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Abstract: Fermented plant foods are gaining wide interest worldwide as healthy foods due to
their unique sensory features and their health-promoting potentials, such as antiobesity, antidiabetic,
antihypertensive, and anticarcinogenic activities. Many fermented foods are a rich source of nutrients,
phytochemicals, bioactive compounds, and probiotic microbes. The excellent biological activities
of these functional foods, such as anti-inflammatory and immunomodulatory functions, are widely
attributable to their high antioxidant content and lactic acid-producing bacteria (LAB). LAB contribute
to the maintenance of a healthy gut microbiota composition and improvement of local and systemic
immunity. Besides, antioxidant compounds are involved in several functional properties of fermented
plant products by neutralizing free radicals, regulating antioxidant enzyme activities, reducing
oxidative stress, ameliorating inflammatory responses, and enhancing immune system performance.
Therefore, these products may protect against chronic inflammatory diseases, which are known as
the leading cause of mortality worldwide. Given that a large body of evidence supports the role of
fermented plant foods in health promotion and disease prevention, we aim to discuss the potential
anti-inflammatory and immunomodulatory properties of selected fermented plant foods, including
berries, cabbage, and soybean products, and their effects on gut microbiota.

Keywords: fermented plant foods; fermented blueberries; fermented blackberries; sauerkraut; kim-
chi; soybean; immunomodulation; inflammation; gut microbiota

1. Introduction

Chronic inflammatory diseases are the leading cause of mortality worldwide [1,2].
Inflammation is part of the host’s complex defense mechanism. It is the immune system’s
biological response against different infectious or non-infectious stimuli [1,3–5]. These
stimuli may activate inflammatory signaling pathways such as nuclear factor-kappa B
(NF-κB), mitogen-activated protein kinase (MAPK), and Janus kinase-signal transducer and
activator of transcription (JAK-STAT) pathways underlying the pathology of many chronic
diseases [1,4]. Exploring the potential role of natural bioactive components in preventing
and treating chronic inflammatory disorders such as cancers, obesity, diabetes, rheumatoid
arthritis, atherosclerosis, ischemic heart disease, and inflammatory bowel disease (IBD) is
now the subject of intense research [6].

Historically, natural products have been known to exert significant biological and
pharmacological properties and play a valuable role in drug discovery and treating many
diseases [6–9]. Due to significant anti-infective, antioxidative, anti-inflammatory, antiangio-
genic, and anticarcinogenic properties [9], many natural compounds have been applied as
preventive and therapeutic agents against many ailments [9,10]. Fermented plant products
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are highly popular foods worldwide, and are a rich source of natural compounds such as
probiotics and phytochemicals with known biological properties [11–16].

Traditionally, fermentation was a method to preserve foods for a longer time; however,
this process recently has attracted great attention due to the increase in the nutritional value
of foods and the production of health-promoting components [17–20]. Over fermentation,
the microorganisms responsible for this process generate bioactive compounds by metabo-
lizing fermentable carbohydrates and proteins [17,20,21]. Generated metabolic compounds
play a significant protective role against chronic disorders, including obesity, diabetes,
cancer, cardiovascular disease, and allergies [17,21]. Moreover, fermentation increases the
peptides, amino acids, vitamins, minerals, and antioxidant contents of foods [20,22].

Nowadays, a wide range of fermented products is produced and consumed world-
wide [22,23]. Although dairy products remain the main source of probiotic bacteria in our
diet, fermented plant foods are unique sources of health-promoting probiotics such as lactic
acid-producing bacteria (LAB) [18]. Lactobacillus, Leuconostoc, Pediococcus, and Weis-
sella genera are the main LAB involved in plant foods’ fermentation process [18,20,24–27].
Although the fermentation process is ensured by probiotic microorganisms, including LAB
and probiotic yeast such as S. boulardii, these microorganisms may be destroyed during
the heating process yielding fermented products with no live microbes. However, even
in these cases, the fermentation process before pasteurization will enrich the fermented
foods with small compounds released from existing phytonutrients or by releasing active
metabolites from the fermentation process itself [28,29].

The gut remains the most important organ in which fermented foods exert their
beneficial effects, either by systemically modulating the immune response or positively
influencing the gut microbiota. [28,29]. The human gut microbiota consists of diverse mi-
croorganisms, including archaea, bacteria, viruses, and yeasts, which maintain a symbiotic
relationship with the host [30–33]. There is a mutual influence between gut microbiota and
the immune system. Gut microbiota play a key role in the function and homeostasis of the
immune system by the maturation of gut-associated lymphoid tissue and innate lymphoid
cells, enhancing antimicrobial peptides, antibodies, and cytokines production, inducing
immunoglobulin A (IgA)-producing B cells and T cells differentiation, and regulating T
helper 17 (Th17)/regulatory T cells (Tregs) balance [34–39]. Gut microbiota perturbation
negatively affects the immune system and leads to inflammation [4].

The anti-inflammatory and immunomodulatory properties of plant-based fermented
foods are well documented [40–42]. The functional properties of fermented products are,
in part, related to the probiotics content of the products [29]. Numerous health-promoting
benefits have been attributed to probiotics due to their anti-inflammatory and immunomod-
ulatory activities at the gut level and beyond [4,43–46]. Probiotic consumption in the form
of fermented foods can improve gut barrier integrity and gut immunity and maintain gut
homeostasis [4,29,47], through different mechanisms, including the inhibition of pathogen
colonization, the induction of antimicrobial peptides production and mucus secretion,
the increase of IgA production, the down-regulation of the Th17 and pro-inflammatory
cytokines such as IL-17F, IL-23, and the upregulation of Tregs production [48–51].

Moreover, fermentation will lead to the degradation of complex phytochemical
molecules into smaller bioactive polyphenols. Studies have shown that polyphenolic
compounds found in fermented products are beneficial in microbiota metabolism and
growth [52] and can inhibit the production of inflammatory cytokines and suppress in-
flammatory responses [53]. Furthermore, neutralizing free radicals, regulating antioxidant
enzyme activities, reducing oxidative stress, and enhancing immune system activity are
other potential mechanisms by which plant-based fermented foods and beverages exert
health benefits [54,55].

Different plants, such as fruits, vegetables, tea, grains, legumes, and starchy roots,
are used to produce plant-based fermented foods [20,22,23,29,53]. Given the growing
evidence suggesting the precious role of fermented plant products in health promotion or
disease prevention [56,57], in this review, we will discuss the potential anti-inflammatory
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and immunomodulatory properties of selected fermented plant foods, including berries,
cabbage and soy products, and their effects on gut microbiota.

2. Fermented Berries

Berry fruits are well known for their significant health benefits [58,59]. Various berries
have been shown to have anti-inflammatory and immunomodulatory activities [60,61],
reduce the risk of cardiovascular diseases [58], neurodegenerative disease [62], diabetes
mellitus [63], and protect against cancer [64]. Berries are a good source of various micronu-
trients and bioactive compounds with antioxidant properties, including vitamins C and
E, selenium, carotenoids, and most importantly, phytochemicals such as anthocyanin and
tannins [58,59,61,65]. The bioavailability of berry polyphenols is low [58,65], therefore,
it has been suggested that the functional properties of the polyphenolic components of
berries are related to their metabolites produced over colonic fermentation by gut microor-
ganism [61,65]. Interestingly, berry polyphenols and their metabolites affect gut microbial
composition by increasing the frequency of beneficial genera, including Bifidobacterium,
Lactobacillus, and Akkermansia [61]. Moreover, berry metabolites have been shown to
suppress inflammatory cytokines and mitigate gut inflammation [61].

Fermentation may increase the positive effects of berries due to an increase in polyphe-
nols and the antioxidant capacity of fermented products [66]. Figure 1 illustrates the
anti-inflammatory and immunomodulatory activity of fermented berries.
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Figure 1. The Anti-inflammatory and Immunomodulatory activity of fermented berries. ↑: increase;
TGF-β: transforming growth factor-beta; IgA: immunoglobulin A; SOD: su-peroxide dismutase;
LPS: Lipopolysaccharide; TLR4: Toll-like receptor-4; TNF-α: tumor necrosis factor; NO: nitric oxide;
SCFAs: short-chain fatty acids; Th17: T helper 17; Tregs: regulatory T cells; PI3K: phosphatidylinositol
3 kinase; AKT: protein kinase B; NF-κB: nu-clear factor-kappa B; MLCK: myosin light-chain kinase;
ERK: signal-regulated kinase.

Fermented blueberries and blackberries modulate the gut microbiota populations
by increasing beneficial bacteria. Moreover, they improve the production of short-chain
fatty acids (SCFAs) and enhance mucosal immunity by promoting secretory IgA (sIgA)
cells through increasing TGF-β activity. Fermented blueberries and blackberries also in-
duce antioxidant enzymes like superoxidase dismutase (SOD), which increase the radical
scavenging capacity. Furthermore, the inflammatory responses are inhibited by inhibiting
macrophage pro-inflammatory mediators release (nitric oxide, TNF-α). It also influences
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immune cells by inhibiting Th17 activity and the differentiation of Tregs. The phenolic com-
pounds released by the digestion of blackberries and blueberries inhibit PI3K/Akt/NF-κB
signaling pathway and improve the gut barrier. Moreover, phenolic compounds decrease
gut permeability by inhibiting TNF-α and its downstream, including ERK1/2 and MLCK.
Created with Biorender.com (accessed on 29 April 2021).

2.1. Fermented Blueberries

Blueberries are among the richest sources of phenolic compounds, such as antho-
cyanins, flavonols, and proanthocyanidins which possess high antioxidant capacity [67,68].
Because of the high content of phenolic compounds, blueberries are known to have valu-
able health effects [67,69–71]. Biotransformation of blueberries during the fermentation
process increases their phenolic compounds content and bioavailability, as well as an-
tioxidant activity [72,73]. Numerous in vitro and animal studies have shown significant
anti-inflammatory properties of fermented blueberries through counteracting reactive
oxygen species (ROS), suppressing the expression of pro-inflammatory cytokines, and
inhibiting inflammatory signaling pathways [72] and, therefore, exerting a protective
function against chronic inflammatory disorders such as obesity [74], diabetes [63,74],
neurodegenerative diseases [75], and cancer [72].

Lipopolysaccharide (LPS) is the main outer layer component of Gram-negative bacte-
ria which can stimulate the innate immune system and inflammation by activation of the
Toll-like receptor-4 (TLR4)/NF-κB signaling pathway [76]. LPS-stimulated macrophages
are one of the best models for studying the anti-inflammatory potential of different phyto-
chemicals in foods [77]. Macrophages are the most important immune cells that contribute
to the initiation of inflammation by secreting pro-inflammatory mediators and cytokines
such as nitric oxide (NO) and tumor necrosis factor (TNF-α) [78]. Overproduction of
NO by inducible NO synthase (iNOS) contributes to developing inflammatory condi-
tions [62,79,80]. Fermented blueberry and cranberry juices (fermented with bacterium
Serratia vaccinii, isolated from blueberry microflora) have been reported to suppress NO
production activated by LPS/interferon-gamma (INF-γ) in mouse macrophage [62]. Also,
fermented polyphenol-enriched blueberry preparation (PEBP) could inhibit breast cancer
cell line growth and breast cancer stem cells development. In vivo, PEBP inhibited tumor
development, the formation of ex vivo mammospheres, and lung metastasis. PEBP ex-
erted its anticarcinogenic effects through regulating the activity of transcription factors as
well as phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), MAPK/extracellular
signal-regulated kinase (ERK), and STAT3 pathways [72].

Fermented blueberries may counteract obesity and diabetes, at least partly, through
anti-inflammatory and antioxidant activities [74]. The administration of fermented blue-
berry juice reduced hyperglycemia in diabetic mice and inhibited the development of
obesity, glucose intolerance, and diabetes in pre-diabetic KKAy mice. Fermented blue-
berry juice displayed its antiobesity and antidiabetic role by mitigating oxidative stress
and increasing adiponectin levels [74]. Adiponectin decreases tissue triglyceride content
and insulin resistance [81]. Adiponectin gene expression is inhibited by ROS [74] and
pro-inflammatory cytokines [74,82].

Fermented blueberries may prevent neurodegenerative disease through anti-
inflammatory and antioxidant activity [75]. ROS-induced oxidative stress causes neuronal
cell damage. In neuronal cell culture, fermented blueberries with Serratia vaccinii induced
antioxidant enzymes activities and prevented neuronal cell death through the upregulation
of cell survival signaling pathways such as MAPK family enzymes p38 and c-Jun N-
terminal kinase (JNK) and the downregulation of cell death pathways such as ERK1/2 and
MAPK/ERK kinase (MEK1/2) [75]. Furthermore, the antioxidant and antiproliferative
activity of fermented blueberries with Lactobacillus plantarum (L. plantarum) has been found
in human cervical carcinoma HeLa cells [83].

Evidence has shown the health benefits of fermented blueberries may be to some
extent attributable to gut microbiota modulation [84,85]. In an in vitro model, fermentation
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of blueberry pomace with Lactobacillus casei (L. casei) increased its antioxidant activity by
a significant increase in superoxide dismutase activity and radical scavenging capacity.
Fermented blueberry pomace also improved gut function by altering fecal microbial com-
position through inhibiting Escherichia coli, Enterococcus, and increasing the abundance of
beneficial microbiota such as Bifidobacterium, Ruminococcus, Lactobacillus, Akkermansia
genera, and butyrate-producing bacteria, and increasing the short-chain fatty acid (SCFAs)
production [84]. In the in vivo model, the effect of supplementation of mice receiving a
high-fat diet with L. casei-fermented blueberry pomace was assayed on gut immunity and
microbiota [85]. Fermented blueberry supplementation improved mucosal immunity by
promoting secretory IgA (sIgA) secretion and transforming growth factor-beta (TGF-β)
levels in the intestine. TGF-β is an intestinal mucosal immunity modulator and a key
mediator in stimulating the IgA+ B cells production in Peyer’s patches of the intestine.
A high-fat diet is associated with a decrease in TGF-β level [85,86]. Besides, fermented
blueberries altered the gut microbiota’s composition and frequency toward an increase in
Bifidobacterium, Lactobacillus, and Akkermansia bacteria and a decrease in Firmicutes
phyla [85]. Fermented blueberries also increased the production of SCFAs. Therefore,
fermented blueberries increased sIgA level by improving gut microbiota and SCFAs pro-
duction [85]. Moreover, this product has been shown to counteract intestinal inflammation
by the reduction of TNF-α and myeloperoxidase and inducing interleukin (IL-10) pro-
duction and improved gut barrier function and immunity by regulating NF-κB/myosin
light-chain kinase (MLCK) signaling [87] and the overexpression of MLCK results in gut
barrier permeability and dysfunction [87,88].

The antihypertensive activity of fermented blueberries through gut microbiota modu-
lation has been studied in rats [89,90]. In a study in rats, intake of freeze-dried fermented
blueberries with L. plantarum DSM 15,313 significantly decreased blood pressure in healthy
rats and rats with L-NAME induced hypertension, while a change in gut cecal microbiome
was observed in healthy rats [89]. In a similar study, no significant effects were observed on
blood pressure and cecal microbial community diversity following feeding hypertensive
rats with L. plantarum fermented blueberries [90].

Zhong et al. (2020) investigated the effect of blueberry products on metabolic syn-
drome by regulating the gut microbial population [91]. They supplemented high-fat-fed
mice with fresh blueberry juice or fermented blueberry juice. Both juices could reduce
fat accumulation, hyperlipidemia, and insulin resistance in mice. A high level of SCFAs
production was observed in both groups; SCFAs may reduce insulin resistance by suppress-
ing pro-inflammatory cytokine production [91]. Furthermore, fresh and fermented juices
enhanced the diversity and richness of the gut microbial population. Interestingly, the
fermented blueberry group demonstrated a low frequency of some obesity-related genera
such as Oscillibacter and Alistipes belonging to the Firmicutes phyla and a high frequency
of leanness-related genera such as Akkermansia, Barnesiella, Olsenella, Bifidobacterium,
and Lactobacillus. Therefore, blueberry products could reduce metabolic syndrome symp-
toms, partly by modulating gut microbiota [91]. In a study in a polygenic mouse model of
obesity, supplementation with blueberry changed gut microbiota composition towards a
substantial rise in the population of Bacteroidetes and Actinobacteria and improved the
obesity-related metabolic outcomes [92].

2.2. Fermented Blackberries

Blackberry is known for its high content of antioxidant compounds, particularly
anthocyanins, ellagitannins, gallic acid, and significant antioxidant capacity based on
its high oxygen radical absorbance capacity [93,94]. Preclinical and clinical studies have
shown a protective effect of this fruit against chronic diseases by inhibiting oxidative stress
and inflammation [93]. As aforementioned, the fermentation process leads to an increase
in the berries’ phenolic content [67,95,96], so fermented blackberry juice may exert more
health benefits compared to non-fermented juice [97].
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Some studies have shown the anti-inflammatory potential of anthocyanins and proan-
thocyanidins from fermented blueberry–blackberry beverages through NF-κB signaling
inhibition [66]. Adipose tissue hyperplasia during obesity induces the secretion of adipocy-
tokines such as leptin, interleukin-6 (IL-6), interleukin-1β (IL-1β), IL-10, TNF-α, monocyte
chemo-attractant protein-1, and plasminogen activator inhibitor-1, which are responsible
for obesity-related inflammation [98]. Some of the released adipokines induce the infiltra-
tion of inflammatory macrophages into the adipose tissue and exacerbate the inflammatory
responses [99]. An in vitro adipose tissue inflammatory model revealed the potential role
of enriched anthocyanin fractions from blueberry-blackberry fermented beverages in the
inhibition of inflammatory responses related to obesity through reducing the secretion
of NO, TNF-α, and inhibition of NF-κB activation in LPS-induced mouse macrophage.
Those fractions also reduced intracellular fat accumulation in adipocytes and increased
insulin-induced glucose uptake in adipocytes [100].

Oxidative stress contributes to the photoaging process. The high expression of iNOS
and cyclooxygenase 2 (COX-2) in photoaged skin has been reported [101,102]. UVB induces
ROS production, and ROS induces the expression of iNOS and COX-2, leading to inflamma-
tory responses and skin damage [103]. Besides, UVB activates the NF-κB pathway, which
is a pivotal mediator of the immuno-inflammatory reactions occurring in the pathogenesis
of different dermatologic disorders [104,105]. Kim et al. (2019) showed the protective effect
of fermented blackberry against ultraviolet B (UVB)-induced skin photoaging. They found
that fermentation of blackberry with L. plantarum increased the antioxidant capacity of
the fruit, inhibited activation of NF-κB signaling, and reduced the production of iNOS
and COX-2 [103].

Although we could not find published research investigating the fermented black-
berry products’ influence on the gut microbial composition, the beneficial impact of non-
fermented blackberry and its compounds on gut microbiota and the mitigation of in-
flammatory conditions related to gut microbial dysbiosis has been investigated [106]. For
example, blackberry anthocyanin-rich extract can restore high-fat diet-induced gut micro-
biota dysbiosis in Wistar rats. This extract can recover gut microbial diversity and protect
against dysbiosis-induced neuroinflammation [106]. Further, a mixture of blackberry fruit
and leaf extracts effectively prevented diet-induced non-alcoholic fatty liver disease in
Sprague–Dawley rats [107]. Feeding rats with the mixture resulted in an elevation in
antioxidant enzyme capacity, mitigation of inflammatory responses, modulation of gut
microbiota by increasing the frequency of Lactobacillus and Akkermansia in the fecal sam-
ples, enhancement of the gut integrity, and increase in the frequency of mucus-secreting
goblet cells [107].

3. Fermented Cabbage Products

Cabbage is a rich source of phenolic compounds and is well known due to its unique
health benefits such as anti-inflammatory, antioxidant, and cancer-protective proper-
ties [108]. Studies have shown the positive impact of fermented cabbage products such as
sauerkraut and kimchi on health [109].

3.1. Sauerkraut

Sauerkraut is a nutritious fermented cabbage product widely consumed as a tradi-
tional dish in many European and Asian nations and the United States [110,111]. It is
produced by LAB fermentation of shredded, fresh white cabbage salted with 2–3% sodium
chloride [110,111]; salt is added to provide an anaerobic environment and prevent microbi-
ological spoilage [77]. Leuconostoc mesenteroides (L. mesenteroides), L. plantarum, Lactobacillus
brevis, Pediococcus pentosaceus, and Enterococcus are the main bacterial species involved
in the fermentation process of cabbage [112–114]. Sauerkraut is highly popular due to
its sensory features, its nutritional value and its medicinal potentials [110,112]. Scientific
research strongly supports the health-promoting properties of sauerkraut by exerting anti-
inflammatory, antioxidant, and anticarcinogenic activities and protecting against oxidative
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DNA damage [77,115,116]. Bioactive compounds derived from glucosinolate hydrolysis,
such as indol-3-carbinol, ascorbigen, sulforaphane, and allyl isothiocyanate, account for
the favorable health effects of sauerkraut [77]. This fermented food is an excellent source of
antioxidant vitamins such as vitamins E and C [77]. In a study, sauerkraut has been shown
to exert anti-inflammatory activity by reducing NO production in LPS-induced murine
macrophages RAW 264.7 [117]. Allyl isothiocyanate and indol-3-carbinol might be, in part,
responsible for the anti-inflammatory activity of sauerkraut through different mechanisms
such as the inhibition of pro-inflammatory cytokines production (like TNF-α, and IL-1β),
pro-inflammatory enzymes expression (like iNOS), NF-κB pathway activation, and the
reduction of pro-inflammatory microRNA-155 level in induced macrophages [118].

Furthermore, sauerkraut is a unique source of LAB [119–121]. LAB are major species
considered as probiotics that promote innate and adaptive immunity and attenuate inflam-
mation through modulating gut microbiota [122,123]. For example, in a study, adminis-
tration of LAB strains to BALB/c mice attenuated allergen-induced airway inflammation
by regulating Th1/Th2 balance and up-regulation of Tregs [123]. Microbiome analysis
revealed that LAB administration increased the dominant phyla frequency in the gut mi-
crobiota (Firmicutes and Bacteroidetes), which display a significant role in immune system
development and maintenance [123]. Sauerkraut derived-LAB modulate immune function
and enhance antibacterial response by inducing bacteriocins and IgA secretion [124,125].
LAB strains extracted from fermented cabbage could display immunomodulatory and
anti-inflammatory activity in ovalbumin-sensitized BALB/c mice by downregulation of
TLR-4 expression and modulation of B-cells and T-cells responses [126]. Also, it has been
ascertained that the addition of the culture of L. mesenteroides, the key bacteria in the initia-
tion fermentation process of sauerkraut, to sauerkraut enhances the innate and adaptive
immune response in Escherichia coli-infected BALB/c mice [124].

There are limited human studies concerning the health benefits of sauerkraut and its
effect on human gut microbiota. In a clinical trial involving 8 patients with mesenteric
angina, significant differences were observed in disease burden between the 2 groups
receiving French cassoulet or international sauerkraut [127]. In another clinical trial, pas-
teurized or unpasteurized sauerkraut effects on gut microbiota composition were assayed
in 34 patients with irritable bowel syndrome (IBS). Gastrointestinal symptom severity
significantly decreased in both groups. Moreover, a significant change in gut microbiota
was found in both groups. However, the frequency of sauerkraut-related LAB such as L.
plantarum and L. brevis were significantly higher in fecal samples of the group consuming
unpasteurized sauerkraut, indicating that prebiotic bacteria were partly responsible for
favorable effects of sauerkraut in IBS [128]. D-phenyllactic acid, a phenolic compound pro-
duced by sauerkraut LAB, firmly attaches to the hydroxycarboxylic acid receptor 3 (HCA3).
HCA3 is a member of G protein-coupled receptors for hydroxycarboxylic acids, which
play an essential role in regulating immune functions. In a study, ingestion of sauerkraut
increased the level of D-phenyllactic in plasma and urine samples of participants and
induced immune cell activation [129].

3.2. Kimchi

Kimchi is a naturally fermented vegetable food with LAB [130,131]. It is the traditional
side dish in Korea which is made of different raw vegetables, mainly Chinese cabbage
(Brassica rapa), fermented in a seasoning mixture such as red pepper, garlic, ginger, and
green onion and fermented seafood sauce [110,112,114,131–134]. Kimchi is a functional
food containing a high level of LAB, nutrients, vitamins, and phytochemicals such as indole
compounds, b-sitosterol, benzyl isothiocyanate, and thiocyanate [131,132,135], which plays
various physiological roles in the human body, including antioxidative, anti-inflammatory,
anticarcinogenic, antiaging, antiobesity, antidiabetic, antihypertensive, anti-constipation,
and lipid-lowering activities [131,132,136–138]. Kimchi is considered a unique probiotic
food which 108–9 CFU/g LAB remaining alive in kimchi after the fermentation [136].
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Different strains of Leuconostoc, Weissella, Lactobacillus, and Pediococcus are among the
main genera contributing to the kimchi fermentation process [110,132,139].

A large body of research has proven the positive health effects of kimchi [130,137,140,141].
Kimchi and its ingredients exert an anti-inflammatory function by suppressing COX-2
and iNOS expression and NF-κB pathway activation [142,143]. Antioxidant and anti-
inflammatory effects of this functional food are attributable, at least in part, to its biological
compounds generated during fermentation [144]. In animal studies, the dichloromethane
fractions of the kimchi have been reported to display high free radical scavenging capacity
and a high antioxidant effect against LDL oxidation [130]. Also, KIMCHI3-(40-Hydroxyl-
30,50-dimethoxyphenyl) propionic acid, a bioactive compound from kimchi, could alleviate
inflammation in LPS-stimulated BV2 microglial cells by attenuating LPS-induced pro-
inflammatory cytokines secretion such as TNF-α and IL-1β, through inhibition of NF-κB,
MAPKs, and PI3K signaling pathways [143].

On the other hand, preclinical and clinical studies show that kimchi’s medicinal
benefits might be associated with gut microbiota modulation [125,145]. For example,
gut microbiota modulation by kimchi intake is related to this health food’s antiobesity
role [146]. The correlation of obesity with elevation in the relative abundance of Firmicutes
and reduction in the relative abundance of Bacteroidetes phyla in the gut microbial popu-
lation has been supported by substantial evidence [147,148]. In a study, feeding 45 male
Sprague-Dawley rats with a diet containing kimchi was associated with an increase in gut
microbiota diversity, a decrease in the abundance of Firmicutes, and an increase in the
quantity of Bacteroidetes. Also, the number of LAB and butyric acid-producing bacteria
was elevated [125]. In another study, feeding mice with a kimchi microbial community
raised the frequency of Muribaculaceae and family and reduced the frequency of Coriobac-
teriaceae, and Erysipelotrichaceae families [146]. Muribaculaceae is negatively associated
with obesity indicators, while Coriobacteriaceae and Erysipelotrichaceae are abundant in
obese people [146].

Anti-inflammatory and immunomodulatory functions of LAB derived from kimchi
through the regulation of gut microbiota have been exhibited in animal models of allergic
skin disorders [149]. Atopic dermatitis is an inflammatory skin disorder characterized by T
helper 2 (Th2)-dominated immune responses and an elevated level of immunoglobulin
E (IgE) [150]. Administration of Lactobacillus sakei (L. sakei) WIKIM30, a probiotic strain
extracted from kimchi, to mice with 2,4-dinitrochlorobenzene-induced atopic dermatitis
inhibited Th2 immune response and Th2 related cytokines (IL-4, IL-5, and IL-13), regulated
Th1/Th2 balance, induced Tregs differentiation and decreased skin lesions [149]. Dysbiosis
of gut microbiota has been reported in atopic dermatitis [149]. Microbiome analysis
revealed that the protective function of L. sakei WIKIM30 against atopic dermatitis could
be mediated by its effect on gut microbiota. Treatment with this probiotic restored the
changes in gut microbiota composition induced by atopic dermatitis toward an elevation
in Arthromitus and Ralstonia and a reduction in Ruminococcus abundance [149]. Besides,
the administration of live and heat-inactivated L. sakei probio-65, extracted from Kimchi,
ameliorated skin inflammation and lesions by reducing serum IgE and/or inhibition of Th2-
related cytokines [150]. L. plantarum K-1 isolated from kimchi may mitigate inflammation
and alleviate allergic diseases by suppressing the TNF-α and IL-4 expression and inhibiting
NF-κB activation [151].

Kimchi-derived LAB display potential for alleviating IBD in mice [152,153]. Admin-
istration of Lactobacillus paracasei (L. paracasei) LS2, a lactic acid bacterium derived from
kimchi, increased CD4+FOXP3+ Treg cells and anti-inflammatory cytokine IL-10 produc-
tion in mice with colitis. It also decreased IL-6, TNF, and INF-γ levels in colon tissue.
The colonic activity of myeloperoxidase (MPO) was significantly reduced in mice fed
with L. paracasei LS2. Colonic MPO activity indicates neutrophil infiltration and tissue
damage [153]. L. mesenteroides and L. sakei are other kimchi-extracted LAB with significant
potential for attenuation inflammation in experimental colitis [152]. Figure 2 illustrates the
protective effects of fermented cabbage products against inflammatory disorders.
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In the clinical setting, Kim et al. (2016) found that kimchi could affect gut micro-
biota composition for its singular synbiotic content [145]. They examined the effect of
low and high kimchi diets on the gut microbiota of 12 females. A substantial decrease
in the frequency of class Gammaproteobacteria, which consists of many pathogenic bac-
teria, was observed in the high kimchi group. Furthermore, a significant increase in the
frequency of kimchi LAB, such as L. mesenteroides was reported in participants’ fecal sam-
ples [145]. Fermented kimchi may also modify metabolic parameters in overweight/obese
subjects [154,155]. In a clinical trial, fermented kimchi modified the expression of several
genes related to the metabolic pathways and immunity in obese women. It also affected
metabolism by changing gut microbial communities which the abundance of Firmicutes
decreased while that of Bacteroidetes increased [154].

Fermented cabbage-derived LAB (e.g., L. paracasei) inhibit the pro-inflammatory me-
diators and inflammatory enzymes, including IL-6, TNF, IFN-γ, and myeloperoxidase
(MPO), and alleviate inflammatory bowel disease. LAB also prevent obesity by modulating
gut microbiota toward decreasing Firmicutes’ abundance and increasing Bacteroidetes
frequency. Furthermore, LAB extracted from fermented cabbage foods (e.g., L. sakei) restore
gut microbiota and modulate immune responses by regulating Th1/Th2 balance, inhibiting
Th2-related cytokines, inducing Tregs differentiation, and reducing IgE level, alleviating
allergic reactions such as atopic dermatitis. Created with Biorender.com (accessed on
29 April 2021).
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4. Fermented Soy Products

Soybean is a protein-rich grain and a good source of soluble carbohydrate [156].
Vitamins, minerals, phospholipids, phenolic compounds, and antioxidants are the other
valuable soybean components [157,158]. This valuable grain is widely used in many
traditional fermented dishes. Many Asian countries, including China, Indonesia, India,
Vietnam, and Japan, produce different types of fermented soyfoods such as tempeh, miso,
natto, douchi, and hawaijar [159,160]. Bacteria, yeasts, molds, or a combination of each
contribute to the fermentation of soybeans endowing the final products with better texture,
enriched flavor, and high nutritional value [161]. Table 1 represents the characteristics,
nutritional value, and health benefits of some commonly used fermented soy foods.

Table 1. The characteristics, nutritional value, and health benefits of fermented soy foods.

Product Fermentation
Processes

Microorganism
Involved in

Fermentation
Nutritional Value Health Benefits Ref.

Tempe

It is made in two
steps: bacterial
fermentation of

cooked dehulled
soybeans followed

by solid-state
fermentation by

the mold

Rhizopus oligosporus,
Rhizopus oryzae

High in protein
Rich source of

probiotics,
phytonutrients,
and isoflavones

Inhibition of free
radicals production,
antioxidant activity

Cognitive improvement
Modulation of gut

microbiota in human
toward a healthier

profile

[162–166]

Natto
(Itohiki)

Natto is produced
using soaked and
cooked soybeans

fermented by
bacteria for 24 h at

40 ◦C

Bacillus natto

Lower amount
of sugar

Increased proteins
hydrolysis and

digestibility
High amount of

fiber and vitamin K,
free isoflavones,

and levan

Prevention from blood
clot formation by the

production of
nattokinase, and

therefore prevention
from cardiovascular

diseases
Antioxidant and
antihypertensive

activity
Reduction in bone loss
and promotion of bone

formation in
postmenopausal women

Gut microbiota
modulation

[165,167–171],

Douchi

Soaked and steamed
soybeans are

incubated with
Aspergillus spp. for
3–4 days at 30 ◦C,

then after washing
and adding salt,

water, and ginger
spices, the mixture

is incubated for
15 days at 37 ◦C

Aspergullus oryzae

High in protein,
peptides, free and

essential
amino acids

and organic acids

Antioxidative,
antihypertensive, and
antidiabetic activity

[172–174]

Hawaijar

Washed, soaked,
and boiled (for

2–3 h) soybeans are
loosely packed in

the bamboo basket
lined with leaves

and kept for
2–3 days to be

fermented

Bacillus subtilus,
Bacillus licheniformis,
Bacillus cereus, and a
smaller number of
Staphylococcus spp.

A rich source of
protein, essential
amino acids, and

peptides
High fiber content

Radical scavenging,
antioxidant and

antidiabetic activities
[175–177]

Miso

Miso is made by
enzymatic

degradation of
cooked soybeans
with molded rice,

wheat, orbarley, and
a small amount of

water in the
presence of
8–12% salt

Aspergullus oryzae,
Pediococcus
halophilus

Rich source of
different vitamins,
including vitamins
B, K, E, folic acid
and also minerals,

amino acids

Protection against
hypertension, stroke,

and some types
of cancer

Antiobesity, antidiabetic
immunomodulatory,

and antioxidant
activities

Gut microbiota
modulation

[165,169,178,179]
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A large body of research evidence has indicated the protective role of fermented
soybeans against inflammatory disorders such as cancer, type-2 diabetes, cardiovascular
diseases, and neurodegenerative diseases [160,180]. Isoflavones are mainly responsible for
the anti-inflammatory activity of fermented soy products [160]. Genistein, daidzein, and
glycitein are the main isoflavones abundantly found in fermented soybeans [181], with
significant anti-inflammatory properties [182–184]. For example, the role of isoflavones on
the basophils, mast cells, and eosinophils, as the primary mediators of systemic allergic
inflammation, has been shown in recent studies [185,186]. Isoflavones protect against
allergic inflammatory reactions and modulate immune responses through IgE signaling
inhibition and suppressing the Th2 response [187,188]. Genistein has been identified as a
potent inhibitor of Fcε receptor expression on the human leukemic mast cell line [189]. An
increase in IgE levels and IgE sensitization to allergens occurs in allergic reactions such as
asthma. Following exposure to the antigens, IgE binds to the Fcε receptors on mast cells,
basophils, and dendritic cells and activates them [190].

Treatment with nanonutraceuticals, a mixture of various metabolites derived from
soybean fermented with Bacillus subtilis, including nattokinase, daidzin, genistin, glycitin,
and menaquinone-7, showed neuroprotective properties in rats with memory impairment
through inhibition of neurobehavioral and neurochemical impairments. This nanonu-
traceuticals is a potent antioxidant that can be protective against Alzheimer’s diseases [191].
The anti-inflammatory effects of two Korean fermented soy foods (doenjang and cheong-
gukjang) have been explored in high-fat fed rats. These foods exerted anti-inflammatory
activity by reducing free radical production, suppressing NF-κB signaling, and inhibiting
COX-2 and iNOS expression [192].

Fermented soy products may mitigate inflammation and modulate immune system
responses through modulating gut microbiota. Chronic kidney disease (CKD) is considered
a pro-inflammatory condition. Various factors such as increased inflammatory cytokines,
oxidative stress, and gut dysbiosis contribute to CKD’s inflammatory state [193]. He
et al. (2020) observed that dietary intervention with fermented soybean (ImmuBalance), a
unique oligo-lactic acid product, or a combination of both reduced inflammatory cytokine
levels and acute and chronic inflammation in the kidneys and subsequently decreased
inflammation-induced kidney damage and prevented disease progression in mice [193].
The abundance of Clostridium leptum bacteria in gut microbiota was higher in the treatment
groups’ cecum than the control group [193]. A decrease in the frequency of Clostridium
leptum in some inflammatory diseases such as IBD has been reported [194,195]. Fermented
soybean also increased the abundance of Bifidobacterium genus and Bacteroides fragilis.
Therefore modulation of gut microbiota by dietary intervention might contribute to the
prevention of inflammation in CKD [193].

Antidiabetic features of the short-term fermented soybean with Bacillus amylolique-
faciens have been seen in an Asian type 2 diabetic animal model. Feeding rats with this
product improved glucose metabolism, insulin secretion, and sensitivity. The number of
beneficial gut bacteria such as lactobacillales and Akkermensia muciniphila increased, leading
to the maintenance of mucin content, the villi area, and the frequency of goblet cells in
the gut [196].

Research evidence has elucidated the health-promoting features of fermented soy in
humans as well [197]. Due to the high probiotics content, fermented soy product intake is
related to human intestinal health [197]. In a study of 10 healthy subjects, consumption
of soymilk fermented with a mixture of microorganism, including L. plantarum, L. casei,
Lactococcus lactis, L. mesenteroides, and Saccharomyces florentinus, could increase the frequency
of beneficial bacteria, bifidobacteria, and lactobacilli, in the feces of participants, while
a decrease in abundance of fecal clostridia was observed [198]. Similar changes in the
gut microbiota composition were reported in 28 healthy males and females consuming
fermented soy milk (500 mL/day, two weeks) [199].

Besides, recent evidence suggested that short-term fermented soybean intake can be
protective against memory impairment and Alzheimer’s disease in humans by suppressing
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insulin resistance in the brain, preventing neuroinflammation, and modulating the gut–
microbiome–brain axis [200].

Furthermore, large population-based studies have proved the health benefits of fer-
mented soy in humans. For example, a population-based cohort study conducted by The
Japan Public Health Centre-based Prospective Study evaluated the association of soybean
product consumption and all-cause and cause-specific mortalities during 15 years. They
showed that the higher intake of fermented soy products significantly correlated with a
lower risk of mortality. However, there was no significant association between a higher
intake of total soy and mortality rate [201].

5. Conclusions

Scientific research highlights the significance of gut microbiota-directed interventions
by diet enrichment with functional natural products such as probiotics and phytochemicals
as a promising strategy to promote immune system performance, modulate inflammatory
responses, and improve human health. Fermented fruits, vegetables, and grains enrich our
diet with numerous live microorganisms, phytochemicals, and bioactive compounds. These
compounds play a key role in the functional and health-promoting properties of fermented
products. Due to the high content of phenolic compounds with strong antioxidant activity,
fermented blueberries and blackberries may protect against chronic inflammatory disor-
ders by decreasing oxidative stress, modulating inflammatory signaling and responses,
and improving immunity. Regarding fermented cabbage products, sauerkraut and kim-
chi, live LAB are the key player in improving health and preventing chronic diseases
through improving a healthy gut microbial balance and modulating inflammatory and
immune responses. Fermented soybeans are an excellent source of isoflavones with known
anti-inflammatory properties. Furthermore, probiotics found in fermented soy products
contribute to the health benefits of these nutritious foods. Overall, growing evidence
is strongly supporting the health benefits of fermented plant foods. However, existing
evidence has been chiefly generated from in vitro and animal studies, and there exist rare
clinical studies in this field. Therefore, the potential role of fermented plant products in
human health remains to be determined by randomized, controlled clinical trials.
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