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Abstract: Resonant micro/nanoelectromechanical systems (MEMS/NEMS) with on-chip integrated
excitation and readout components, exhibit exquisite gravimetric sensitivities which have greatly
advanced the bio/chemical sensor technologies in the past two decades. This paper reviews the
development of integrated MEMS/NEMS resonators for bio/chemical sensing applications mainly in
air and liquid. Different vibrational modes (bending, torsional, in-plane, and extensional modes) have
been exploited to enhance the quality (Q) factors and mass sensing performance in viscous media.
Such resonant mass sensors have shown great potential in detecting many kinds of trace analytes in
gas and liquid phases, such as chemical vapors, volatile organic compounds, pollutant gases, bacteria,
biomarkers, and DNA. The integrated MEMS/NEMS mass sensors will continuously push the
detection limit of trace bio/chemical molecules and bring a better understanding of gas/nanomaterial
interaction and molecular binding mechanisms.

Keywords: integrated resonators; gravimetric sensors; bio/chemical sensing; quality factor; reso-
nant modes

1. Introduction

The past two decades have witnessed significant development in sensor technologies
for the recognition and detection of chemical (e.g., volatile organic compounds, VOCs) and
biological species (e.g., cells, proteins) in ambient and liquid environments. In contrast
to the optical methods, micro-/nanoelectromechanical systems (e.g., microcantilevers),
featured by miniature device size, exquisite detection limit (from part per million to part
per trillion, or micromolar to femtomolar), and easy to be on-chip integrated, have offered
better opportunities to detect the trace analytes and capture the molecular interaction
processes in gas and liquid phases [1–3].

Taking the prevailing microcantilever sensors as an example, two different operational
modes (i.e., static and dynamic modes) have been engineered for bio/chemical sensing. In
static mode, the cantilever surface is functionalized to have a good affinity to the target
molecules. The stress change at the cantilever surface (owing to electrostatic repulsion
or attraction, steric interactions, hydration, and entropic effects) causes the cantilever
bending, which is usually measured by an optical lever system [4]. Since the responses
of surface-stress sensors are difficult to interpret, a dynamic scheme has been proposed
by operating a cantilever at resonance. A tiny mass loading (∆m) at a cantilever free
end can lead to a resonant frequency downshift (∆f ), which defines the mass sensitivity:
< = ∆ f /∆m = − f /2M, where f = 1/2π

√
k/M is the resonant frequency, k and M are

the effective spring constant and effective mass of the resonant device [5]. Therefore, one
can perceive that micro-and nanoelectromechanical (MEMS/NEMS) resonators promise
gravimetric detection of trace analytes down to a fraction of the sensor mass. In comparison
with the conventional quartz crystal microbalances (QCM), the silicon micro-machined res-
onant cantilevers possess finer mass resolution, smaller size, low-cost batch fabrication, and
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easy IC-compatible integration [6]. Although pioneering efforts have been made towards
attogram and atomic-level resonant mass sensing, with outstanding device performance
often achieved by off-sensor optical detection methods in high vacuum or at low tempera-
ture [7–16], there is an increasing need for potable micro- and nano-gravimetric sensors
with integrated resonance excitation and readout elements on-chip, toward real-world
bio/chemical sensing applications.

To date, several on-chip resonance excitation and readout mechanisms have been
developed, considering their compatibility with ambient and liquid conditions (especially
conductive biosolutions). As to resonance readout, most microcantilevers use piezoresistive
effect, as the doped semiconducting materials (mostly silicon) provide very large gauge
factors, and the fabrication process has been well-developed and optimized [17,18]. The
piezoresistors are often patterned at the device’s clamping points (e.g., fixed end of the
cantilever), where the largest stress is expected at resonance. Wheatstone bridge with 4 ter-
minal piezoresistors is also desirable to improve the displacement sensitivity to nanometer
scale in air and liquid.

As to resonance excitation, electrothermal excitation has been widely adopted on
many resonant MEMS/NEMS prototypes, such as microcantilevers [19], ‘dog-bone’ res-
onators [20], and disk resonators [21]. A DC + AC voltage signal is typically applied to a
heating resistor patterned at the device’s clamping points, and the time-varying heating
power whose cycle matches the device’s resonant frequency induces the mechanical vibra-
tion. On the other hand, electromagnetic excitation has been achieved with metal loops
patterned around the cantilevers. With the presence of an external magnetic field (tens of
mT) and an AC electrical current flowing through the metal loops, Lorentzian force drives
the bending or torsional vibration, depending on the positions of the metal loops on the
resonators [17,22].

Alternatively, the piezoelectric approach emerges with the successful synthesis of
ceramics with high piezoelectric constants (such as aluminum nitride, AlN, Pb-based
lanthanum-doped zirconate titanates, PZT). The piezoelectric effect enables simultaneous
self-excitation/readout. A pure AC input signal creates time-varying stress at the clamping
points, while another AC piezoelectric current signal is generated to read out the resonant
frequency [23–25].

Although on-chip, all-electrical integration brings immense simplification to the bulky,
expensive measurement system that is inevitable for optical readout, researchers are still
confronted with technical challenges of operating resonant sensors in viscous media that
dissipates resonating energy, and great endeavors have been made to achieve better device
performance (e.g., higher Q, better mass sensitivity and mass resolution) in air and liquid by
studying different vibrational modes, such as bending, torsional, in-plane, and extensional
modes (as shown in Figure 1 and Table 1).Micromachines 2021, 12, x  3 of 14 
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torsional, in-plane, and extensional modes. Reprinted with permission from [17,19,20,26]. Copyright
2007 American Institute of Physics, 2019 Royal Society of Chemistry, 2016 IEEE, 2011 Elsevier B.V.

Table 1. Performance of typical integrated resonant gravimetric sensors in air using different vibrational modes.

Devices Resonant Frequency Q Factor Sensing Performance Refs

Fundamental Bending-Mode Cantilevers 47.838 kHz 168 0.43 Hz/pg 0.26 pg [27]

High-Order Bending-Mode Cantilevers 298.132 kHz 867 2.7 Hz/pg 30 fg [27]

Torsional-Mode Cantilevers 114.805 kHz 252 0.9 Hz/pg 23 fg [28]

High-Order Torsional-Mode Cantilevers 508.082 kHz 286 5.1 Hz/pg 9 fg [28]

In-Plane Mode Cantilevers 536 kHz 2096 / / [26]

Extensional-Mode Resonators 4.1 MHz 11157 10.617 Hz/pg 0.94 pg [29]

2. Integrated Resonant Gravimetric Sensors Using Different Vibrational Modes
2.1. Integrated Resonant Gravimetric Sensors Using Fundamental Bending Modes

Microcantilever vibrating at its fundamental bending mode is the most common type
of resonant mass sensor. Figure 2b shows a typical cantilever mass sensor with integrated
thermoelectric excitation and Wheatstone bridge readout components [18]. As illustrated
in Figure 2a, 4 piezoresistors and 1 heating resistor near the fixed end of the cantilever are
created by boron-doping through thermally grown silicon oxide (SiO2) windows. With
patterned aluminum interconnects covered by PECVD SiO2 passivation layer and Au/Cr
sensing pad at the free end, the cantilever is finally released by the backside deep reactive
ion etching (DRIE), followed by the removal of SiO2 by hydrofluoric acid (HF). The heating
power with a DC + AC voltage is given by P = (VDC + VAC cos ωt)2/R, where R is the
resistance of the piezoresistive heater, ω = 2π f , where f is the driving frequency. One can
perceive that the mechanical resonance is excited by the VDC ·VAC cos ωt/R component
(given that VDC >> VAC). The sensing region at the cantilever free end is covered by an Au
film for subsequent chemical functionalization. Such resonant cantilevers with dimensions
of 200 × 100 × 3 µm have exhibited fundamental-mode resonant frequencies f ~100 kHz,
and quality factors Q > 100. With a mass sensitivity ~1.5 Hz/pg and mass resolution
~0.1 pg, various hazardous chemical vapors, e.g., Trinitrotoluene (TNT), dimethyl methyl
phosphonate (DMMP), VOCs and biological species (e.g., bacteria, proteins, DNA) with
very low concentrations have been successfully detected.
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Figure 2. Bending-mode cantilever mass sensors. (a–f) Fabrication process of microcantilevers
showing on-chip integration of electrothermal excitation and piezoresistive readout. (g) Typical
resonant sensor with sensing region at the free end for nanomaterial loading. Reprinted with
permission from [18]. Copyright 2009 IOP Publishing Ltd.

It is worth noting that with all-electrical integration, a resonator is readily connected
to a phase-lock loop (PLL) for real-time frequency tracking. Hence, the minimum de-
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tectable mass is defined by the minimum detectable phase change of the system, given by
δm = (δθ/Q)M [30]. Therefore, the mass resolution is significantly dependent on the Q
factor, which is inevitably deteriorated by the strong viscous damping in air and liquid.
Therefore, researchers have been exploring other high-order resonance modes to improve
the Q factor and mass sensing performance.

2.2. Integrated Resonant Gravimetric Sensors Using Higher-Order Bending Modes

The enhancement in Q factor and mass sensing performance when using high-order
flexural modes has been demonstrated in many cases [9,27,31–35]. Taking cantilever
resonators in air as an example, a ~5-fold increase in Q factors, ~6-fold increase in mass
sensitivity, and >8-folder improvement in mass resolution have been demonstrated using
the 2nd-order bending mode than using fundamental mode (as shown in Table 1). The
increase in mass sensitivity (from 0.43 to 2.7 Hz/pg) can be attributed to the higher resonant
frequency of 2nd-order bending mode (~298 kHz), which is ~6-folder higher than that
of the fundamental mode (~47.8 kHz). The improvement in Q factor (from 867 to 168)
has been analyzed from the perspective of flow pattern over the width of the cantilever.
Using finite element simulation, less energy dissipations into the viscous media have been
visualized for high order bending modes, leading to higher Qs [28,36,37].

2.3. Integrated Resonant Gravimetric Sensors Using Torsional Modes

Torsional modes have also been exploited to improve the sensing performance of
resonant mass sensors [17,22,28,38]. Figure 3b shows a typical T-shaped torsional-mode
cantilever with on-chip integrated electromagnetic excitation and piezoresistive readout
components [17]. The fabrication process of torsional-mode resonators is similar to that
of bending-mode resonators. 4 piezoresistors are formed by boron-doping using SiO2
mask. Aluminum is patterned not only as the interconnects but also as the metal loop for
electromagnetic excitation. After the Cr/Au sensing pads are defined by liftoff, the device
is released by both frontside RIE, backside DRIE, and SiO2 removal by HF. Together with
a decent increase in Q factor, Xia et al. have reported a significant enhancement in mass
sensing performance using torsional modes. The >10-fold increase in mass sensitivity is
attributed to the much higher resonant frequencies of the torsional modes than that of the
fundamental mode. Benefited from high-order torsional vibrations, the mass detection
limit has been improved by almost 30 times, down to 9 fg in air [22].
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resonant sensor with 2 sensing regions for nanomaterial loading. Reprinted with permission from [17].
Copyright 2007 American Institute of Physics.

2.4. Integrated Resonant Gravimetric Sensors Using In-Plane Modes

Resonant gravimetric sensors using in-plane modes have been studied [26,39,40], as
shown in Figure 4b. To achieve effective excitation and detection of in-plane vibration,
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thin beam legs are doped to form resistors for electrothermal driving and piezoresistive
readout. The fabrication process is similar to that for bending-mode cantilevers, as shown
in Figure 4a. An additional oxygen annealing step is often performed to protect the vertical
sidewalls of the cantilever and tiny beams against electric leakage in conductive solutions
since these devices are often designed for bio/chemical sensing in liquid. An important
merit of using in-plane mode is the high Q factors >2000 in air, which is >10-fold better
than that of the fundamental mode (as shown in Table 1). As this type of resonator is often
used for biosensing applications in liquid, the sensing performance will be detailed in
Section 3.3.
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Figure 4. In-plane-mode resonant microcantilever mass sensors. (a–d) Fabrication process of micro-
cantilevers showing on-chip integration of electrothermal excitation and piezoresistive readout. (e)
Typical resonant sensor with sensing region for loading functional nanomaterials. Reprinted with
permission from [26]. Copyright 2011 Elsevier B.V.

2.5. Integrated Resonant Gravimetric Sensors Using Extensional Modes

Extensional-mode resonators typically have ‘dog-bone’ structure [20,29,41], which
is quite different from a cantilever, as shown in Figure 5. Two large sensing pads are
connected by 2 or 3 thin beams and vibrate oppositely along the device length. The
piezoresistive arms are designed for electrothermal excitation and piezoresistive readout of
the extensional mode. The fabrication process of the ‘dog-bone’ resonator is quite similar
to that of in-plane mode cantilevers. Such mass sensors using bulk mode surpass the
aforementioned bending, torsional, and in-plane mode resonators in terms of Q factor
and mass sensitivity. Q factors > 11,000 and mass sensitivity up to 10.6 Hz/pg have been
reported, which are ~65-time and ~25-time higher than those from fundamental-mode
cantilevers (refer to Table 1).
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Overall, resonant mass sensors, with integrated excitation and readout schemes and
enhanced mass sensing performance by different vibrational modes, have opened up new
possibilities for ultrasensitive bio/chemical detection in gas- and liquid phases, which will
be detained in the following section.

3. Integrated Resonant Gravimetric Sensors for Bio/Chemical Detection
3.1. Integrated Resonant Gravimetric Sensors for Gas Detection

The ability to detect trace chemical vapors (e.g., TNT, DMMP), VOCs (e.g., aniline,
xylene), and other pollutant gases (e.g., carbon monoxide, CO, sulfur oxide, SO2) is highly
demanded in environmental protection, industrial pollution control, biomedical systems,
and public safety. However, the very low concentration of target gases, interfering gases,
and potable sensor design have imposed great challenges in on-the-spot, rapid detection.
Therefore, great attention has been made to engineer integrated resonant gravimetric
sensors for gas sensing, thanks to their small size, ultra-high sensitivity, and scalability for
mass production.

Figure 6a shows an example of a cantilever gas sensor, with nanomaterials (hexafluoro-
2-propanol-functionalized mesoporous silica, HFMS, shown in the inset) loaded to the
sensing region near the free end [42]. The cantilever is electrothermally excited at its
fundamental mode, and the resonant frequency is monitored in real-time using PLL control.
When the target gas molecules flow over the cantilever (e.g., 45 ppt, 90 ppt, 135 ppt TNT in
Figure 6b), the molecules are adsorbed onto the nanomaterials, hence decrease the resonant
frequency. The presence of functionalized nanomaterials can greatly improve the sensor
selectivity of the target gas. As shown in Figure 6c, the HFMS-based cantilever resonator is
highly responsive to TNT than other interference gases.
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Figure 6. TNT vapor detection using a microcantilever sensor. (a) SEM images showing a microcan-
tilever sensor with loaded HEMS nanomaterials. (b) Frequency responses of the microcantilever
to TNT vapors at different contractions. (c) Sensor responses to various kinds of interfering gases
compared with 380 ppt TNT vapor. Reprinted with permission from [42]. Copyright 2011 American
Chemical Society.
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So far, resonant cantilever sensors have shown great potential in detecting many kinds
of trace analytes, such as chemical vapors, VOCs, and pollutant gases, as summarized in
Table 2. In general, the cantilever mass sensors exhibit detection limits from ~100 pb to
~10 ppt level for detecting chemical vapors, such as TNT, DMMA, TMA. The detection
limit for VOCs falls in ~1 ppm–100 ppb level, such as aniline, xylene. As to pollutant
gases, such as CO, SO2, the minimum detectable concentrations as low as ~10 ppb have
been demonstrated. The cantilever resonators also promise fast response time from tens of
seconds to ~10 min, thanks to the optimized design of resonators and nanomaterials.

Table 2. Integrated Resonant Gravimetric Sensors for Gas Sensing.

Targets Sensing Materials Gas Sensing Performance Refs
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CO2 Gas

−NH2-MTF 30 ppm <60 s [56]

3.2. Integrated Resonant Gravimetric Sensors for Biosensing in Air

The detection of biological species, such as bacteria, viruses, and proteins is of great
importance for disease diagnosis, food safety, and fundamental research. Luckily, some of
these species can survive in humid air, hence they can be detected by resonant mass sensors.
In these cases, the resonators are operated in ‘dip-and-dry’ mode, without suffering from
strong viscous damping. After sufficient time for immobilization of bacteria or antigen-
antibody interactions in solution, the resonators are dried, and the resonant frequencies
before and after dipping are recorded.

Using such an approach, Xu et al. have reported the detection of Escherichia coli
(E. coli) O157:H7 down to 103 CFU/mL, and Bacillus Anthracis as low as 103 spores/mL
using cantilever mass sensors [57]. With an ultra-high mass resolution down to 9 fg,
Xia et al. have demonstrated the detection of 60 ng/mL alpha-fetoprotein (AFP) using
torsional-mode resonators [22].

3.3. Resonant Gravimetric Sensors for Bio/Chemical Detection in Liquid

Although the ‘dip-and-dry’ method has been proved to be effective for certain cases
that avert device immersion in liquid, direct sensing in liquid is highly desirable, especially
for biological applications since most biological processes take place in liquid. The much
stronger viscous damping in liquid than in air has imposed great challenges in detecting
trace bio/chemical analytes in liquid using resonant gravimetric sensors. For example,
fundamental-mode cantilever resonators typically exhibit Qs ~10–20 when operated in
liquid (e.g., water, phosphate buffered saline, PBS) (refer to Table 3). Still, prostate-specific
antigen (PSA), C-reactive protein (CRP), DNA with concentrations between 10 µg/mL to
10 ng/mL are detectable using such gravimetric sensors.

Several approaches have been taken to improve the sensing performance of resonant
mass sensors in liquid. First, as mentioned in Section 2, Q factor and mass sensitivity can
be improved by exploiting vibrational modes beyond fundamental mode. Figure 7 shows
an example of monitoring heavy metal-ion (Hg2+) in water (mimicking ion pollution to
water resource) using extensional-mode ‘dog-bone’ resonators [20]. Q factor ~256 and
mass sensitivity ~9.76 Hz/pg have been observed, which are >10-time and ~100-time
higher than those of fundamental-mode cantilevers. With –SH modified mesoporous
silica loaded to the sensing regions, 500 ppb Hg2+ can be easily discerned from frequency
response (as shown in Figure 7b). Second, new device structures can be engineered to
isolate the resonators from strong liquid damping. For example, suspended microchannel
resonators, SMRs [58–64], have drawn considerable attention because of their unique
way of minimizing viscous damping by fabricating fluidic channels inside the cantilevers.
Therefore, these devices are operated in vacuum, allowing ultra-high Qs on the order of
1000–10,000, and unprecedented mass resolutions < 1 ag. Although this type of device
has yet been on-chip fully integrated (resonances are often excited by off-chip piezoshaker,
and detected by optical lever), and shown limitations in cases, for example, monitoring
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adherent mass rather than floating mass, they still hold the records for mass sensing in
liquid using cantilevers.
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Figure 7. Detection of Hg2+ in liquid droplets using a tri-beam extensional-mode resonator. (a) SEM images showing a
microcantilever sensor with loaded mesoporous silica. (b) Frequency responses of the resonator to 500 ppb and 1 ppm Hg2+

ion in solution. Reprinted with permission from [20]. Copyright 2016 IEEE.

Table 3. Integrated Resonant Microgravimetric Sensors for Biological Detection in Liquid.

Device Dimensions f Q Sensing Performance Refs

PZT cantilever 300 × 100 × 0.65 µm 30.95 kHz - - 1–100 ng/mL PSA [23]

Si Cantilever 150 × 140 × 8.2 µm 200 kHz 10 0.02 Hz/pg 10–100 ng/mL PSA [67]

PZT Cantilever 500 × 500 × 35 µm 36.11 kHz 15–25 0.118 Hz/pg 10 µg/mL CRP [24]

Si Cantilever 150 × 140 × 8.2 µm 250 kHz 20 0.1 Hz/pg 10–100 ng/mL PSA [68]

PZT Cantilever 500 × 500 × 32 µm 59 kHz 20 - 100 ng/mL CRP
5 µM ssDNA [25]

In-Plane Mode
Cantilever 190 × 310 × 5 µm 406 kHz 14 8.8 Hz/pg

2 × 103 CFU/mL E. Coli
EcoRV-enzyme digestion of

dsDNA
[26,39]

Rotational Disk d = 500 µm 3.44 MHz 20–80 - Hybridization between ssDNA
(1.0 µM) and HS-ssDNA (2.0 µM) [21]

Encased
Bending-Mode

Cantilever
200 × 100 × 3 µm 50.615 kHz 23 - 102 CFU/mL E. Coli [65]

Encased
In-Plane Mode

Cantilever
190 × 310 × 3.7 µm 576 kHz 208 1.23 Hz/pg 1–10 µM ATP-Aptamer Interaction [66]

Alternatively, resonant mass sensors can be directly immersed in liquid with decent Qs
with the help of hydrophobic shells. Such a sensor platform is more suitable for measuring
adherent masses, such as adherent cells and molecular binding. Yu et al. have shown the
detection of E. coli. down to 102 CFU/mL using a parylene-shell encased bending-mode
cantilevers [65]. More recently, Wang et al. have extended such a technique to in-plane
cantilevers [66]. Q factor has been significantly improved to >200, and mass sensitivity
has increased to 1.2 Hz/pg. Both are one order of magnitude better than conventional
bending-mode cantilevers (refer to Table 3).

4. NEMS Resonators for Ultrasensitive Gravimetric Sensing

To continuously pushing the detection limit of the integrated mass sensors, the device
sizes have been miniaturized to the nanoscale. For example, nanobeams, nanowires, and
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nanotubes have shown effective masses reduced by orders of magnitude to attogram.
Subsequently, the resonance frequencies have increased by orders of magnitude up to
1 GHz. These devices have been used for atomic and molecular level mass sensing in
vacuum, e.g., Au [8], Xe [12,69], Cr [14] atoms, C10H8 molecule [16], bovine serum albumin
(BSA), and β-amylase [15].

However, it worth noting that the limit of detection at single-molecule/atom level
has been achieved through operating those NEMS resonators at very-high/ultra-high
frequency (VHF/UHF) bands, but in stringent experimental conditions (e.g., high vacuum
and low temperature). Meanwhile, the quality (Q) factor decreases as the device sizes
get smaller, which is due to the increased energy dissipation at the nanoscale than at
the microscale.

Some mass sensing attempts have been made with nanocantilevers in air (as shown
in Figure 8), which indeed show exquisite gravimetric sensitivities down to ~0.7 Hz/zg
and mass resolution ~0.1 ag [70,71]. More attention still needs to be made to tackle the
challenges of detecting VHF/UHF resonances with picometer displacement sensitivity
while maintaining sufficient sensing area and decent Qs factors in air and liquid, such that
the NEMS resonators can be widely used for bio/chemical sensing applications in gas and
liquid-phases.
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torsional resonant mode ~37.65 kHz exhibits mass sensitivity ~860 Hz/pg, and TMA detection limit <0.1 ppm. (b) A SiC
nano cantilever with fundamental bending mode in the VHF band (up to 127 MHz), exhibits mass sensitivity ~0.7 Hz/zg,
and mass resolution ~0.1 ag. Reprinted with permission from [70,71]. Copyright 2007 Nature Publishing Group, 2010 IOP
Publishing Ltd.
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5. Conclusions

This paper reviews the development of integrated resonant gravimetric resonators for
bio/chemical sensing applications in the past two decades. Bending-, torsional-, in-plane-,
and extensional-mode resonators have been studied to enhance the mass sensing perfor-
mance in viscous media. Thanks to the ultra-high mass sensitivities (typically ~Hz/pg) and
mass resolution (pg to fg), trace gas molecules and biological species using integrated reso-
nant mass sensors have been demonstrated. More attention still needs to be made to tackle
the challenges of detecting VHF/UHF resonances with picometer displacement sensitivity
in air and liquid, such that the nanoresonators (including nanocantilevers and those made
of low dimensional materials [14,69,72,73] can be widely used for bio/chemical sensing
applications in gas and liquid-phases. In summary, the resonant MEMS/NEMS gravimetric
sensors hold promise to continuously push the bio/chemical detection limits and bring a
better understanding of gas/nanomaterial interaction and molecular binding mechanisms.
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