA/NMDA conduc-

tance ratio could induce changes of neuronal dynamical

states and oscillation patterns (Wolf et al. 2005). This

method might be utilized to fine-tune some conductance

ratio of AMPA/NMDA in order to adjust their baseline

positions, making the TPN–TNN simulation closer to the

coupling of the DMN and WMN (Fox et al. 2005; Cheng

et al. 2020). To better present the basic anticorrelated

phenomenon in the TPN–TNN model and appropriately

retain the oscillation from AMPA introduction, the con-

tained energy was calculated (Fig. 5d).

By adjusting the AMPA/NMDA conductance ratio in

the TNN from 3.5/6.5 (Compte 2000) to 2.0/6.5, the con-

tained energy curves in the TPN and TNN are shown in

Fig. 5d. Since the contained energy was based on mem-

brane potential, the adjustment of AMPA/NMDA ratio in

the TNN could significantly modulate the oscillation in the

contained energy and baseline positions in the TPN and

TNN. Compared with Fig. 5a, after the adjustment of

AMPA/NMDA ratio in the TNN, the contained energy

baseline positions in the TPN and TNN were reversed. The

Fig. 4 Basic anticorrelation behavior and firing results in the TPN–

TNN network when AMPA conductance was set a small value.

Gaussian weight parameter: r ¼ 11:25; Jþ ¼ 3:62; k5 ¼ 90, preferred

direction: 180�. a Anticorrelation of firing rates in the TPN–TNN

networks. The red curve indicates firing rates in the task-positive

network (TPN), and the blue curve indicates firing rates in the task-

negative network (TNN). b The scatter plot of firing rates in the TPN

with density color temperature and 3D demonstration. c The scatter

plot of firing rates in the TNN with density color temperature and 3D

demonstration. The color temperature chart and the Z-axis are firing

rates calculated by a 45 ms time window
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negative correlation between the TPN and TNN became

obvious after adjusting the TNN AMPA/NMDA ratio.

Therefore, in the following sections, the AMPA/NMDA

ratio within the TNN was set at 2.0/6.5 to ensure that the

TNN could be well inhibited by the TPN during task

periods.

The result also raises several questions. When popula-

tion neurons had highly synchronized oscillations, what

kind of index was more adequate to characterize anticor-

relation between the TPN and TNN? We have observed

negatively correlated activities in the TPN–TNN network.

Then how to simulate positive correlation between the

WMN and DMN observed during encoding and retrieval

stages in the working memory task? Is it possible to sim-

ulate both positive and negative correlations in the same

theoretical model by changing neurotransmitter parameters

and internal weights among neurons? If so, how could the

two types of correlations be switched in the same TPN–

TNN model? These questions would be answered in fol-

lowing paragraphs.

Fig. 5 Firing rates in the TPN–TNN network when AMPA conduc-

tance had similar magnitude to NMDA conductance. a Firing rate

curves of excitatory neurons in the TPN and TNN. Gaussian weight

parameters: r ¼ 11:25; Jþ ¼ 3:62; k5 ¼ 90, preferred direction: 180�.
Red dotted line is the baseline of firing rates in the TNN after stimulus

withdrawal. The baseline value is 32.21 Hz. Bright blue solid line is

the baseline of firing rates in the TPN after stimulus withdrawal. The

baseline value is 21.32 Hz. b Scatter plot of firing rates in the TPN

with density color temperature. c Scatter plot of firing rates in the

TNN with density color temperature. d Contained energy in TPN and

TNN. Red curve is the contained energy in the TPN, and the blue one

is the contained energy in the TNN
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Modification of NMDA channels between the TPN
and TNN regulated the transmission of neuronal
information.

Different correlations between the DMN and WMN have

been observed in maintenance and retrieval phases of a

working memory task with fMRI (Piccoli et al. 2015). For

theoretical research, we want to know what kinds of factors

which enable the networks to switch from the maintenance

state to the retrieval state. In another words, our question is

how to change the activity pattern in the TPN–TNN model

when it behaved at the stable baseline stage (Fig. 5). We

attempted to use two methods. One was to repeat the same

external stimulus and the other was to modify the NMDA

conductance between the TPN and TNN, in order to find a

reasonable explanation for changes of functional connec-

tions and correlations between brain regions associated

with the phase switch of working memory.

The effect of repeated stimulus

During simulation, a stimulus with a preferred direction of

180� was inputted into the TPN from 750 to 1000 ms as an

indicator of the memorized position. During the memory

maintaining phase, the same stimulus was re-presented

from 5050 to 5300 ms. Figure 6 showed firing rates of

neurons in the TPN and TNN, respectively. In this case, we

did not modify any neurotransmitter parameters at any time

point in the whole simulation process. It could be observed

that the repeated stimulus did not affect the activity pattern

of the TPN–TNN network as long as the network had

reached a stable and strong population firing state. The

only difference was that during the repeated stimulus per-

iod (Fig. 6a, 5050–5300 ms), the firing rate in the TPN

increased, while the stable inhibitory state in the TNN

would not be re-activated by the repeated stimulus. The

results suggest that the repeated stimulus did not change

the neural activity patterns in the TPN and TNN

simultaneously.

The effect of modifying NMDA conductance
between the TPN and TNN

We studied two methods to modify excitatory synaptic

conductance between the TPN and TNN, in order to find

out a possible switching mechanism from the maintenance

phase to the retrieval phase in the working memory pro-

cess. One method was to switch off NMDA channels

between the TPN and TNN (setting NMDA conductance as

zero) during a maintaining period (from 3000 to 7000 ms),

then NMDA channels returned to normal states after this

period. We observed changes of network activity patterns

during the whole maintaining period. The other method

was to switch off NMDA channels between the TPN and

TNN during 1000–2000 ms and the period after 8000 ms,

respectively. NMDA channels were kept normal values

A BTPN TNN

750-1000ms
stimulation

5050-5300ms
repeated stimulation

750-1000ms
stimulation

5050-5300ms
repeated stimulation

Fig. 6 Firing rates of excitatory neurons in the TPN and TNN when a

repeated preferred direction stimulus was presented. a Scatter plot of

firing rates in the TPN with density color temperature. b Scatter plot

of firing rates in the TNN with density color temperature. Preference

direction: 180�. Gaussian weight parameter:

r ¼ 13:25; Jþ ¼ 3:62; k5 ¼ 95. The first stimulus was presented

during 750–1000 ms. The same stimulus was repeated during

5050–5300 ms. Stimulation periods had been respectively marked

with reverse color boxes

Cognitive Neurodynamics (2021) 15:1101–1124 1111

123



during 2000–8000 ms in which the TPN–TNN model

exhibited anti-correlated activities. Since AMPA only

affected the oscillation of population neurons, AMPA

channels were not regulated in this study. These two switch

methods of NMDA channels between the TPN and TNN

were hereafter called as switch I (Fig. 7a–c) and switch II

(Fig. 7d–e).

Figure 7 showed firing rate curves and scatter plots

under the two NMDA switches. Activity patterns in both

the TPN and TNN changed at the starting point of the

NMDA switch I (3000 ms, Fig. 7a–c) due to the truncation

of NMDA channels between them. For the lack of the inter-

network NMDA projections from pyramidal cells to

interneurons, the mutual inhibition of TPN and TNN was

significantly weakened. In this case, the activities in the

TPN and TNN were more dependence on their intrinsic

neurodynamics. The firing in the TNN became stronger

during switch-off period (3000–7000 ms) because of its

relatively higher internal synaptic parameters. After

7000 ms, the inter-network NMDA projections recovered

to normal values, i.e. NMDA switched on again. The whole

network turned to the activity situation observed before

3000 ms. However, in the case of NMDA switch II, only

the neural activity in the TPN changed accordingly due to

the switch (Fig. 7d–e), while the firing activity in the TNN

did not decreased after the stimulation period

(750–1000 ms) until NMDA connections between the TPN

and TNN switched on. This indicated that NMDA switch II

could not change the activity patterns in the TPN and TNN

simultaneously.

During switch I, the simultaneously changed activities

in the TPN (representing the WMN) and TNN (represent-

ing the DMN) were closer to the conversion of activity

patterns between different phases of working memory.

Therefore, we selected the simulated data of NMDA switch

I to calculate the contained energy for further analysis.

As shown in Fig. 8, after switching off the NMDA

synaptic conduction between the TPN and TNN

(3000–7000 ms), the contained energy in each of the two

networks became more rhythmic (PLV = 0.9993, PLI =

0.1740, the right bottom subplot of Fig. 8) than that during

other periods. By switch I, when the TNN negatively

correlated with the TPN (1000–3000 ms), the whole net-

work consumed more energy (i.e. contained energy

decreased) because of their mutual inhibition, corre-

sponding to a higher TPN firing rate curve (Fig. 7a) and a

lower TPN contained energy curve in (Fig. 8). However,

after switching off NMDA channels between the TPN and

TNN (3000–7000 ms), the contained energy in the TNN

returned to the oscillation situation when no external

stimulus was applied and the contained energy in the TPN

appeared new oscillations that had not been observed

A

B

C

TPN

TNN

Synaptic Switch I

Synaptic Switch II
D

E

Fig. 7 a–c Firing rates in the TPN and TNN for switch I and switch II,

respectively. a Firing rate curves in the TPN and TNN under the

condition of switch I. The red curve is the firing rate of TPN. The blue

curve is the firing rate of TNN. The gray box means the stimulation

period (750–1000 ms), and the magenta box indicates the period in

which NMDA channels between the TPN and TNN were switch-off

(3000–7000 ms). Preference direction: 180�, Gaussian weight

parameter: r ¼ 13:25; Jþ ¼ 3:62; k5 ¼ 95. b, c 3D scatter plot of

firing rates in the TPN and TNN under switch I, respectively. d, e 2D
scatter plot of firing rates in the TPN and TNN with density color

temperature under switch II. Periods marked by straight lines in (d)
were the inter-network NMDA switch-off intervals (1000–2000 ms,

8000–9000 ms). Those intervals were the same in (e)
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previously. The simultaneous appearance of oscillations in

the TPN and TNN might have relevance with the positive

correlation phenomenon between the WMN and DMN

reported in the fMRI experiment (Piccoli et al. 2015).

The effect of NMDA conductance anomalies

It had been confirmed in Sects. 3.2.1 and 3.2.2 that the

same repeated stimulus could not significantly enhance

TPN activities in the model with the coupled TNN, while

that the switch on and off of NMDA channels between two

networks had an important impact on activities in the TPN–

TNN network. During the switch I method, the strength of

NMDA conductance was set as zero (switch off condition)

or was kept as a normal value (switch on condition). It was

still not sure whether the activity in the TPN and TNN

would concurrently be changed with adjustment of NMDA

conductance values, especially strengthening NMDA

gating connection, instead of the 0–1 type NMDA switch.

Therefore, in this section, we investigated the effect of

significantly higher NMDA conductance on activity pat-

terns in the TPN and TNN and their responses to the

external stimulus.

The NMDA conductance between the TPN and TNN

was set ten times as great as the normal value during

5050–5300 ms, but was kept the normal value in other

periods. In addition to the initial stimulus in 750–1000 ms,

a second identical stimulus was presented in

6550–6800 ms (Fig. 9).

It was found that both TPN and TNN activity patterns

were changed after a large increase in NMDA conductance

(Fig. 9a). Particularly, the TPN directly stopped firing with

the abnormally large NMDA conductance

(5050–5300 ms). After that, with NMDA conductance

returning to the normal value, the TPN did not fire until the

same stimulus was re-represented during 6550–6800 ms.

initial state before the stimuli (<750ms)

 normal interinhibition during maintenance process (1000-3000ms)

 eliminate NMDA interaction between TPN & TNN 
during maintenance process (3000-7000ms)

Fig. 8 The contained energy curves in the TPN and TNN under

NMDA switch I. The whole network received a external stimulus

during 750–1000 ms. NMDA channels between TPN and TNN were

switched off during 3000–7000 ms (right below) and switched on in

the rest of simulation time. Preference direction: 180�, Gaussian

weight parameter:r ¼ 13:25; Jþ ¼ 3:62; k5 ¼ 95
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This repeated stimulus evoked a similar activity pattern in

the TPN to the response of the first stimulus

(750–1000 ms). The large NMDA conductance halted the

normal firing activity in the TPN (Fig. 9a), which allowed

the otherwise inhibited TNN to become active again

(Fig. 9b) and returned the entire network into a resting-like

pattern. The possible reason was that the excitatory

synapses were so strong that the inhibition given by the

inhibitory synapses could not be comparable, resulting in

synaptic disconnections between neurons throughout the

network.

As could be seen from the contained energy curves in

Fig. 9c, the abnormally high NMDA conductance made

contained energy in both the TPN and TNN increase, while

the both contained energy curves became gradual and mild

when firing activity in the TPN stopped and firing activity

in the TNN enhanced. This phenomenon reflected that an

excessively high NMDA conductance could interrupt

energy consumption (Kristiansen and Meador-Woodruff

2005) so as to interrupt an entire working memory process.

After 5300 ms, the strength of NMDA conductance

returned to the normal value as same as that before

5050 ms. Both the TPN and TNN showed a peak-like

fluctuation in contained energy. After consuming more, the

contained energy of the TNN entered into an oscillation

form, while the contained energy of the TPN fluctuated

slightly around a stable value. Comparing the upper right

subplots of Figs. 8 and 9c after 5300 ms, it could be

observed that the whole TPN–TNN network returned to the

initial firing state without stimulation. Combining the three

graphs in Fig. 9, it represented that a new working memory

process flagged by a repeated stimulation (after 6550 ms)

after a period of excitatory neurotransmitter anomalies was

equivalent to restarting the memory, without any phe-

nomenon of memory recall and reinforcement.

Fig. 9 Results of interaction between the TPN and TNN with

abnormally high values of NMDA conductance and reapplied

stimulation afterwards. a, b The 3D scatter plot of firing rates in

the TPN and TNN. c The contained energy curves in the TPN and

TNN during 4900–5600 ms with a grey area showing the time period

(5050–5300 ms) NMDA conductance value was extremely high.

Preferred direction: 180�. Gaussian weighting parameters:

r ¼ 13:25; Jþ ¼ 3:62; k5 ¼ 95
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Working memory processes with sequential
stimuli with different preferred directions

The aforementioned modulation of NMDA represented the

robustness of this mutual inhibitory network structure by

the direct repetition of external stimuli (‘‘The effect of

repeated stimulus’’ section) and the autonomous repetition

of internal switch-on and -off neurotransmitter gating

channel between the DMN and WMN (‘‘The effect of

modifying NMDA conductance between the TPN and

TNN’’ and ‘‘The The effect of NMDA conductance

anomalies’’ sections). In order to deeply understand func-

tional roles of the DMN in working memory, we inputted

two external stimuli with different preferred directions to

the TPN at two different moments sequentially, to discover

how the two sequential stimuli affected working memory

process, and to verify the necessity of the DMN in concert

with the WMN.

When the two stimuli were inputted into the TPN

sequentially (Fig. 10a, b), the number of activated TPN

pyramidal neurons during the stim2 period

(1000–1500 ms) was significantly higher than that during

the stim1 period (750–1000 ms). The firing rate of TPN

neurons in the stim2 period was higher than that in the

stim1 period. However, during the delay period, the firing

rate of population neurons activated by stim2 was not

higher than that of stim1 (Fig. 10a). Comparing with the

results of one single stimulus (Fig. 5c), the TNN was not

less inhibited by the two sequential stimuli. To ensure the

firing pattern induced by stim2 was kept during the main-

tenance-like phase, the Gaussian weight parameter r
between excitatory neurons in the TPN was set a smaller

value compared to that in previous simulations. Thus,

because fewer neurons in the TPN were activated in the

two-stimulus trials than in one-stimulus trial, inhibition of

the TNN was reduced when stim1 was inputted. Oscilla-

tions in the TNN were more intense than those with one

single stimulus, but inhibition in the TNN still occurred

(Fig. 10b).

As could be seen in Fig. 10c, the TPN consumed almost

all of its stored energy in the presentation of stim1 period

from 750 to 1000 ms (DE � 3:3 nJ); while in presentation

of stim2 period from 1000 to 1500 ms, there was less

energy consumption (DE � 1:9 nJ). During the two stimuli

presentation period, the TNN kept stable energy values and

no significant changes in firing activity (background-like

violet oscillation curves in Fig. 10c). This meant that the

pattern of energy consumption and neuronal firing activity

throughout a working memory simulation trial was deter-

mined during the 750–1000 ms stim1 period.

Fig. 10 Simulated results of sequential stimuli. a, b: scatter plots of
firing rates in the TPN and TNN with two sequential stimuli. c The

curves of contained energy in the TPN and TNN when the two

sequential stimuli were presented. Preferred directions and applica-

tion time periods of the two sequential stimuli were: Stim1: 200� 750–
1000 ms; Stim2: 100�1000–1500 ms. Gaussian weighting parameter:

r ¼ 9:25; Jþ ¼ 3:62; k5 ¼ 95. D: The curves of contained energy in

the TPN and TNN when the three stimuli were presented sequentially.

e, f Scatter plots of firing rates in the TPN and TNN when the three

sequential stimuli were presented. Preferred direction and application

time periods of three sequential stimuli were: Stim1: 90� 750–

1000 ms; Stim2: 190� 1000–1500 ms; Stim3: 220� 1500–2250 ms.

Gaussian weighting parameter:r ¼ 9:25; Jþ ¼ 3:62; k5 ¼ 90
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With almost identical parameters shown above, the

model was difficult to ‘‘remember’’ the third stimulus when

three stimuli were inputted into the network sequentially.

The sustained firing population induced by stim3 probably

was fused to the sustained firing population caused by

stim2 (Fig. 10e), while the TNN did not get enough inhi-

bition. Even when the direction of stim3 was far away from

the direction of stim2, we had not succeeded to keep a

sustained firing pattern evoked by stim3 during the delay

period. Moreover, it was seen from the contained energy

curves (Fig. 10d) that the energy consumption of the TPN

was about 3.08 nJ, 2.64 nJ, and 0.33 nJ for stim1, stim2

and stim3, respectively. Arguably, for this set of direction

selective weighting parameters (r ¼ 9:25; Jþ ¼ 3:62), the

TPN–TNN model could only remember at most two

sequential stimuli in one trial. Simulation results of three

sequential stimuli (Fig. 10d–f) indicated that only within a

certain range of energy consumption could allow the net-

work to add new stimuli as memory components. It was

difficult for a TPN–TNN network with determined energy

consumption to change its neural activity. In addition,

during a working memory process with involvement of the

DMN, a successful addition of subsequent stimuli would

shift the center of the neuronal community activated by

previous stimulus (Fig. 10e), but would not stop the orig-

inal working memory process. The coupling of the DMN

could make working memory more stable but also more

immutable or robust.

Simulation of three phases in a working memory
process

The synaptic model originally proposed by Wang and

Compte (2000; Wei et al. 2012) has well demonstrated

maintaining-like activity in working memory. It has also

been shown that the TNN as a default network coupled

with the TPN was a good way to achieve the anticorrelation

between the WMN and the posterior cingulate brain region

(a part of the DMN) during the working memory mainte-

nance phase (Cheng et al. 2020). However, these models

neither took into account encoding and retrieval phases of

working memory, nor considered positive correlation

between the WMN and DMN during these two phases.

Therefore, we began to consider whether a model could be

implemented for an entire working memory process that

completely contains encoding, maintenance, and retrieval

phases.

The topic of this article is to explore whether positive

and negative correlations between the DMN and WMN at

different phases would be integrated at the energy level.

BOLD signals in the fMRI working memory study showed

diametrically opposed correlations between the DMN and

WMN in maintenance phase and in encoding or in retrieval

phase of working memory (Piccoli et al. 2015; Vatansever

et al. 2017). Since the negative and positive correlations

between the DMN and WMN are manifested at different

stages of the same cognitive task and also in functional

connectivity between different brain regions, it was pos-

sible that these two correlations could be switched each

other to realize a continuous working memory process

without break intervals. In order to theoretically explore

this possible switching and combination of negative and

positive correlations between the WMN and DMN, we

simulated a working memory process that completely

contained three phases.

The specific network architecture was shown in Fig. 2

and ‘‘Methods’’ section, which consisted of two TNNs

(TNN1 and TNN2) and one TPN. In order to realize the

positive correlation that might occur during encoding and

retrieval phases, excitatory neurons in the TNN2 had the

same directional weights as those for excitatory neurons in

the TPN. In a simulated working memory trial, an external

stimulus with a preferred direction was inputted into the

TPN during 750–1000 ms. After that there was a mainte-

nance period and a retrieval period (from 800 to 9000 ms).

The contained energy in the TPN and TNN had better

embodied characteristic oscillations than did firing rates in

the NMDA switch I simulation trial (Fig. 8). In that case,

we applied NMDA switch I to simulate inherent changes of

the network when the working memory phase was shifted.

Once the working memory phase changed, the connections

between TPN and TNNs would simultaneously alter.

Contained energy was the most important index to illus-

trate the oscillation differences of three networks in three

phases.

In some simulation trials, simultaneous switching of

both AMPA and NMDA channels between the TPN and

TNN was also attempted. It was found that AMPA only

controlled the oscillatory strength of the overall network

activity, and its effect on other aspects of neuronal activity

was not significant. Therefore, in this section, we preserved

normal AMPA channels and only used NMDA switch I

(Figs. 7, 8) to respectively switch on or off the connections

of the TPN (representing DLPFC) with the TNN1 (repre-

senting PCC) or with the TNN2 (representing IPL) in three

different phases of a complete working memory process.

Parameters of the model and time intervals of three

phases are shown below. Detailed internal parameters of

the model are shown in the supplementary parameter table.

Gaussian weight parameters:

r ¼ 11:25; Jþ ¼ 3:62; k5 ¼ 95. Preferred direction of the

external stimulus: 180�. The external stimulus was applied

in 750–1000 ms. Encoding phase: 750–1750 ms. In this

encoding period, NMDA conductance was kept a normal
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value between the TPN and TNN2, while NMDA con-

ductance was set zero between the TPN and TNN1.

Maintenance phase: 1750–8000 ms. In this maintenance

period, NMDA conductance was kept a normal value

between the TPN and TNN1, while NMDA channels

between the TPN and TNN2 were switched off (the

strength of NMDA conductance as set as zero). Retrieval

phase: 8000–9000 ms. In this retrieval period, NMDA

channels were switched on at a normal level between the

TPN and TNN2, while they were switched off between the

TPN and TNN1. All AMPA and GABA currents in the

TPN–TNNs model did not vary during all three phases.

As could be seen in Fig. 11a, the TPN could not inhibit

the two TNNs well. However, this result indicated that the

BOLD signal correlation between the WMN and DMN

observed in fMRI experiments was not completely char-

acterized by the high or low baseline value of firing rates.

Due to the consistency between the BOLD signal and

contained energy (see ‘‘Methods’’), the contained energy

would reflect more characteristics of neural activity than

does the firing rate. The oscillations of contained energy

were significantly different in the TPN, TNN1 and TNN2

(Fig. 11b). Oscillations in the TPN disappeared during the

maintenance phase from 1750 to 8000 ms (Fig. 11b, mid-

dle panel). This disappeared oscillation was probably

related to NMDA connections between the TPN and

TNN1, NMDA disconnections between the TPN and

TNN2 during this maintenance period. In order to quanti-

tatively measure oscillation patterns in the three networks,

phase locking analysis was carried out based on the con-

tained energy signals between every two networks.

The phase locking analysis is often used in fMRI studies

and is a good method to measure phase synchronization of

two BOLD signals recorded from two different brain areas.

The two indexes of PLV (Phase Locking Value) (Aydore

et al. 2013) and PLI (Phase Lag Index) (Stam et al. 2007)

have been used here for analyzing phase synchronization of

the contained energy between TPN and TNN1, TPN and

TNN2, TNN1 and TNN2, separately in three phases of

working memory. Since phase differences between three

networks were small, PLV values between every two net-

works at each of three phases were very high (see Table 1).

In that case, PLI was calculated at the same time. PLI

mainly analyzes the phase symmetry of two signals, thus

being able to amplify some tiny phase differences so that

the discrimination of phase locking property could become

obvious.

From Table 1 and Fig. 12, it could be found that both

PLI of TPN and TNN1 and PLI of TPN and TNN2 were

somewhat higher during the retrieval phase than during the

encoding phase. This result was consistent with the phe-

nomenon of working memory enhancement in retrieval

phase (Hsieh and Ranganath 2014; Karlsgodt et al. 2005).

Phase locking between TNN1 and TNN2 was common in

all three phases, but there was a small decrease in PLI

during the retrieval phase comparing with PLI in the

encode or maintenance period. The PLI between TPN and

TNN1 and the PLI between TPN and TNN2 were high

during encoding and retrieval phases. However, the con-

tained energy in the TPN showed a flat signal without

oscillations during the maintenance phase (Fig. 11b). So

PLI during the maintenance phase was unable to be cal-

culated as a valid value. In brief, the phase locking dif-

ferences between maintenance and the other two phases

might correspond to the distinction of negative correlation

(Cheng et al. 2020; Andreou et al. 2018; Hsieh and Ran-

ganath 2014; Dixon et al. 2016b) in maintenance and

positive correlation in encoding and retrieval (Fox et al.

2005) between the WMN and DMN observed in their

BOLD signals.

Theoretically, the simulated results using the two TNNs

model could indeed be achieved by only using the model

coupled with one single TNN, as demonstrated by the

results of NMDA switch I (Figs. 7,8). The network model

with one TNN created a kind of neuronal activity pattern

shift that could be used to explain the transition of working

memory from maintenance to retrieval phase. However, the

TNN in the single TNN model was directly inhibited after

the stimulus offset (Fig. 8), so there was no way to induce

effective oscillatory properties during encoding phase, a

short time after the stimulus offset. Furthermore, given that

positive and negative correlations were observed in dif-

ferent brain regions (Piccoli et al. 2015; Dixon et al.

2016b), and that both PCC and IPL are subnetworks of

DMN, it was more reasonable to use two mutually coupled

TNNs as two subnetworks of the DMN.

The simulated results in three phases of working mem-

ory indicated that negative or positive correlation in

experimental BOLD signals could correspond to contained

energy of neuronal population with or without phase syn-

chronization. The negative and positive correlations

between the DMN and WMN showed integration and

convertibility on energy representation.

Discussion

This article studied dynamical activity in a coupled TPN–

TNN network to demonstrate functional roles of the DMN

in a working memory task. First, we found that AMPA

channels were able to cause significant synchronous

activity in the networks (Fig. 5). The contained energy was

able to represent significant oscillatory population activity

(Fig. 5d). Second, we confirmed that changes in NMDA

synaptic conductance between the TNN and TPN could

switch neural activity among multiple patterns in the net-

work (Figs. 8, 9, 10). In particular, the method of NMDA
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switch I, which sequentially disconnected and reconnected

NMDA channels between the TPN and TNN after the

stimulus offset (Fig. 8), resulted that the evoked firing

activity was similar to the neuronal activity pattern shifting

from maintenance phase to retrieval phase in the working

memory task (Piccoli, et al. 2015). It was suggested that

NMDA switch I might be an important neural mechanism

to switch neural activity from maintenance phase to

Fig. 11 Firing activity and contained energy in a complete working

memory process. a Scatter plots of firing rates in TPN and two TNNs

with density color temperature. The semi-transparent white box marks

the maintenance phase. Black lines on both sides of the white box are

the time points of encoding ? maintenance (1750 ms), mainte-

nance ? retrieval (8000 ms). b Contained energy curves of the three

networks by intercepting time intervals of encoding, maintenance,

and retrieval phases. The blue dashed curves indicate contained

energy in the TNN2; the magenta dashed curves represent contained

energy in the TNN1, and the green solid curves are contained energy

in the TPN
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retrieval phase in working memory. In addition, sequential

presentations of two stimuli with different preferred

directions showed important roles of the TNN coupled with

the TPN. The simulated results indicated that the number

of sequentially mnemonic stimuli was related to the energy

consumption determined by the network internal parame-

ters (Fig. 10). Finally, we found that the three phases of

working memory might correspond to functional connec-

tions between the WMN and different brain regions of the

DMN with the collateral evidence of Piccoli.2015 (Piccoli

et al. 2015). The maintenance phase was corresponding to

NMDA channel switch-on in TPN–TNN1 (representing

DLPFC-PCC) connections, while encoding and retrieval

phases were corresponding to NMDA channel switch-on in

TPN–TNN2 (representing DLPFC-IPL) connections.

Neuronal oscillations of these functional connections

showed differences in terms of phase synchronization

(Figs. 11, 12). These findings demonstrated that the cou-

pled activity of the DMN and WMN could not be described

simply as either positive or negative correlation. These

correlations were more likely to correspond with rhythmic

activity characterized with different degree of synchro-

nization in the DMN and WMN. From the view of the

energy, the positive and negative relationships between the

activity in the DMN and WMN could be integrated and

converted each other.

The DMN is strongly linked to working memory

(Vatansever et al. 2017). Abnormal activity in the DMN

has been widely recognized as an important characteriza-

tion of depressive states or cognitive abnormalities (She-

line et al. 2009; Broyd et al. 2009). It is also reported that

working memory dysfunction with abnormal EEG signal

fluctuations has frequently been observed in schizophrenia

(Anticevic et al. 2013) and post-traumatic stress syndrome

(PTSD) patients with typical cognitive deficits (Schweizer

and Dalgleish 2011). Successive positive and negative

correlations between the DMN and WMN were related to

different functional connections between cortical regions

during a complete working memory process. The inferior

parietal lobe (IPL), positively correlated with the WMN,

belongs to the medial temporal subsystem of the DMN;

while the posterior cingulate cortex (PCC), negatively

correlated with WMN, belongs to the dorsal medial sub-

system of the DMN. These two subsystems serve different

cognitive functions. The medial temporal subsystem,

including hippocampus, is associated with autobiographi-

cal memory as well as event prediction, and the dorsal

medial subsystem is associated with understanding of

others and empathy (Andrews-Hanna et al. 1316). Resting-

state functional connections between these two default

network subsystems were found significantly attenuated in

brains of major depression patients (Yan et al. 2019) and

Table 1 PLV and PLI in

different working memory

phases between the three

networks two by two. The

contained energy of TPN in

maintenance phase was a small

noise-like fluctuation (Fig. 11b),

for which the computed PLV

and PLI were invalid

Working memory process Networks PLV (Phase locking value) PLI (Phase lag index)

Encode (after stim) TPN&TNN1 0.9991 0.7384

TPN&TNN2 0.9991 0.7306

TNN1&TNN2 0.9969 0.5178

Maintenance TPN&TNN1 – –

TPN&TNN2 – –

TNN1&TNN2 0.9968 0.5313

Retrieval TPN&TNN1 0.9996 0.8485

TPN&TNN2 0.9996 0.8181

TNN1&TNN2 0.996 0.4871

Fig.12 PLI at different working memory phases between three networks. Invalidation results of TPN and TNN1 and TPN and TNN2 was directly

omitted here
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PTSD patients (Miller et al. 2017), triggering typical con-

flict avoidance symptom of these two psychiatric disorders.

In addition, different brain regions can be identified by

their different activity patterns observed in high precision

fMRI even though they are very close (Scholz et al. 2009).

This experimental evidence suggested that different

regions in the same brain network could represent different

activity patterns. Thus, from a physiological point of view,

it is plausible that positive and negative correlations

between the DMN and WMN appeared alternatively in a

complete working memory process. It has also reflected

that the coupled relationship between the DMN and WMN

was more than just negative correlation (Dixon et al.

2016b).

By adjusting the AMPA term (Eqs. 10,12), which has

been minimized in a previous paper (Cheng et al. 2020), to

a value similar to the value of the NMDA term in the

present study, neural activity in the TPN–TNN network

displayed strong oscillatory properties (see Fig. 5). It has

been shown that the AMPA channel plays an important

role as an oscillatory factor in the synaptic communication

between neurons (Kitanishi et al. 2015), as well as in the

rapid high-frequency firing of epileptic signals (Bialer et al.

2007). It was reported that the membrane potential of a

neuron with fast and high-frequency firings showed

directional selectivity (Carver et al. 2008), consistent with

the directional selectivity of the weights set in the WMN

(Compte 2000). Therefore, it is feasible to characterize

activities of high-frequency firing neurons using their

membrane potentials. However, the model in this article

was a coupled structure of two networks (Fig. 1a), or even

of three networks (Fig. 2), with 2048 excitatory neurons

and 512 inhibitory neurons in each network. At the level of

a large neuron population, taking the averaged membrane

potential over all neurons as local field potential (LFP) was

not entirely appropriate and was difficult to interpret the-

oretically. Therefore, we used the membrane potential of

each neuron to calculate the contained energy in each of

the networks (Eqs. 27,28). Most of the contained energy

for neural activity in brain (represented by ATP stored in

mitochondria) is expended on synaptic activities (Harris

et al. 2012). Moreover, the contained energy calculated in

the TPN–TNN network was in agreement with the BOLD

signal computed from firing rates of neurons (Fig. 3).

Energy, a physiologically specific parameter, can provide a

valid analysis for high-intensity oscillations caused by

AMPA channels.

Since it is necessary to prove whether activities in the

DMN and WMN with neural oscillations were unaltered in

three working memory phases, it is important to confirm

what kind of approach could be used to distinguish neural

activities among three phases. The majority of experi-

mental literature (Jaeggi et al. 2008; Hsieh et al. 2011;

Heuer and Schubö 2016) used a cue stimulus presented at

the end of maintenance phase to indicate subjects to shift

working memory from the maintenance phase into the

retrieval phase. However, from the theoretical view, it is

not clear whether the presented cue stimulus just works as

an external stimulus that could evoke activity changes in

the TPN–TNN network to shift the working memory pro-

cess from maintenance to retrieval phases. Alternatively,

the presented cue stimulus was possible to work as a signal

to trigger an essential modification of synaptic connections

between the two networks to shift the working memory

from memory maintenance to retrieval phases. Simulated

results demonstrated the importance of neurotransmitters

that were involved in coupling the DMN and WMN.

Specifically, AMPA terms could guarantee necessary

oscillation in maintenance phase (Fig. 5), switching on and

off NMDA channel between TPN and TNN in several

certain timepoints would diverse neural activities in the

network model (Figs. 7, 8), and an abnormal NMDA

conductance increase would interrupt a normal ongoing

working memory maintenance phase (Fig. 9). For a com-

plete working memory process, our simulated results

demonstrated that the shift of working memory phases was

primarily due to changes in excitatory neurotransmitter

conductance between WMN and different DMN subnet-

works (Fig. 11).

The conductance between two networks would pro-

foundly affect the working memory function in some

physiological experiments (Takei et al. 2016). For exam-

ple, lower glutamate/GABA ratio could induce stronger

DMN inhibition (Gu et al. 2019), while the increase of this

ratio could induce a weakening DMN inhibition. Abnormal

concentration ratio of inhibitory to excitatory neurotrans-

mitters is a typical characterization of depressive psychi-

atric disorders (Kendell et al. 2005). A specific abnormal

ratio of neurotransmitter concentrations might even cause

the patient to recall a specific event as an intensification of

memory, which was a possible cause of depression symp-

tom (Figueroa et al. 2017). An excited DMN was still able

to inhibit the WMN, but the overactivity of DMN might

manifest itself in actual brain activity as a characteristic of

cognitive disorders and psychiatric problems, like PTSD

and MDD (Kaiser et al. 2019). Those patients might have

difficulties in doing working memory tasks in actual

behavioral experiments (Anticevic et al. 2012).

Previous studies have demonstrated that the TPN built

on I–F neurons with synaptic gating mechanisms can work

as the WMN independent of TNNs (Compte 2000; Wei

et al. 2012). Our results further confirmed that when the

TPN was coupled with the TNN, neurons in the TPN fired

more pronouncedly and more intensely, so that memory

contents in the TPN became more sustainable. According

to the simulated results of sequentially presented stimuli
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(Fig. 10), only if the second stimulus immediately fol-

lowed the first stimulus and had a longer presentation

duration, the second stimulus had the potential to be

remembered. This simulated mechanism could be used to

interpret a macro-behavioral chunk theory of working

memory.

The number of the sequential stimuli was possibly

determined before the TPN–TNN system got into a steady

state (Fig. 10) without adjusting any internal synaptic

parameters. After the TPN–TNN system went into an

energy-determined stable state, the TPN–TNN network

was only able to memorize the determined sequential

stimuli, and it was relatively hard to remember additional

stimuli any more (Fig. 10d–f). The initial stimulus, repre-

senting an initial memorized chunk, was hard to be dis-

tracted. It behaviorally implicated that once a content A

was stored in the networks as working memory, the net-

works continued keeping the content A until a change of

neurotransmitter concentration that brought the working

memory process to a halt (Fig. 9). However, this proposal

contradicted results from the well-known WMN model

consisting of one TPN (Compte 2000). In the WMN model

with only one TPN, a transient strong external stimulus

could stop working memory maintenance phase (Mayer

et al. 2016). However, when the WMN model have a TPN

coupled with a TNN, the present study found that the

neurotransmitter dynamics rather than the external stimulus

was more important to stop a maintained memory. Com-

pared to simulated results with only one TPN (Compte

2000), maintained components in working memory were

more difficult to be altered when there was a TNN coupled

with a TPN. This implied that the inhibitory effect of the

TNN as the DMN on the TPN could significantly reinforce

the maintenance phase of working memory and make the

presence of the memory content more robust.

Using the phase transformation method (Figs. 7,8) and

energy analysis method (Eqs. 26–28), as well as the net-

work model with coupled networks (Fig. 2), a theoretical

simulation of the complete three phases of working mem-

ory was constructed in this article. For the reason that the

WMN was connected to different brain regions in the

DMN alternately in a complete working memory process,

one single TPN with two TNNs were chosen for the net-

work architecture. The connection weights within each of

the two TNNs were fixed during the whole working

memory process, only NMDA channels between the TPN

and TNN1, between the TPN and TNN2 would be switched

on or off in different memory processes. Our simulation

results on three phases of working memory showed that the

positive and negative correlations exhibited by the cou-

pling of DMN and WMN could be integrated, and that their

alternation appearance might be a plausible explanation for

the working memory mechanism.

Such a simulation approach could help to explore the

essential mechanism of working memory, but it had some

following limitations. (1) The simulation process in this

article ignored changes of synaptic connections within each

network as well as the other types of synaptic connections

between networks when working memory phases were

shifted. (2) This method also did not perform nonlinear

correlations (e.g., MIC) which would account more con-

vincingly for the consistency of phase synchronization with

or without antagonism in terms of correlation analysis. (3)

Some physiological studies have shown an increase in c-
band activity of local field potentials in working memory

experiments, but more experimental data still have shown

that working memory is more correlated with theta-band

(4–8 Hz) activity (Lee et al. 2005). The rhythmic activity

of population neurons was in c band (&50 Hz) at the

energy level simulated by kinetic equations in our research.

If slower frequencies need to be simulated, it may be

necessary to modify the network from the basic I–F model,

which will inevitably involve a large number of parameter

adjustments, and the I–F model with synaptic gating used

in this study may not be an optimal choice. (4) Our con-

clusion and proposed model were suitable to researches

related to coordination of the DMN and WMN at present.

As the DMN includes a collection of several brain regions,

different brain regions may play different roles in the DMN

and these regions may together determine the global

dynamics of the DMN. However, we have not clearly

demonstrated how interactions between sub-regions in

DMN significantly influence the DMN dynamics and its

related functions. This could be an important question

required for further investigation.

Conclusion

Results in this study demonstrated the possibility of co-

existence of positive and negative correlations between the

DMN and WMN. Positive correlation was obtained when

both the networks showed oscillatory activities with similar

frequencies simultaneously, while negative correlation was

obtained when one of the networks was suppressed and its

rhythmic activity became slow waves or noisy signals.

These interesting simulation results revealed that the DMN

was coupled with the WMN in complex and divers ways.

Our simulated results demonstrated that switch on or off

synaptic channels between the WMN and sub-networks in

the DMN could be possible mechanisms to explain tran-

sition of multiple activity patterns in the DMN–WMN

network observed in the fMRI experiment (Piccoli, et al.

2015).

Overall, by further exploring the coupling mechanism

between the WMN and DMN in the TPN–TNN model, this
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article identified how important the conduction of excita-

tory neurotransmitter NMDA between different networks

was in a complete working memory process. We proposed

a perspective that positive and negative correlations

between DMN and WMN were not necessarily contradic-

tory. The theoretical TPN–TNN model contributed to a

better understanding the coupling mechanism between

DMN and WMN and their functions in working memory.

The existence of both negative and positive correlations

between those two networks could help to explain the

possible relationship between working memory impairment

and abnormal DMN activity in pathology.

Supplementary materials

The supplementary materials alongside this manuscript is

parameter tables of the simulation codes. Parameter Index I

pdf file contains constant parameters of synaptic connec-

tion in the simulation, basically similar to the parameters in

theoretical model of Compte. A. (2000). rand J ? in the

‘‘Parameters of excitatory interaction’’ table in index I

could be change to achieve different results. Parameter

Index II pdf file contains the neurotransmitter conductance

(g) between each two neuronal populations. Conductance

adjusted in this article has been marked as colored cells.

Details could be seen in the notes under the parameter

table. Simulation codes (Matlab R2014) could be obtained

by e-mail the first author or the corresponding author, for it

is not suitable to put codes in publishment.
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